
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit Nr. 281

Bootstrapping ontology-based
data access specifications from

relational databases

Philipp Martis

Course of Study: Informatik

Examiner: PD Dr. Holger Schwarz

Supervisor: M. Sc. Leif Harald Karlsen

Commenced: 23rd of November 2015

Completed: 24th of May 2016

CR-Classification: D.0

Abstract

Nach der Titelseite des Berichtes und dem Aufgabenblatt soll das Wesentliche aus dem Inhalt
der Arbeit in wenigen Sätzen zusammengefasst werden. Diese Übersicht soll keine Formeln
und möglichst keine Literaturhinweise enthalten.

iii

Kurzfassung

Nach der Titelseite des Berichtes und dem Aufgabenblatt soll das Wesentliche aus dem Inhalt
der Arbeit in wenigen Sätzen zusammengefasst werden. Diese „Übersicht“ soll keine Formeln
und möglichst keine Literaturhinweise enthalten.

iv

Contents

Abstract iv

Kurzfassung v

Contents vi

List of figures vii

List of tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 1
1.3 Requirements and goals . 2

2 Background and related work 3
2.1 Background . 3
2.2 Related work . 3

3 The OBDA Specification Language (OSL) 4
3.1 Specification . 4

4 The db2osl software 8
4.1 Functionality . 8

4.1.1 Function description . 8
4.1.2 Function summary . 9

4.2 Interface and usage . 10
4.2.1 User interaction and configuration . 10
4.2.2 Integration into systems . 13

4.3 The bootstrapping process . 15
4.4 Architecture . 15

4.4.1 Libraries used . 15
4.4.2 Coarse structuring . 15
4.4.3 Fine structuring . 19

4.5 Tools employed . 25
4.6 Code style . 26

4.6.1 Comments . 26
4.6.2 “Speaking code” . 27
4.6.3 Robustness against incorrect use . 29
4.6.4 Use of classes . 31

v

Contents

4.6.5 Use of packages . 33
4.7 Numbers and statistics . 33

4.7.1 Benchmarking details . 34
4.8 Versioning . 34

5 Summary and future work 36
5.1 Summary . 36
5.2 Future work . 36

Appendix 38

Bibliography 40

vi

List of Figures

1.1 Illustration of the overall bootstrapping process 2

4.1 Package dependencies in db2osl . 17
4.2 Package dependencies in earlier versions of db2osl 18
4.3 Class hierarchies in db2osl . 23
4.4 ColumnSet class hierarchy in db2osl – simplified 24

vii

List of Tables

3.1 OWL individual IRIs in OSL . 5
3.2 OWL class membership of map representations in OSL 5
3.3 OWL property IRIs in OSL . 7

4.1 Command-line arguments in db2osl – descriptions 12
4.2 Command-line arguments in db2osl – default values 13
4.3 Descriptions of the packages in db2osl . 15
4.4 Class attachment to packages in db2osl . 20
4.5 Standalone classes in db2osl . 23
4.6 Numbers and statistics about db2osl . 34
4.7 Important milestones of db2osl . 35

viii

1 Introduction

1.1 Motivation

As estimated in 2007 [HPZC07], publicly available databases contained up to 500 times more
data than the static web and roughly 70 % of all websites were backed by relational databases
back then. As hardware has become cheaper yet more powerful, open source tools have become
more and more widespread and the web has gotten more and more dynamic and interactive,
it’s likely that these numbers have even increased since then. This makes the publication
of available data in a structured, machine-processable form and its retrieval with eligible
software an interesting topic. The most important formalism to represent structured data
without the need of a fixed (database) schema is ontologies, and thus this approach is known
under the term “Ontology based data access” (“OBDA”). The vision of a machine-processable
web emerged as early as 1989 [BL89] and was entitled with the term “semantic web” by Tim
Berners-Lee in 1999 [BLF99]. Definitely, the automatic translation of relational databases to
RDF [W3C14] or similar representations of structured information is an integral part of the
success of the semantic web [HPZC07]. This automatic translation process is commonly called
“bootstrapping”.
Today, the pure bootstrapping process is a relatively well understood topic, ranging from the
rather simple direct mapping approach [W3CR12] to TODO. On the other hand, the handling
of the complexity introduced by these approaches and the use of sophisticated tools to perform
various related tasks meanwhile has become a significant challenge in its own right [SGH+15].
Besides the parametrization of the tools in use, this includes the management of the several
kinds of artifacts accruing during the process, possibly needed in different versions and formats
for the use of different tools and output formats, while also taking changing input data into
account [SGH+15]. Skjæveland and others therefore suggested an approach using a declarative
description of the data to be mapped, concentrating in one place all the information needed
to coordinate the bootstrapping process and to drive the entire tool chain [SGH+15].

1.2 Approach

This thesis describes the development of a specification language to serialize the declarative
specification of the bootstrapping process (see section 1.1 – Motivation) and of a software to
in turn bootstrap it from a relational database schema. After the tasks they accomplish, the
specification language was called “OBDA Specification Language” (“OSL”) and the software
bootstrapping the specification was called “db2osl”.
Using a declarative specification makes the entire bootstrapping process a two-step-procedure,
illustrated in figure 1.1: First, the OBDA specification is derived from the database schema

1

using db2osl. It specifies the actual bootstrapping process in a very general way, so it only
has to be recreated when the database schema changes. The second step is to use the OBDA
specification to coordinate and drive the actual bootstrapping process. The development of
a software that uses the OBDA specification to perform this second step currently is subject
to ongoing work. It will be able to be parameterized accordingly to support different output
formats, tools, tool versions and application ranges.

Database
(schema)

db2osl OBDA specification

Bootstrapper Target
ontology

Figure 1.1: Illustration of the overall bootstrapping process using a declarative OBDA specification

1.3 Requirements and goals

The final system shall be able to cleanly fit into existing bootstrapping systems while being easy
to use, taking the burden of dealing with OSL specifications manually from its users instead
of adding even more complexity to the process. To achieve these goals, use of existing tools,
languages and conventions was made wherever possible. To fit into the environment used in
the OPTIQUE project[CGH+13] it is ultimately part of, Java was used for the bootstrapping
software. Care was taken to design it to be modular and flexible, making it usable not only
as a whole but also as a collection of independent components, possibly serving as the basis
for a program library in the future. To achieve this aim and to make the software more easily
understandable and extensible, it was documented carefully and thoroughly.
As the software will be maintained by diverse people after its development and will likely be
subject to changes, general code quality was also an issue to consider. Following good object-
oriented software development practice [Str00], real world artifacts like database schemata,
database tables, columns, keys, and OBDA specifications were modeled as software objects,
provided with a carefully chosen set of operations to manipulate them and make them col-
laborate. This approach and other actions aiming at yielding clean code are described more
thoroughly in section 4.6 – Code style, while the resulting structure of the software is discussed
in section 4.4 – Architecture.

2

2 Background and related work

TODO: Grundlagen (?)

2.1 Background

As explained in section 1.1 – Motivation, the sole bootstrapping of RDF triples [W3C14] or
other forms of structured information from relational database schemata is a relatively well
understood topic.
TODO: OPTIQUE [KGJR+13]

2.2 Related work

3

3 The OBDA Specification Language
(OSL)

TODO: aims, proceeding, structure As described in [SGH+15], an OBDA specification consists
of several types of maps, all containing data entries and links to other maps. This fits perfectly
into the environment of ontologies and OWL, with data properties being the obvious choice
to represent contained data entries and object properties being the obvious choice to represent
links between maps. Also, a potential user probably to some degree is familiar with this
environment, since this is what the bootstrapping process at the end amounts to.
Therefore, an ideal base for the OBDA Specification Language is OWL, being a solid frame-
work for data and constraint representation with a high degree of software support, while
imposing only a minimum of introductory preparation to the user.
Another advantage of this approach is that the specification is kept compact and focused on
the entities that the language has to represent rather than primarily dealing with technical
details. In particular, many of those details can be formulated as OWL restrictions in a header
ontology demanded to be imported by documents conforming to the OSL specification. Thus,
they are not only specified precisely but they are also stipulated in a machine-readable form
for which tools are widely available, enabling the user to check many aspects of an OSL
document for conformity with minimal effort.

3.1 Specification
1 An OSL document is a valid OWL 2 document (as described in [W3C12]) containing
individuals and data that represent the OBDA specification, as well as OWL properties that
connect them. The individuals and OWL properties are recognized and mapped to their roles
by their IRIs.
2 An OSL document may contain more OWL entities (with IRIs not defined in this speci-
fication), which are ignored.
3 An OSL document has to declare all individuals having different IRIs as different from
each other (except those which are ignored, see paragraph 2).
It is recommended to use the owl:AllDifferent OWL statement for this purpose.
4 Unless stated otherwise, IRIs mentioned in the following are IRIs relative to a base IRI
chosen by the user being empty (which makes the IRIs absolute [W3C09]) or ending with a
hash character (‘#’).

4

Map type OWL IRI
Entity map <class URI>__ENTITY_MAP
Attribute map <property URI>__ATTRIBUTE_MAP
Identifier map <class URI>__IDENTIFIER_MAP
Relation map <property URI>__RELATION_MAP
Subtype map <class URI>__SUBTYPE_MAP
Translation table of attribute map <property URI>__ATTRIBUTE_MAP__TRANSLATION_TABLE
Translation table of subtype map <class URI>__SUBTYPE_MAP__TRANSLATION_TABLE

Table 3.1: OWL individual IRIs in OSL

Map type OWL class IRI
Entity map osl:EntityMap
Attribute map osl:AttributeMap
Identifier map osl:IdentifierMap
Relation map osl:RelationMap
Subtype map osl:SubtypeMap
Translation table osl:TranslationTable

Table 3.2: OWL class membership of map representations in OSL

It is recommended to use that base IRI as xml:base XML attribute.
IRIs prefixed with osl: are IRIs relative to the IRI
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont# .
5 An OSL document has to import the following ontology (referred to as “the OSL header”
in the following):
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont/db2osl.owl
6 The OWL individuals described by the OSL document representing the certain types of
OBDA maps must have the IRIs specified in table 3.1 (for base IRIs, see paragraph 4). Here,
<class URI> refers
to the OWL class URI field of the respective entity map for entity maps,
to the OWL class URI field of the associated entity map for identifier maps,
to the OWL class URI field of the associated entity map for subtype maps and
to the OWL class URI field of the entity map associated with the respective subtype map for
translation tables of subtype maps.
Similarly, <property URI> refers
to the OWL property URI field of the respective attribute map for attribute maps (or, if it is
empty, the value that would have been generated for it if it weren’t empty),
to the OWL property URI field of the respective relation map for relation maps and
to the OWL property URI field of the respective attribute map for translation tables of at-
tribute maps (or, if it is empty, the value that would have been generated for it if it weren’t
empty).
7 The OWL individuals described by the OSL document representing the certain types of
OBDA maps must be of the OWL types specified in table 3.2 (for base IRIs, see paragraph
4).
8 The OWL properties described by the OSL document representing the fields of the certain

5

http://w3studi.informatik.uni-stuttgart.de/~martispp/ont#
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont/db2osl.owl

OBDA maps must have the IRIs specified in table 3.3 (for base IRIs, see paragraph 4).
9 The following OWL properties in the OSL document refer to lists of elements:

osl:rm__sourceColumns

osl:rm__targetColumns

osl:tt__sourceValues

osl:tt__rdfRessources

Therefore, they have the OWL class osl:StringListNode as their range, as is required by
the OSL header. They must connect the respective individual to an osl:StringListNode
individual in every case. This “root node” must not have an osl:hasValue property.
If the represented list is not empty, the list elements are represented by other osl:StringListNode
individuals connected seriatim by the property osl:nextNode, with the first individual being
connected to the root node. The node representing the last list element must not have an
osl:nextNode property.
All nodes except the root node may have an osl:hasValue property connecting them to their
values. The actual list consists of exactly these values, thus, nodes without values are ignored.
It is recommended to enumerate the node IRIs, using 0 for the root node.

6

Map type Field label Field name OWL IRI
Entity map E1 Table name osl:em__tableName
Entity map E2 Label osl:em__label
Entity map E3 Identifier map osl:em__identifierMap
Entity map E4 Attribute maps... osl:em__attributeMaps
Entity map E5 OWL class URI osl:em__owlClassURI
Entity map E6 Description osl:em__description
Attribute map A1 Column name osl:am__columnName
Attribute map A2 SQL datatype osl:am__sqlDatatype
Attribute map A3 Mandatory osl:am__mandatory
Attribute map A4 Label osl:am__label
Attribute map A5 OWL property URI osl:am__owlPropertyURI
Attribute map A6 Property type osl:am__propertyType
Attribute map A7 Translation osl:am__translation
Attribute map A8 URI pattern osl:am__uriPattern
Attribute map A9 RDF language osl:am__rdfLanguage
Attribute map A10 XSD datatype osl:am__xsdDatatype
Attribute map A11 Description osl:am__description
Identifier map I1 Entity map osl:im__entityMap
Identifier map I2 Attribute maps... osl:im__attributeMaps
Identifier map I3 URI pattern osl:im__uriPattern
Relation map R1 Source entity map osl:rm__sourceEntityMap
Relation map R2 Source column osl:rm__sourceColumns
Relation map R3 Target entity map osl:rm__targetEntityMap
Relation map R4 Target column osl:rm__targetColumns
Relation map R5 OWL property URI osl:rm__owlPropertyURI
Subtype map S1 Entity Map osl:sm__entityMap
Subtype map S2 Column Name osl:sm__columnName
Subtype map S3 OWL superclass URI osl:sm__owlSuperclassURI
Subtype map S4 Prefix osl:sm__prefix
Subtype map S5 Suffix osl:sm__suffix
Subtype map S6 Translation osl:sm__translation
Translation table T1 Source value... osl:tt__sourceValues
Translation table T2 RDF ressource... osl:tt__rdfRessources

Table 3.3: OWL property IRIs in OSL

7

4 The db2osl software

Besides the conception of the “OBDA Specification Language” (OSL), the design and imple-
mentation of the db2osl software was an important part of this work. The program itself
and its creation process are described in the following sections: Section 4.1 describes the
functionality the program offers. Section 4.2 describes how this functionality is exposed to
the program environment. Section 4.3 explains in detail how the bootstrapping process was
realized. Section 4.4 describes the program architecture both on a coarse and a fine level.
Section 4.5 explains what tools where used to create the program. Section 4.6 describes con-
cepts and decisions that where implemented on the code level to yield clean code. Section 4.7
mentions some numbers and statistics about the program. Section 4.8 gives a brief chronolog-
ical overview over the program development and describes important milestones. For detailed
descriptions of the classes and packages of db2osl, refer to Appendices TODO.
Except the last section, this chapters’ sections present the information in a functionally-
structured fashion: the concepts and decisions are described along with the topics they are
linked to and the problems that made them arise. However, the last section, besides giving an
overview about the program versions, tries to give an insight about development succession.
Unless stated differently, program version 1.0 is described (for details, see section 4.8 – Ver-
sioning).

4.1 Functionality

As described in the introduction of this thesis, the db2osl software is a program automatically
deriving an OBDA specification from a relational database schema, which then can be used
by other tools to drive the actual bootstrapping process. Its functionality is described in the
following section, leaving out self-evident features, and is then listed completely in the section
after that. How this functionality is exposed to users is described in section 4.2 – Interface
and usage. The bootstrapping process as the core functionality of the software is described in
section 4.3 – The bootstrapping process. TODO: reference to OBDA topics

4.1.1 Function description

The database schema is retrieved by connecting to an SQL database and querying its schema
information. Parsing SQL scripts or SQL dumps currently is not supported. The databases
to derive information from can be specified by regular expressions, while there are also options
to use other databases than specified or even other database servers, taken from a list of hard-
coded strings. While these features may not seem to carry real benefit at the first glance, they
proved to be useful for testing purposes, especially since the retrieval of a database schema

8

can take some time TODO (see section 4.7 – Numbers and statistics). For the same purpose,
db2osl allows the processing of a hard-coded example database schema.
In addition to OSL output, a low-level output format containing information on all fields of
the underlying objects is supported, which is useful for debugging (however, this feature has
to be enabled via one slight change in the source code). To allow for some customization, the
insertion of an own OSL header is supported (for more information on the OSL header, see
the specification of the OSL language in section 3.1). If the standard OSL header is used, it
is by default loaded from a hard-coded copy, so bootstrapping information from a database
server running locally or from the hard-coded example schema requires no Internet connection
(simply inserting the owl:imports statement of course would not anyway, but the generated
underlying ontology is always checked for consistency with the OSL header to prevent the
generation of invalid output).
The db2osl software can be used both in an interactive and in a non-interactive mode,
while skipping a database or a database server or aborting the entire bootstrapping process
is possible in either mode. Multiple database servers can be specified for a bootstrapping
operation, which then are checked in order for a matching database, allowing to make use of
mirrors or fallback servers. Additionally, multiple bootstrapping operations can be specified
to be performed in sequence with one invocation of db2osl, while all features and settings
previously described are enabled, disabled or set per operation. Finally, a help text can be
displayed which describes the usage of db2osl including the description of all command-line
arguments.

4.1.2 Function summary

The functionality of the db2osl software can be summarized as follows:

• Bootstrap one or more OBDA specifications from a database schema by connecting to
an SQL database server

• Specify a custom port, login and password for the database server
• Ask for passwords interactively (before starting any bootstrapping operation), hide them

if desired
• Specify database names by regular expressions
• Process an arbitrary database if the specified database could not be found or uncondi-

tionally
• Connect to a database server containing example databases without having to specify

any further details
• Process a hard-coded example database schema without having to specify any further

details
• Use the OSL format described in section 3 – The OBDA Specification Language (OSL)

or a detailed low-level format for output (the latter is for debugging purposes and has
to be enabled in the source code)

• Write to standard output or to a file

9

• Insert a custom OSL header (see the specification of the OBDA Specification Language
(OSL) in section 3.1 for details)

• Consistency check against a custom OSL header
• Consistency check against the standard OSL header without internet connection
• Act interactively or non-interactively
• Skip currently retrieved database (and try next on server), skip current server or abort

the overall process at any time, even in non-interactive mode
• Define multiple database servers to check in order for the specified database
• Specify multiple bootstrapping operations to perform in order
• Configure the features described in the above notes per bootstrapping operation
• Display a help text describing the usage of db2osl, including the description of all

command-line arguments

4.2 Interface and usage

This section describes the interface to the operating system and the user interface. For infor-
mation on programming interfaces, see section 4.4 – Architecture.

4.2.1 User interaction and configuration

Basic usage

Currently, the only user interface of db2osl is a command-line interface. Since the program
is supposed to bootstrap the OBDA specification automatically and thus there is little inter-
action, but a lot of output, this was considered ideal. Basically, one invocation of db2osl will
initiate the automatic, non-interactive bootstrapping of exactly one OSL specification written
to the standard output, a behavior which can be modified via command-line arguments. Be-
cause of its ability to write to the standard output (which is also the default behavior), it is easy
to pipe the output of db2osl directly into a program that handles it in a Unix-/POSIX-like
fashion [McI87]:

db2osl myserver.org | osl2onto myserver.org

(supposed osl2onto is a tool that reads an OSL specification from its standard input and
uses it to bootstrap an ontology from the database specified on its command line).
This scheme is known as “Pipes and Filters architectural pattern” [BMRSS96].
By inserting additional “filters”, the bootstrapping process can be customized without chang-
ing any of the involved programs:

db2osl mydatabase.org | customize_spec.sh | osl2onto mydatabase.org

(supposed customize_spec.sh is a shell script that modifies a given OSL specification in

10

the way the user desires).

Configuration via command-line arguments

The behavior of db2osl itself can be adjusted via command-line arguments (only). Most
features can be configured via short options (as, for example, -P). To allow for enhanced
readability of db2osl invocations, each feature can (also) be configured via a long option
(like ––password). The utilization of configuration files was considered, but for the time
being seen as unnecessary complicating while not addressing any real difficulties.
The command-line arguments db2osl currently supports are described in table 4.1; their
default values are listed in table 4.2. There is currently no switch to set the output format, since
the only supported output format, besides OSL, is a low-level output format for debugging
purposes. Because of this and since the change that has to be made in the source code
to enable it only involves changing one token, it was preferred not to offer a command-line
option for this, to not unnecessarily complicating the command-line interface for the normal,
non-debugging, user.
The sole invocation of db2osl, without any arguments, does not initiate any processing but
displays the usage directions instead, in addition to an error message pointing out the missing
server argument.

Multiple bootstrapping operations or multiple servers

To perform multiple bootstrapping operations with only one invocation of db2osl, it is suffi-
cient to concatenate the command-line arguments for each operation, separated by blanks, to
get the final command line. However, when combining a test job with other operations, some
arbitrary string has to be inserted as dummy server to allow distinguishing the different jobs
and assigning each command-line argument to the appropriate job.
Likewise, to check several servers in order for the database to be used for one bootstrapping
operation, these servers have to be concatenated, separated by blanks. Again, the distinction
of the different bootstrapping jobs has to be possible, so all but the first operation have to
have at least one command-line argument that signals the beginning of a new job definition
(which is no practical problem, since to enforce this, a default argument simply can be stated
explicitly without changing the behavior of the invocation).
All settings are configured per operation, so, when using a shell that separates batched com-
mands by ‘;’,

db2osl ––database employees ––password itsme sql.myemployer.com
––database test myserver.org backup.myserver.org

is equivalent to
db2osl ––database employees ––password itsme sql.myemployer.com;
db2osl ––database test myserver.org backup.myserver.org

Thus, a parameter defined for one operation (like the password in the example) will have

11

Option(s) Description, taken from the help page of db2osl
––database, -d database name (Java regular expression) databases have to

match to be processed; see also: ––loose-database-match
––echo-password echo input when prompting for SQL password – must be spec-

ified before ––password-prompt to get effective
––help, -h, show this help and exit
––interactive, -i be interactive when chosing database
––login, -L SQL login
––loose-database-match if no database matching the regex specified with ––database is

found on the given server and ––interactive is not specified
for this job, use some other database

––osl-header use the specified custom (non-standard) OSL header, im-
plies ––remote-osl-header (to import no header, specify the
empty string)

––output-file, -o use the specified output file (for the standard output, specify
“-”)

––password, -P SQL password; use ––password-prompt to get a password
prompt (if you do both, the password set via this switch will
be ignored)

––password-prompt, -p prompt for SQL password; a password set via ––password is
ignored

––remote-osl-header, -R don’t use hard-coded version of the OSL header for verification
––remote-test try to retrieve a database schema from a hard-coded list of

servers and take the first one successfully retrieved (and ac-
cepted, when ––interactive is given; note: give a dummy
server if you want to do a test besides other jobs)

––test use hard-coded test database schema, ignore given servers
(note: give a dummy server if you want to do a test besides
other jobs)

Table 4.1: Command-line arguments in db2osl – descriptions

12

Option(s) Default value
––database, -d .*
––echo-password false
––help, -h, false
––interactive, -i false
––login, -L anonymous
––loose-database-match false
––osl-header <empty string>
––output-file, -o -
––password, -P <empty string>
––password-prompt, -p false
––remote-osl-header, -R false
––remote-test false
––test false

Table 4.2: Command-line arguments in db2osl – default values

no effect on other operations. This ensures that typical errors are prevented when merging
several invocations of db2osl into one (or vice versa) and allows for a straight-forward and
comprehensive implementation.

Advanced modifications

Since OSL specifications are plain text files, a user can edit them in any desired text editor if
he wants to change them in ways that go beyond the functionality db2osl provides or that
can be achieved by scripts or programs modifying their input automatically. Because of OSL
being a subset of OWL (see the specification of OSL in section 3.1), he can thereby take
advantage of editors supporting syntax highlighting or other features making the handling of
the respective OWL serialization more comfortable.
Moreover, every common ontology editor can be used to edit the generated OSL specification
automatically or manually. Doing so, care has to be taken to make the ontology remain a
conforming OSL specification. However, since the restrictions imposed by OSL are rather
small and intuitive, this is easily achieved. Furthermore, upcoming tools supporting OSL (see
section 5.2 – Future work) most likely will be able to check input files for conformity with the
OSL definition.

4.2.2 Integration into systems

Besides the use cases described in section “Basic usage”, there are many other ways in which
db2osl can be used. For example, a database can be periodically checked for changes that
make a re-bootstrapping necessary:

db2osl -d mydb myserver.org | sha256sum >oldsum
cp oldsum newsum
while diff oldsum newsum; do # while checksums are the same

sleep 3600 # wait 1 hour

13

db2osl -d mydb myserver.org | sha256sum >newsum
done
rm oldsum newsum
notify web admin via e-mail:
date | mutt -s "Re-bootstrapping necessary" web-admin@myserver.org

Another possible example is the integration of db2osl into a shell script that bootstraps all
databases on a server:

regex='(?!$).*' # accept all nonempty database names first
while db2osl -d "$regex" -o spec myserver.org; do

dbname="` sed -ne '/xmlns:ont/ { s|.*/||; s|#"||p }' spec `"
mv spec "$dbname".osl
don’t use this database a second time:
regex="` printf %s "$regex" | sed -e "s,\\\\$,$|$dbname$," `"

done

Newer versions than version 1.0 described here provide a command-line parameter -a (or,
alternatively, ––all) which makes db2osl bootstrap all databases matching the given regular
expression. However, using this approach, all bootstrapped specifications will be output to
one single file.
Since the programming language used to implement db2osl is Java, it is possible to deploy
it on all platforms offering the Java Runtime Environment TODO. Additionally, it is possible
to deploy it as a Web application TODO.
To simplify integration on the code level, the architecture of db2osl was designed to be
highly modular and to cleanly separate code with different areas of responsibility into differ-
ent packages (for details about the structuring of db2osl, see section 4.4 – Architecture).
This modularity, besides facilitating understanding the code, allows for a high degree of code
reusability.
For example, the packages database, osl and specification can be reused in other programs
with little or no changes – the biggest change involves combining the database schema retrieval
with the user interface of the new program to provide control over the retrieval process when
reusing the database package (to do this, three method calls have to be replaced). If the
accruing information shall be used in another way than being output or logged, this of course
has to be implemented. If not, it is sufficient to replace the used Logger object by anohter
one providing the desired behavior, since the Logger class is part of the Java API and widely
used [Gup03]. This is a good example of how using well-known and commonly used classes
can greatly improve modularity and reusability.

14

4.3 The bootstrapping process

4.4 Architecture

4.4.1 Libraries used

4.4.2 Coarse structuring

TODO: overall description, modularity, extendability, ex: easy to add new in-/output formats
TODO: mapping profiles (maybe better in next subsection)

Package structuring

The 45 classes of db2osl were assigned to 11 packages, each containing classes responsible
for the same area of operation or taking over similar roles. Care was taken that package
division happened senseful, producing meaningful packages with obvious task fields on the
one hand, while on the other hand implementing an incisive separation with a notable degree
of decoupling. Packages were chosen not to be nested but to be set out vapidly. Since this
doesn’t have any functional implications [Sch14], but is rather an implementation detail, this
is further explained in section 4.6.5 – Use of packages.
The packages are introduced and described in table 4.3. The lists of classes each package
contains are given in table 4.4 in the next section 4.4.3 – Fine structuring. For a detailed
package description, refer to Appendix TODO.

Package Description
bootstrapping Classes performing bootstrapping
cli Classes related to the command line interface of db2osl
database Classes related to the representation of relational databases and attached

tasks
helpers Helper classes used program-wide
log Classes related to logging and diagnostic output
main The Main class
osl Classes representing OBDA specifications (as described in [SGH+15])

using the OBDA Specification Language (OSL)
output Classes used to output OBDA specifications as described in [SGH+15]
settings Classes related to program and job settings (including command line

parsing)
specification Classes representing (parts of) OBDA specifications (as described in

[SGH+15]) directly, without involving OSL
test Classes offering testing facilities

Table 4.3: Descriptions of the packages in db2osl

Besides intuition, as stated, care was involved when partitioning the program into these pack-
ages, which included the analysis of the package interaction under a given structure, and the

15

carrying out of changes to make this structure achieve the desired pronounced decoupling with
limited and intelligible dependencies.
The main package was introduced to make the Main class, which carries information needed
by other packages – most prominently, the program name –, importable from inside these
packages. For this, it is required for Main not to reside in the default package [Sch14].
Decoupling some of the functionality of a package into a new package – which, in a nesting
package structure, most probably would have become a sub-package – and thus sacrificing the
benefit of having fewer packages also played a role in some cases. Namely, osl is a package on
its own instead of being part of the specification package, the bootstrapping classes also
form a package on their own instead of belonging to the specification package, the classes
of the log and the cli packages were not merged into one package, although logging currently
exclusively happens on the command line, and the functionality of the test package, though
containing only a few lines of code, was separated into its own package.
Even though the package structure would have become quite simpler with these changes ap-
plied – 4 out of 11 packages could have been saved this way – the first aim mentioned –
meaningfulness and intuitiveness – was taken seriously and the presented partitioning was
considered a more natural and comprehensible structuring, emphasizing different roles and
thus being a more proper foundation for future extensions of the program. For example,
because the bootstrapping package is central to the program and takes over an active, pro-
cessing role and in that is completely different from the classes of the specification package
which on their part have a representing role, it was considered senseful not to merge these
two packages. This undergirds the separation of concerns within the program and stresses
that the functionality of the bootstrapping package should not interweave with that in the
specification package, making it easier for both to stay independent and further develop
into understandable and suitable units.

Package interaction

As mentioned, the structuring of the packages was driven by the aim to gain a notable amount
of decoupling. How this reflected in the dependency structure, thus the classes from other
packages that the classes of a package depend on, is described in the following. As was also
mentioned, the information presented here also acted back on the package partitioning, which
changed in consequence.
Dependencies of or on package helpers are not considered in the following, since this package
precisely was meant to offer services used by many other packages. In fact, all facilities
provided by helpers could just as well be part of the Java API, but unfortunately are not.
The current dependency structure, factoring in this restriction, is shown in figure 4.1 and
reveals a conceivably tidy system of dependencies.

16

bootstrapping

settings

cli

database

test

log

main

osl

output

specification

Figure 4.1: Package dependencies in db2osl. “→” means “depends on”.

Except for the package settings (which is further explained below), every package has at
most two outgoing edges, that is packages it depends on. Previous versions of db2osl had a
quite more complicated package dependency structure, depicted in figure 4.2. In this previous
package structure, the maximum number of dependencies of packages other than settings
on other packages is three, which also seems reasonably less. However, in the new structuring,
specification has no packages it depends on and thus suits its purpose of providing a
mundane and straight-forward representation of an OBDA specification much better.

17

bootstrapping

settings

specification

cli

database

output

test

log

main

osl

Figure 4.2: Package dependencies in earlier versions of db2osl. “→” again means “depends on”.

Though there still are quite a number of dependencies (to be precise: 19), many of them
(8, thus, nearly half) trace back to one central package in the middle, settings. This may
seem odd at first glance, considering that most of the edges connecting to the settings node
are outgoing edges and only one is incoming, whereas in a design where the settings are
configured from within a single package and accessed from many other packages this would
be the other way round. The reason for this constellation is that, as described in section 4.2 –
Interface and usage, all settings in db2osl are configured per bootstrapping job (there are no
global settings) and so settings contains a class Job (and currently no other classes), which
represents the configuration of a bootstrapping job but also provides a perform() method
combining the facilities offered by the other packages.
By this means, the perform() method of the Job class acts as the central driver performing

18

the bootstrapping process, reducing the main() method two only 7 lines of code and turning
settings into something like an externalized part of the main package. If, in a future version of
the program, this approach is changed and global settings or configuration files are introduced,
settings will still be the central package, leaving the package structure and dependencies
unchanged, since it either way contains information used by many other packages. This was
the reason why it was not renamed to, for example, driver, which was considered, since at
first glance it seems quite a bit unnatural to have the driver class reside in a package called
“settings”.

4.4.3 Fine structuring

While the packages in db2osl are introduced and described in section 4.4.2 – Coarse struc-
turing, the classes that comprise them are addressed in this section. For a detailed class index,
refer to Appendix TODO. TODO: total classes etc.

Package contents

Table 4.4 lists the classes each package contains. The packages cli, main, osl and settings
contain only one class each, while the by far most extensive package is database, containing
15 classes.

19

• bootstrapping
– Bootstrapping
– DirectMappingURIBuilder
– URIBuilder

• cli
– CLIDatabaseInteraction

• database
– Column
– ColumnSet
– DatabaseException
– DBSchema
– ForeignKey
– Key
– PrimaryKey
– ReadableColumn
– ReadableColumnSet
– ReadableForeignKey
– ReadableKey
– ReadablePrimaryKey
– RetrieveDBSchema
– Table
– TableSchema

• helpers
– Helpers
– MapValueIterable
– MapValueIterator
– ReadOnlyIterable
– ReadOnlyIterator
– SQLType
– UserAbortException

• log

– ConsoleDiagnosticOutputHandler

– GlobalLogger

• main

– Main

• osl

– OSLSpecification

• output

– ObjectSpecPrinter

– OSLSpecPrinter

– SpecPrinter

• settings

– Job

• specification

– AttributeMap

– EntityMap

– IdentifierMap

– InvalidSpecificationException

– OBDAMap

– OBDASpecification

– RelationMap

– SubtypeMap

– TranslationTable

• test

– CreateTestDBSchema

– GetSomeDBSchema

Table 4.4: Class attachment to packages in db2osl

Class organization

Organizing classes in a structured, obvious manner such that classes have well-defined roles,
behave in an intuitive way, ideally representing artifacts from the world modeled in the pro-

20

gram directly [Str00], is a prerequisite to make the code clear and comprehensible on the
architectural level.
Section 4.6.4 – Use of classes as part of section 4.6 – Code style describes the identification
and naming scheme for the classes in db2osl. However, it is also important, to arrange these
classes in useful, comprehensible class hierarchies to avoid code duplication, make appropriate
use of the type system, ease the design of precise and flexible interfaces and enhance the
adaptability and extensibility of the program. Figure 4.3 shows the class hierarchies in db2osl,
while standalone classes are listed in table 4.5.

ReadOnlyIterable

database.DBSchema.TableIterable database.ReadableColumnSet

database.TableSchema.Columns
Iterable

database.TableSchema.Foreign
KeysIterable

specification.OBDASpecification.
AttributeMapIterable

database.ColumnSet

database.Key

database.ForeignKeydatabase.PrimaryKey

Set

database.ReadableKey

database.ReadableForeignKeydatabase.ReadablePrimaryKey

Iterable

Iterable

database.DBSchema database.TableSchema helpers.MapValueIterable
< E, T > helpers.ReadOnlyIterable< T >

database.ReadableColumn

database.Column

21

specification.OBDAMap

specification.AttributeMap

specification.EntityMap

specification.IdentifierMap

specification.RelationMap

specification.SubtypeMap

specification.Translation
Table

bootstrapping.URIBuilder

bootstrapping.DirectMapping
URIBuilder

output.SpecPrinter

output.ObjectSpecPrinter output.OSLSpecPrinter

ReadOnlyIterator

specification.OBDASpecification.
AttributeMapIterator

Iterator

StreamHandler

log.ConsoleDiagnosticOutput
Handler

22

Iterator

database.ColumnSet.Column
SetIterator

helpers.MapValueIterator
< E, T > helpers.ReadOnlyIterator< T >

IParameterValidator

settings.Job

Exception

helpers.UserAbortException

RuntimeException

database.DatabaseException specification.InvalidSpecification
Exception

Figure 4.3: Class hierarchies in db2osl. Interface names are italicized, external classes or interfaces are
hemmed with a gray frame.

• main.Main
• database.RetrieveDBSchema
• database.Table
• helpers.Helpers
• helpers.SQLType
• specification.OBDASpecification
• osl.OSLSpecification
• bootstrapping.Bootstrapping
• cli.CLIDatabaseInteraction
• log.GlobalLogger
• test.CreateTestDBSchema
• test.GetSomeDBSchema

Table 4.5: Standalone classes in db2osl

23

Note that every class hierarchy has at least one interface at its top. Classes not belonging to a
class hierarchy were chosen not to be given an interface “factitiously”, which would have made
them part of a (small) class hierarchy [Sch14]. Deliberately, the scheme often recommended
[GHJV95] to give every class an interface it implements was not followed but the approach
described by Stroustrup [Str13] to provide a rich set of so called “concrete types” not designed
for use within class hierarchies, which “build the foundation of every well-designed program”
[Str13]. The details of this consideration are explained in section 4.6.4 – Java interfaces.
In fact, many useful types were already offered by the Java API and of course were not
re-implemented.
Class Column with its interface ReadableColumn is an exception in that it was given an in-
terface although it is basically a concrete type. The reason for this is the chosen way to
implement const correctness, described in section Const correctness (which is part of section
4.6.4 – Use of classes). This technique forced class Column to implement an interface, thus
needlessly making it part of a class hierarchy, but also complicated the structure of some class
hierarchies. Consider the class hierarchy around ColumnSet, shown in the first graph of figure
4.3. Definitely, it seems overly complicated at the first glance. But this complexity solely is
introduced by the artificial Readable... interfaces; would Java provide a mechanism like
C++’s const, this hierarchy would be as simple as in the following graph:

database.ColumnSet

database.Key

database.ForeignKey database.PrimaryKey

Set

Figure 4.4: ColumnSet class hierarchy in db2osl – simplified

However, since const correctness is an important mechanism effectively preventing errors while
on the other hand introducing clarity by itself, it was considered too important to be sacrificed,
even for a cleaner and more intuitive class hierarchy. The fact that the Readable... scheme is
very straight-forward and a programmer reading the documentation knows about its purpose
and the real, much smaller, complexity also makes some amends for the simplicity sacrificed.
The const correctness mechanism itself thereby hinders uninformed or ignorant programmers
from mistakenly using the wrong class in an interface in many cases.
For more information about the program structure on the class level, see section 4.6 – Code
style, while for a detailed class index refer to Appendix TODO.

24

4.5 Tools employed

Several tools were used for the creation of db2osl, some of which also proved useful during
the creation of this thesis. There use is described briefly in this section.
Thank is proffered to the contributers of these tools, all of which are free and open-source
software TODO.

Debian GNU/Linux

The operating system to run the other tools on was Debian GNU/Linux, version 8.0
(“Jessie”).

Basic Unix tools

Some of the basic Unix shell tools, namely find, cat, grep, sed, less, diff and, of course,
the shell itself (bash was used) were very useful, for instance, for searching all source code
files for common errors or for remains of obsolete constructs that were replaced, for carrying
out changes on all source files and for detecting and removing debugging code.
All of the tools were implementations created as part of the GNU project.

git

git was used both for version control and for shared access to the source code and related
artifacts.

vim

To apply changes involving advanced regular expressions, to perform block editing (insert or
remove columns from multiple lines at once), to insert debugging code and similar editing
tasks, vim was very useful.

Eclipse

The IDE to develop the program in was Eclipse. It proved very useful particularly due to
its abilities to easily create packages and move source files between them, to ease the creation
of in-code documentation and other useful features like automatic indention or the automatic
insertion of final keywords.

OpenJDK

The Java compiler, the Javadoc tool (see next paragraph), the Java debugger and the Java
Runtime Environment used were the implementations provided by the OpenJDK project,
version 7.

25

Javadoc

Javadoc was used as the primary documentation generation system due to its ability to create
clear and well-arranged documentations. Besides, documentations created by Javadoc are
familiar to most Java programmers and cleanly integrate into the Java environment; for
example, methods (automatically) inherited from the Object class are incorporated and links
to methods and classes provided by the Java API are automatically generated.

Doxygen

To complement the documentation generated by Javadoc (see previous paragraph), Doxy-
gen was used, which supports all used Javadoc constructs. This was particularly sensible,
because Doxygen is able to create a much more in-depth documentation, that for instance
includes private and protected members, the complete source code with syntax highlighting
and references to it and detailed dependency and call graphs for all classes or methods, respec-
tively. Thus, the Doxygen documentation is meant to be a more extensive, detail-oriented
documentation providing insight into implementation issues.

4.6 Code style

TODO: Conventions, ex.: iterators
As the final system hopefully will have a long lifetime cycle and will be used and refined by
many people, high code quality was an important aim. Beyond architectural issues this also
involves cleanness on the lower level, like the design of classes and the implementation of
methods. Common software development principles were followed and the unfamiliar reader
was constantly taken into account to yield clean, readable and extensible code.

4.6.1 Comments

Comments were used at places ambiguities or misinterpretations could arise, yet care was
taken to face such problems at their roots and solve them wherever possible instead of just
effacing the ambiguity with comments. This approach is further explained in section 4.6.2 –
“Speaking code” and rendered many uses of comments unnecessary.
In fact, the number of (plain, e.g. non-Javadoc) comments was consciously minimized, to
enforce speaking code and avoid redundancy. An exception from this was the highlighting of
subdivisions. In class and method implementations, comments like

//********************** Constructors **********************\\

were deliberately used to ease navigation inside source files, but also to enhance readability:
parts of method implementations, for example, were optically separated this way. Another
alternative would have been to use separate methods for these code pieces, and thereby sticking
strictly to the so-called “Composed Method Pattern” [Bec97], as was done in other cases.
However, sticking to this pattern too rigidly would have introduced additional artifacts with

26

either long or non-speaking names, would have interrupted the reading flow and also would
have increased complexity, because these methods would have been callable at least from
everywhere in the source file. Consequently, having longer methods at some places that
are optically separated into smaller units that are in fact independent from each other was
considered an elegant solution, although, surprisingly, this technique does not seem to be
proposed that often in the literature.
Wherever possible, the appropriate Javadoc comments were used in favor of plain comments,
for example to specify parameters, return types, exceptions and links to other parts of the
documentation. This proved even more useful due to the fact that Doxygen supports all of
the used Javadoc comments [Hee16] (but not vice versa [Ora16]).

4.6.2 “Speaking code”

As mentioned in section 4.6.1 – Comments, the code was tried to be designed to “speak for
itself” as much as possible instead of making its readers depend on comments that provide
an understanding. In doing so, besides reducing code size due to the missing comments,
clean code amenable to unfamiliar readers and unpredictable changes was enforced. This is
especially important since, as described in section 4.4 – Architecture, db2osl was designed
to not only be a standalone program but also offer components suitable for reusability.
TODO: understandability <- code size
The following topics were identified to be addressed to get what can be conceived as “speaking
code”:

• Meaningful typing
• Method names
• Variable names
• Intuitive control flow
• Limited nesting
• Usage of well-known structures

The rest of this section describes these topics in some detail. Besides, an intuitive architecture
and suitable, well-designed libraries also contribute to the clarity of the code.

Meaningful typing

Meaningful typing includes the direct mapping of entities of the modeled world to code entities
[Str13] as well as an expressive naming scheme for the obtained types. Furthermore, inher-
itance should be used to express commonalities, to avoid code duplication and to separate
implementations from interfaces [Str13].
All real-world artifacts to be modeled like database schemata, tables, table schemata. columns,
keys and OBDA specifications with their certain map types were directly translated into classes
having simple predicting names like Table, TableSchema and Key. Package affiliation provided

27

the correct context to unambiguously understand these names.

Method names

Assigning expressive names to methods is a substantially important part of producing speak-
ing code, since methods encapsulate operation and as such are important “building blocks”
for other methods [Str13] and ultimately the whole program. Furthermore, method names
often occur in interfaces and therefore are not limited to a local scope, and neither are easily
changeable without affecting callers [Sch14].
Ultimately, care was taken that method names reflect all important aspects of the respective
method’s behavior. Consider the following method from CLIDatabaseInteraction.java:

public static void promptAbortRetrieveDBSchemaAndWait
(final FutureTask<DBSchema> retriever) throws SQLException

It could have been called promptAbortRetrieveDBSchema only, with the waiting mentioned
in a comment. However, the waiting (blocking) is such an important part of its behavior, that
this was considered not enough, so the waiting was included in the function name. Since the
method is called at one place only, the lengthening of the method name by 7 characters or
about 26 % is really not a problem.

Variable names

To keep implementation code readable, care was taken to name variables meaningful yet
concise. If this was not possible, expressiveness was preferred over conciseness.
For example, in the implementation of the database schema retrieval, variables containing data
directly obtained from querying the database and thus being subject to further processing was
consequently prefixed with “recvd”, although in most cases this technically would not have
been necessary.

Intuitive control flow

To consequently stick to the maxim of speaking code and further increase readability, control
flow was tried to kept intuitive. do-while loops, for example, are unintuitive: they complicate
matters due to the additional, unconditional, loop their reader has to keep in mind. Even
worse, Java’s Syntax delays the occurrence of their most important control statement – the
loop condition – till after the loop body. Usually, do-while loops can be circumvented by
properly setting variables influencing the loop condition immediately before the loop and using
a while loop. Consequently, do-while loops were omitted – the code of db2osl does not
contain a single do-while loop. TODO: references
Another counterproductive technique is the avoidance of the advanced loop control statements
break, continue and return and the sole direction of a loop’s control flow with its loop
condition, often drawing on additional boolean variables like loopDone or loopContinued.
This approach is an essential part of the “structured programming (paradigm)” [Dij72] and

28

its purpose is to enforce that a loop is always left regularly, by unsuccessfully checking the loop
condition, which shall ease code verification [Dij72]. A related topic is the general avoidance
of the return statement (except at the end of a method) for similar considerations [Dij72].
However, both are not needed [Mar08] and, as always, the introduction of artificial technical
constructs impairs readability and the ability of the code to “speak for itself”.
Consequently, control flow was not distorted for technical considerations and care was taken to
yield straight-forward loops, utilizing advanced control statements to be concise and intuitive
and cleverly designed methods that benefit from well-placed return statements.

Limited nesting

A topic related to intuitive control flow is limited code nesting. Most introductions of new
nesting levels greatly increase complexity, since the associated conditions for the respective
code to be reached combine with the previous ones in often inscrutable ways. Besides being
aware of the execution condition for the code he is currently reading, the reader is forced to
either remember the sub-conditions introduced with each nesting level, as well as the current
nesting level, or to jump back to the introduction of one or more nestings to figure out the
relevant execution condition again.
Naturally, such code is far from being readable and expressive. Thus, overly deep nesting
was avoided by rearranging code or using control statements like return in favor of opening
a new if block. The deepest and most complicated nesting in db2osl has level 5 (with
normal, non-nested method code having level 0), with one of these nestings being dedicated
to a big enclosing while loop, one to a try-catch block and the remaining three to if blocks
with no else parts and trivial one-expression conditions. Additionally, in this case all of the
nesting blocks only contained a few lines of code, making the whole construction easily fit on
one screen, so this was considered all right. At a few other places there occurs similar, less
complicated, nesting up to level 5. TODO: references

Usage of well-known structures

Great benefit can be taken from constructs familiar to programmers regarding expressiveness.
Surely, implementations based on such well-known constructs and patterns are much more
likely to be instantly understood by programmers and therefore have a much higher ability of
“speaking for themselves”.
Examples in db2osl are the (extensively used) iterator concept, const correctness (see para-
graph “Const correctness” in section 4.6.4 – Use of classes), exceptions, predicates [Str13],
run-time type information [Str13], helper functions [Str13] and well-known interfaces from the
Java API like Set or Collection, as well as common Java constructs, like classes performing
a single action (e.g. OSLSpecPrinter), and naming schemes, like get.../set.../is....

4.6.3 Robustness against incorrect use

Care was taken to produce code that is geared to incorrect use, making it suitable for the
expected environment of sporadic updates by unfamiliar and potentially even unpracticed

29

programmers, who besides have their emphasis on the concepts of bootstrapping rather than
details of the present code anyway. In fact, carefully avoiding the introduction of technical
artifacts to mind, preventing programmers from focusing on the actual program logic, is an
important principle of writing clean code [Str13].
In modern object-oriented programming languages, of course the main instruments for achiev-
ing this are the type system and exceptions. In particular, static type information should
be used to reflect data abstraction and the “kind” of data, an object reflects, while dynamic
type information should only be used implicitly, through dynamically dispatching method in-
vocations [Str00]. Exceptions on the other hand should be used at any place related to errors
and error handling, separating error handling noticeably from other code and enforcing the
treatment of errors [Str13], preventing the programmer from using corrupted information in
many cases.
An example of both mechanisms, static type information and exceptions, acting in combina-
tion, while cleanly fitting into the context of dynamic dispatching, are the following methods
from Column.java:

public Boolean isNonNull()
public Boolean isUnique()

Their return type is the Java class Boolean, not the plain type boolean, because the infor-
mation they return is not always known. In an early stage of the program, they returned
boolean and were accompanied by two methods public boolean knownIsNonNull() and
public boolean knownIsUnique(), telling the caller whether the respective information was
known and thus the value returned by isNonNull() or isUnique(), respectively, was reliable.
They were then changed to return the Java class Boolean and to return null pointers in case
the respective information is not known. This eliminated any possibility of using unreliable
data in favor of generating exceptions instead, in this case a NullPointerException, which
is thrown automatically by the Java Runtime Environment [Sch14] if the programmer forgets
the null check and tries to get a definite value from one of these methods when the correct
value currently is not known.
Comparing two unknown values – thus, two null pointers – also yields the desired result, true,
since the change, even when the programmer forgets that he deals with objects. However, when
comparing two return values of one of the methods in general – as opposed to comparing one
such return value against a constant –, errors could occur if the programmer mistakenly writes
col1.isUnique() == col2.isUnique() instead of col1.isUnique().booleanValue() ==
col2.isUnique().booleanValue(). In this case, since the two Boolean objects are compared
for identity [Sch14], the former comparison can return false, even when the two boolean values
are in fact the same. However, since this case was considered much less common than cases
in which the other solution could make programmers making mistakes produce undetected
errors, it was preferred.
TODO: summary

30

4.6.4 Use of classes

Following the object-oriented programming paradigm [AO08], classes were heavily used to
abstract from implementation details and to yield intuitively usable objects with a set of
useful operations.

Identification of classes

To identify potential classes, entities from the problem domain were – if reasonable – directly
represented as Java classes. The approach of choosing “the program that most directly mod-
els the aspects of the real world that we are interested in” to yield clean code, as described and
recommended by Stroustrup [Str00], proved to be extremely useful and effective. As a conse-
quence, the code declares classes like Column, ColumnSet, ForeignKey, Table, TableSchema
and SQLType. As described in section 4.6.2 – “Speaking code”, class names were chosen to be
concise but nevertheless expressive. Java packages were used to help attain this aim, which is
why the previously mentioned class names are unambiguous. For details about package use,
see section 4.6.5 – Use of packages.
Care was taken not to introduce unnecessary classes, thereby complicating code structure and
increasing the number of source files and program entities. Especially artificial classes, having
little or no reference to real-world objects, could most often be avoided. On the other hand
of course, it usually is not the cleanest solution to avoid such artificial classes entirely.
Section 4.4.3 – Class organization describes how the classes of db2osl are organized into class
hierarchies.

Const correctness

Specifying in the code which objects may be altered and which shall remain constant, thus
allowing for additional static checks preventing undesired modifications, is commonly referred
to as “const correctness” TODO. TODO: powerful, preventing errors, clarity
Unfortunately, Java lacks a keyword like C++’s const, making it harder to achieve const
correctness [TE05]. It only specifies the similar keyword final, which is much less expressive
and doesn’t allow for a similarly effective error prevention [TE05]. In particular, because final
is not part of an object’s type information, it is not possible to declare methods that return
read-only objects [TE05] – placing a final before the method’s return type would declare the
method final [Sch14]. Similarly, there is no way to express that a method must not change
the state of its object parameters. A method like public f(final Object obj) is only liable
to not assigning a new value to its parameter object obj [Sch14] (which, if allowed, wouldn’t
affect the caller anyway [Sch14]). Methods changing its state, on the other hand, are allowed
to be called on obj without restrictions.
Several possibilities were considered to address this problem:

• Not implementing const correctness, but stating the access rules in comments only
• Not implementing const correctness, but giving the methods which modify object states

special names like setName––USE_WITH_CARE

31

• Implementing const correctness by delegating changes of objects to special “editor” ob-
jects to be obtained when an object shall be modified

• Implementing const correctness by deriving classes offering the modifying methods from
read-only classes

Not implementing const correctness at all of course would have been the simplest possibility,
producing the shortest and most readable code, but since incautious manipulation of objects
would possibly have introduced subtle, hard-to-spot errors which in many cases would have
occurred under additional conditions only and at other places, for example when inserting a
Column into a ColumnSet, this method was not seriously considered.
Not implementing const correctness but using intentionally angular, conspicuous names also
was not considered seriously, since it would have cluttered the code for the only sake of hope-
fully warning programmers of possible errors – and not attempting to avoid them technically.
So the introduction of new classes was considered the most effective and cleanest solution,
either in the form of “editor” classes or derived classes offering the modifying methods directly.
Again – as during the identification of classes –, the most direct solution was considered
the best, so the latter form of introducing additional classes was chosen and classes like
ReadableColumn, ReadableColumnSet et cetera were introduced which offer only the read-
only functionality and usually occur in interfaces. Their counterparts including modifying
methods also were derived from them and the implications of modifications were explained
in their documentation, while the issue and the approach as such were also mentioned in
the documentation of the Readable... classes. The Readable... classes can be converted
to their fully-functional counterparts via downcasting (only), thereby giving a strong hint to
programmers that the resulting objects are to be used with care.

Java interfaces

In Java programming, it is quiet common and often recommended [GHJV95] that every class
has at least one interface it implements, specifying the operations the class provides. If no
obvious interface exists for a class or the desired interface name is already given to some
other entity, the interface is often given names like ITableSchema or TableSchemaInterface.
However, for a special purpose program with a relatively fixed set of classes mostly representing
real-world artifacts from the problem domain, this approach was considered overly cluttering,
introducing artificial code entities for no benefit. In particular, as explained in section 4.4.3 –
Fine structuring, all program classes either are standing alone or belong to a class hierarchy
derived from at least one interface. So, except from the standalone classes, an interface existed
anyway, either “naturally” (as in the case of Key, for example) or because of the chosen way
to implement const correctness. In some cases, these were interfaces declared in the program
code, while in some cases, Java interfaces like Set were implemented (an obvious choice,
of course, for ColumnSet). Introducing artificial interfaces for the standalone classes was
considered unnecessary at least, if not messy.

32

4.6.5 Use of packages

As mentioned in section 4.6.4 – Use of classes, class names were chosen to be concise but
nevertheless expressive. This only was possible through the use of Java packages, which also
helped structure the program.
For the current, relatively limited, extent of the program which currently comprises 45 (public)
classes, a flat package structure was considered ideal, because it is simple and doesn’t stash
source files deep in subdirectories (in Java, the directory structure of the source tree is re-
quired to reflect the package structure [Sch14]). Because also every class belongs to a package,
each source file is to be found exactly one directory below the root program source directory,
which in many cases eases their handling.
For the description of the packages, their interaction and considerations on their structuring,
see section 4.4.2 – Coarse structuring. For a detailed package description, refer to Appendix
TODO.
Each package is documented in the source code also, namely in a file package-info.java residing
in the respective package directory. This is a common scheme supported by the Eclipse IDE
as well as the documentation generation systems Javadoc and Doxygen (all of which were
used in the creation of the program, as described in section 4.5 – Tools employed).

4.7 Numbers and statistics

The following numbers and statistics can be stated about db2osl, version 1.0:

33

Subject Value Details in sections
Number of classes/interfaces 45 4.4.3, 4.6.4, 4.6.4
Number of packages 11 4.4.2, 4.6.5
Classes per package ca 4.1 4.4.2
Number of methods TODO
Number of comments 4.6.1
Number of Javadoc comments 4.6.1, 4.5 (TODO)
Number of non-Javadoc comments 4.6.1
Average length of non-Javadoc comments 4.6.1
Lines of code (LOC) TODO
Non-comment lines of code (NCLOC) TODO
Average NCLOC length TODO
NCLOC per comment TODO 4.6.1
NCLOC per function TODO
NCLOC per class TODO
NCLOC per package TODO
Average NCLOC per method TODO 4.6.1
TODO: Method/class coupling TODO 4.4.3
Deepest nesting level 5 4.6.2
Retrieval time for example schema TODO 4.7.1
Bootstrapping time for example schema TODO 4.7.1

Table 4.6: Numbers and statistics about db2osl

4.7.1 Benchmarking details

The example schema

TODO: description, URI

The benchmark process

TODO: description

The benchmark system

TODO: description

4.8 Versioning

As mentioned in the introduction of this section, the program version of db2osl described so
far is version 1.0.
However, since git was used to manage the source code artifacts and the software has not been
productively used, there basically was no need for an explicit versioning; if necessary versions

34

could be identified by the commit name generated by git or their commit date. For this
reason, an explicit versioning scheme used for the very first versions of db2osl was quickly
abandoned and for now, version 1.0 is regarded as the only version having a version number
assigned.
The following table lists important milestones of the db2osl software, using the commit date,
their git commit name and, in case of version 1.0, their version number for identification:

Version date Commit name and description
27.12.2015 0f3690720a329ba8a3981948ebd822a20a41fa5b

Early prototype without support for important features and containing
some bugs, but internally already closely resembling version 1.0

07.01.2016 1f0ae35c566603c7c24115284fd7a66057b17617
First version that produces correct OBDA specifications

07.01.2016 9682a863b62fef15ae952e7cd46d213ea4344ca9
OSL output added

24.01.2016 4052000d3d8a3fea402fbf00d06531eed6201a35
Command-line arguments added

11.02.2016 42fec808ea13a2131fe6d19869024fd9ca34543f
First version producing correct OSL output, regarding the specification
of OSL as described in section 3.1.

12.02.2016 e197c9cf47730c72d65d3fe9fbed364dabcb222d
Version tested by the Logic and Intelligent Data research group at the
University of Oslo (no issues were reported)

TODO (v1.0) TODO
Version described in this thesis, including minor improvements

TODO TODO
New features added

Table 4.7: Important milestones of db2osl

35

5 Summary and future work

Für den eiligen Leser ist die Vorgehensweise zusammen mit den wesentlichen Ergebnissen am
Schluss in einer “Zusammenfassung” klar herauszustellen. Diese soll ausführlicher sein als die
“Übersicht” am Anfang der Arbeit. Auch diese Zusammenfassung soll möglichst keine Formeln
enthalten.

5.1 Summary

5.2 Future work

TODO: Software processing (and validating!) OSL

36

Appendix

Hierher gehören zur Dokumentation Tabellen, Messprotokolle, Rechnerprotokolle, Konstruk-
tionszeichnungen, kurze Programmausdrucke und Ähnliches.

37

Bibliography

[AO08] Prince Oghenekaro Asgba and Edward E. Ogheneovo. “A Comparative Analy-
sis of Structured and Object-Oriented Programming Methods”. In: Journal of
Environmental Management 12.4 (2008), pp. 41–46 (cit. on p. 31).

[Bec97] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997 (cit. on p. 26).

[BL89] Tim Berners-Lee. Information Management: A Proposal. Tech. rep. March 1989,
May 1990. CERN, 1989. url: http://www.w3.org/History/1989/proposal.
html (cit. on p. 1).

[BLF99] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. 1st. Harper San
Francisco, 1999. isbn: 0062515861 (cit. on p. 1).

[BMRSS96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing, 1996. isbn: 0471958697, 9780471958697 (cit. on p. 10).

[CGH+13] D. Calvanese et al. “The Optique Project: Towards OBDA Systems for Industry
(Short Paper)”. In: OWL Experiences and Directions Workshop (OWLED). 2013
(cit. on p. 2).

[Dij72] E. W. Dijkstra. Structured Programming. Ed. by O. J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare. London, UK, UK: Academic Press Ltd., 1972. isbn: 0-12-
200550-3 (cit. on pp. 28, 29).

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Reading, MA: Addison Wesley, 1995 (cit. on pp. 24, 32).

[Gup03] S. Gupta. Logging in Java with the JDK 1.4 Logging API and Apache log4j.
Apresspod Series. Apress, 2003. isbn: 9781590590997 (cit. on p. 14).

[Hee16] Dimitri van Heesch. Doxygen: Source code documentation generator tool. http:
//www.doxygen.org. [Accessed: 2016-05-13]. 2016 (cit. on p. 27).

[HPZC07] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. “Accessing
the deep web.” In: Commun. ACM 50.5 (2007), pp. 94–101. url: http://
dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07 (cit. on p. 1).

[KGJR+13] Evgeny Kharlamov et al. “Optique 1.0: Semantic Access to Big Data: The Case
of Norwegian Petroleum Directorate’s FactPages”. In: International Semantic

38

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.doxygen.org
http://www.doxygen.org
http://dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07
http://dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07

Web Conference (Posters & Demos). Ed. by Eva Blomqvist and Tudor Groza.
Vol. 1035. CEUR Workshop Proceedings. CEUR-WS.org, 2013, pp. 65–68 (cit.
on p. 3).

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008. isbn:
0132350882, 9780132350884 (cit. on p. 29).

[McI87] M. D. McIlroy. A Research UNIX Reader: Annotated Excerpts from the Pro-
grammer’s Manual, 1971-1986. Tech. rep. CSTR 139. AT&T Bell Laboratories,
1987 (cit. on p. 10).

[Ora16] Oracle Corporation. javadoc - The Java API Documentation Generator. http:
//docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.
html. [Accessed: 2016-05-13]. 2016 (cit. on p. 27).

[Sch14] H. Schildt. Java: The Complete Reference, Ninth Edition. The Complete Refer-
ence. New York, NY, USA: McGraw-Hill Education, 2014. isbn: 9780071808552
(cit. on pp. 15, 16, 24, 28, 30, 31, 33).

[SGH+15] Martin G. Skjæveland, Martin Giese, Dag Hovland, Espen H. Lian, and Arild
Waaler. “Engineering ontology-based access to real-world data sources”. In:
Web Semantics: Science, Services and Agents on the World Wide Web 33 (2015),
pp. 112–140 (cit. on pp. 1, 4, 15).

[Str00] Bjarne Stroustrup. The C++ Programming Language. 3rd. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000. isbn: 0201700735 (cit. on
pp. 2, 21, 30, 31).

[Str13] Bjarne Stroustrup. The C++ Programming Language. 4th. Boston, MA, USA:
Addison-Wesley Professional, 2013. isbn: 0321563840, 9780321563842 (cit. on
pp. 24, 27–30).

[TE05] Matthew S. Tschantz and Michael D. Ernst. “Javari: Adding Reference Im-
mutability to Java”. In: SIGPLAN Not. 40.10 (Oct. 2005), pp. 211–230. issn:
0362-1340. doi: 10.1145/1103845.1094828 (cit. on p. 31).

[W3C09] W3C XML Core Working Group. XML Base (Second Edition). https://www.
w3.org/TR/xmlbase/. [Accessed: 2016-04-02]. 2009 (cit. on p. 4).

[W3C12] W3C OWL Working Group. OWL 2 Web Ontology Language - Document
Overview (Second Edition). https : / / www . w3 . org / TR / owl2 - overview/.
[Accessed: 2016-04-02]. 2012 (cit. on p. 4).

[W3C14] W3C RDF Working Group. RDF 1.1 Concepts and Abstract Syntax. https:
//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. [Accessed: 2016-
05-13]. 2014 (cit. on pp. 1, 3).

39

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://dx.doi.org/10.1145/1103845.1094828
https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[W3CR12] RDB2RDF Working Group. A Direct Mapping of Relational Data to RDF.
https://www.w3.org/TR/rdb-direct-mapping/. [Accessed: 2016-04-06]. 2012
(cit. on p. 1).

https://www.w3.org/TR/rdb-direct-mapping/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

place, date, signature

	Abstract
	Kurzfassung
	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Requirements and goals

	2 Background and related work
	2.1 Background
	2.2 Related work

	3 The OBDA Specification Language (OSL)
	3.1 Specification

	4 The db2osl software
	4.1 Functionality
	4.1.1 Function description
	4.1.2 Function summary

	4.2 Interface and usage
	4.2.1 User interaction and configuration
	4.2.2 Integration into systems

	4.3 The bootstrapping process
	4.4 Architecture
	4.4.1 Libraries used
	4.4.2 Coarse structuring
	4.4.3 Fine structuring

	4.5 Tools employed
	4.6 Code style
	4.6.1 Comments
	4.6.2 ``Speaking code''
	4.6.3 Robustness against incorrect use
	4.6.4 Use of classes
	4.6.5 Use of packages

	4.7 Numbers and statistics
	4.7.1 Benchmarking details

	4.8 Versioning

	5 Summary and future work
	5.1 Summary
	5.2 Future work

	Appendix
	Bibliography

