]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - MUON/AliMUONResponseV0.h
include RICH in tracking
[u/mrichter/AliRoot.git] / MUON / AliMUONResponseV0.h
... / ...
CommitLineData
1#ifndef ALIMUONRESPONSEV0_H
2#define ALIMUONRESPONSEV0_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7// Revision of includes 07/05/2004
8
9#include "AliMUONResponse.h"
10
11class AliMUONResponseV0 : public AliMUONResponse
12{
13 public:
14 AliMUONResponseV0();
15 virtual ~AliMUONResponseV0(){}
16 //
17 // Configuration methods
18 //
19 // Set number of sigmas over which cluster didintegration is performed
20 virtual void SetSigmaIntegration(Float_t p1) {fSigmaIntegration=p1;}
21 // Get number of sigmas over which cluster didintegration is performed
22 virtual Float_t SigmaIntegration() const {return fSigmaIntegration;}
23 // Set single electron pulse height (ADCcounts/e)
24 virtual void SetChargeSlope(Float_t p1) {fChargeSlope=p1;}
25 // Get Set single electron pulse height (ADCcounts/e)
26 virtual Float_t ChargeSlope() const {return fChargeSlope;}
27 // Set sigmas of the charge spread function
28 virtual void SetChargeSpread(Float_t p1, Float_t p2)
29 {fChargeSpreadX=p1; fChargeSpreadY=p2;}
30 // Get sigma_X of the charge spread function
31 virtual Float_t ChargeSpreadX() const {return fChargeSpreadX;}
32 // Get sigma_Y of the charge spread function
33 virtual Float_t ChargeSpreadY() const {return fChargeSpreadY;}
34 // Set maximum Adc-count value
35 virtual void SetMaxAdc(Int_t p1) {fMaxAdc=p1;}
36 // Set saturation value
37 virtual void SetSaturation(Int_t p1) {fSaturation=p1;}
38 // Set zero suppression threshold
39 virtual void SetZeroSuppression(Int_t p1) {fZeroSuppression=p1;}
40 // Get maximum Adc-count value
41 virtual Int_t MaxAdc() const {return fMaxAdc;}
42 // Get saturation value
43 virtual Int_t Saturation() const {return fSaturation;}
44
45 // Get zero suppression threshold
46 virtual Int_t ZeroSuppression() const {return fZeroSuppression;}
47 // Set anode cathode Pitch
48 virtual Float_t Pitch() const {return fPitch;}
49 // Get anode cathode Pitch
50 virtual void SetPitch(Float_t p1) {fPitch=p1;};
51 // Set the charge correlation
52 virtual void SetChargeCorrel(Float_t correl){fChargeCorrel = correl;}
53 // Get the charge correlation
54 virtual Float_t ChargeCorrel() const {return fChargeCorrel;}
55 // Set Mathieson parameters
56 // Mathieson \sqrt{Kx3} and derived Kx2 and Kx4
57 virtual void SetSqrtKx3AndDeriveKx2Kx4(Float_t SqrtKx3);
58 // Mathieson \sqrt{Kx3}
59 virtual void SetSqrtKx3(Float_t p1) {fSqrtKx3=p1;};
60 // Mathieson Kx2
61 virtual void SetKx2(Float_t p1) {fKx2=p1;};
62 // Mathieson Kx4
63 virtual void SetKx4(Float_t p1) {fKx4=p1;};
64 // Mathieson \sqrt{Ky3} and derived Ky2 and Ky4
65 virtual void SetSqrtKy3AndDeriveKy2Ky4(Float_t SqrtKy3);
66 // Mathieson \sqrt{Ky3}
67 virtual void SetSqrtKy3(Float_t p1) {fSqrtKy3=p1;};
68 // Mathieson Ky2
69 virtual void SetKy2(Float_t p1) {fKy2=p1;};
70 // Mathieson Ky4
71 virtual void SetKy4(Float_t p1) {fKy4=p1;};
72 //
73 // Chamber response methods
74 // Pulse height from scored quantity (eloss)
75 virtual Float_t IntPH(Float_t eloss);
76 // Charge disintegration
77 virtual Float_t IntXY(AliSegmentation * segmentation);
78 // Noise, zero-suppression, adc saturation
79 virtual Int_t DigitResponse(Int_t digit, AliMUONTransientDigit* where);
80
81 ClassDef(AliMUONResponseV0,1) // Implementation of Mathieson response
82 protected:
83 Float_t fChargeSlope; // Slope of the charge distribution
84 Float_t fChargeSpreadX; // Width of the charge distribution in x
85 Float_t fChargeSpreadY; // Width of the charge distribution in y
86 Float_t fSigmaIntegration; // Number of sigma's used for charge distribution
87 Int_t fMaxAdc; // Maximum ADC channel
88 Int_t fSaturation; // Pad saturation in ADC channel
89 Int_t fZeroSuppression; // Zero suppression threshold
90 Float_t fChargeCorrel; // amplitude of charge correlation on 2 cathods
91 // is RMS of ln(q1/q2)
92 Float_t fSqrtKx3; // Mathieson Sqrt(Kx3)
93 Float_t fKx2; // Mathieson Kx2
94 Float_t fKx4; // Mathieson Kx4 = Kx1/Kx2/Sqrt(Kx3)
95 Float_t fSqrtKy3; // Mathieson Sqrt(Ky3)
96 Float_t fKy2; // Mathieson Ky2
97 Float_t fKy4; // Mathieson Ky4 = Ky1/Ky2/Sqrt(Ky3)
98 Float_t fPitch; // anode-cathode pitch
99};
100#endif
101
102
103
104
105
106
107
108
109
110
111