
Flow analysis ‘on the fly’

November 20, 2009

1 Introduction

Flow analysis ‘on the fly’ is a feature in the ALICE flow package1 which
can serve both as a demo for the potential users of the package and as an
important debugging tool for the core flow code developers. Underlying idea
is very simple: To simulate events of interest for flow analysis (in what follows
we shall refer to such events as flow events) in the computers memory and
than pass them ‘on the fly’ to the implemented methods for flow analysis.
Benefits of this approach include:

1. No need to store data on disk (storing only the output files with the
final results and not the simulated events themselves);

2. Enormous gain in statistics;

3. Speed (no need to open the files from disk to read the events);

4. Random generators initialized with the same and random seed (if the
same seed is used simulations are reproducible) .

In Section ?? we indicate how the user can immediately in a few simple
steps start flow analysis ‘on the fly’ with the default settings both within
AliRoot and Root. In Section ?? we explain how the user can modify the
default settings and create ‘on the fly’ different flow events by following the
guidance of his own taste.

1http://alisoft.cern.ch/viewvc/trunk/PWG2/FLOW/?root=AliRoot .

1



2 Kickstart

We divide the potential users of ALICE flow package into two groups, namely
the users which are using AliRoot (default) and the users which are using
only Root.

2.1 AliRoot users

To run flow analysis ‘on the fly’ with the default settings within AliRoot and
to see the final results obtained from various implemented methods for flow
analysis, the user should execute the following steps:

Step 1: Turn off the lights ...

Step 2: ... take a deep breath ...

Step 3: ... start to copy macros runFlowAnalysisOnTheFly.C and
compareFlowResults.C from AliRoot/PWG2/FLOW/macros to your fa-
vorite directory slowly.

Step 4: Once you have copied those macros in your favorite directory
simply go to that directory and type

aliroot runFlowAnalysisOnTheFly.C

Step 5: If you have a healthy AliRoot version the flow analysis ‘on the
fly’ will start. Once it is finished in your directory you should have the
following files:

runFlowAnalysisOnTheFly.C

compareFlowResults.C

outputLYZ1PRODanalysis.root

outputQCanalysis.root

outputFQDanalysis.root

outputLYZ1SUManalysis.root

outputSPanalysis.root

outputGFCanalysis.root

outputMCEPanalysis.root

2



Each implemented method for flow analysis produced its own out-
put file holding various output histograms. The final flow results are
stored in the common histogram structure implemented in the class
AliFlowCommonHistResults.

Step 6: To access and compare those final flow results automatically
there is a dedicated macro available, so execute

> aliroot

root [0] .x compareFlowResults.C("")

Step 7: If you want to rerun and get larger statistics modify

Int t nEvts=440

in the macro runFlowAnalysisOnTheFly.C .

Step 8: Have fun!

In the next section we outline the steps for the Root users.

2.2 Root users

To be written at Nikhef...

3 Making your own flow events

This section is common both for AliRoot and Roor users. In this section we
outline the procedure the user should follow in order to simulate ‘on the fly’
the events with his own settings by making use of the available setters. Those
setters are implemented in the class AliFlowEventSimpleMakerOnTheFly

and user shall use them in the macro runFlowAnalysisOnTheFly.C.

3.1 pT spectra

Transverse momentum of particles is sampled from the predefined Boltzmann
distribution

dN

dpT

= MpT exp

(
−
√

m2 + p2
T

T

)
, (1)

3



 (GeV/c) for RP selectiontP
0 1 2 3 4 5

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 1: T = 0.2 GeV/c .

 (GeV/c) for RP selectiontP
0 1 2 3 4 5

C
o

u
n

ts

0

500

1000

1500

2000

2500

3000

3500

Figure 2: T = 0.5 GeV/c .

where M is the multiplicity of the event, T is “temperature” and m is the
mass of the particle. By increasing the parameter T one is increasing the
number of high pT particles and this parameter is the same for all events.
On the other hand, multiplicity M will in general vary from event to event.
In the macro runFlowAnalysisOnTheFly.C one can modify distribution (??)
by using setter for “temperature” T and various setters for multiplicity M .

Example: If one wants to increase/decrease the number of high pT particles,
one should modify the line

Double t dTemperatureOfRP = 0.44;

Examples of pT spectra for two different values of T are shown in Figures ??
and ??.

What is shown in Figures ?? and ?? is only one example of the so called
common control histograms. They are the histograms organized in the same
structure and implemented in the class AliFlowCommonHist. In output file
of each method one can access those histograms with TBrowser.

When it comes to multiplicity M , one has a choice to sample it event-
by-event from two different distributions before plugging its value into Eq.
(??) which than will be used to sample transverse momenta of M particles
in that event.

Example: If one wants to sample multiplicity event-by-event from Gaussian

4



Multiplicity for RP selection
460 470 480 490 500 510 520 530

C
o

u
n

ts

0

50

100

150

200

250

300

350

400

Figure 3: Gaussian multiplicity distri-
bution.

Multiplicity for RP selection
400 450 500 550 600

C
o

u
n

ts

0

10

20

30

40

50

60

70

Figure 4: Uniform multiplicity distri-
bution.

distribution with mean 500 and spread 10, one should have the following
relevant settings

Bool t bMultDistrOfRPsIsGauss = kTRUE;

Int t iMultiplicityOfRP = 500;

Double t dMultiplicitySpreadOfRP = 10;

Example plot for multiplicity distribution with these settings is shown in Fig-
ure ??.

Another way to sample multiplicity event-by-event is by using uniform dis-
tribution.

Example: If one wants to sample multiplicity event-by-event from uniform
distribution in the interval [400,600], one must have the following relevant
settings

Bool t bMultDistrOfRPsIsGauss = kFALSE;

Int t iMinMultOfRP = 400;

Int t iMaxMultOfRP = 600;

Example plot for multiplicity distribution with these settings is shown in Fig-
ure ??.

One can also fix multiplicity to be the same for each event.

5



Example: If one wants to have the same fixed multiplicity of 500 for each
event one can use the following settings:

Bool t bMultDistrOfRPsIsGauss = kTRUE;

Int t iMultiplicityOfRP = 500;

Double t dMultiplicitySpreadOfRP = 0;

These are all manipulations available at the moment with pT spectra given
in Eq. (??).

3.2 Azimuthal distribution

If the anisotropic flow exists, it will manifest itself in the anisotropic az-
imuthal distribution of outgoing particles measured with respect to the re-
action plane:

E
d3N

d3~p
=

1

2π

d2N

pT dpT dη

(
1 +

∞∑
n=1

2vn(pT , η) cos (n (φ−ΨRP))

)
. (2)

Flow harmonics vn quantify anisotropic flow and are in general function of
transverse momentum pT and pseudorapidity η. Orientation of reaction plane
ΨRP fluctuates randomly event-by-event and cannot be measured directly. In
the implementation ‘on the fly’ reaction plane is sampled uniformly event-
by-event from the interval [0o, 360o]. When it comes to flow harmonics, there
are two modes which we outline next.

3.2.1 Constant flow harmonics

In this mode all flow harmonics are treated as a constant, event-wise quanti-
ties, meaning that for a particular event azimuthal angles of all particles will
be sampled from the same azimuthal distribution in which flow harmonics
appear just as fixed parameters. The implemented most general azimuthal
distribution for this mode reads

dN

dφ
= 1+2v1 cos(φ−ΨRP)+2v2 cos(2(φ−ΨRP))+2v4 cos(4(φ−ΨRP)) . (3)

In the macro runFlowAnalysisOnTheFly.C one can use the dedicated setters
and have handle on the flow harmonics v1, v2 and v4. The most important
harmonic is v2, the so called elliptic flow, so we start with it first.

6



Example: If one wants to sample particle azimuthal angles from azimuthal
distribution parameterized only with constant elliptic flow of 5%, namely

dN

dφ
= 1 + 2 · 0.05 · cos(2(φ−ΨRP)) , (4)

then one should use the following settings

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.0;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

In this mode the flow coefficients are constant for all particles within partic-
ular event, but still the flow coefficients can fluctuate event-by-event.

Example: If one wants to sample particle azimuthal angles from azimuthal
distribution parameterized only with elliptic flow which fluctuates event-by-
event according to Gaussian distribution with mean 5% and spread 1%, than
one should use the following settings

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.01;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

On can also study uniform flow fluctuations.

Example: If one wants to sample particle azimuthal angles from azimuthal
distribution parameterized only with elliptic flow which fluctuates event-by-
event according to uniform distribution in interval [4%,6%], than one should
use the following settings

7



Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kFALSE;

Double t dMinV2RP = 0.04;

Double t dMinV2RP = 0.06;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

It is of course possible to simulate simultanously nonvanishing v1, v2 and v4.

Example: If one wants to sample particle azimuthal angles from azimuthal
distribution parameterized by harmonics v1 = 2%, v2 = 5% and v4 = 1%,
namely

dN

dφ
= 1 + 2 · 0.02 · cos(φ−ΨRP) + 2 · 0.05 · cos(2(φ−ΨRP))

+ 2 · 0.01 · cos(4(φ−ΨRP)) (5)

then one should use the following settings

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.0;

Double t dV1RP = 0.02;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.01;

Double t dV4SpreadRP = 0.0;

In the next section we outline the procedure for simulating flow events with
pT dependent flow harmonics.

3.2.2 pT dependent flow harmonics

In this mode the functional dependence of flow harmonics on transverse mo-
mentum is treated as an event-wise quantity, while within the particular
event the flow harmonics will change from particle to particle depending on

8



T
p

0 1 2 3 4 5 6 7 8 9 10

2v

0

0.05

0.1

0.15

0.2

0.25

Figure 5: pT dependent elliptic flow.

its transverse momentum. The implemented azimuthal distribution for this
case reads

dN

dφ
= 1 + 2v2(pT ) cos(2(φ−ΨRP)) , (6)

and the functional dependence v2(pT ) is implemented as follows:

v2(pT ) =

{
vmax(pT /pcutoff) pT < pcutoff ,
vmax pT ≥ pcutoff .

(7)

In the macro runFlowAnalysisOnTheFly.C one can have the handle on the
parameters vmax and pcutoff .

Example: If one wants to set vmax = 0.2 and pcutoff = 2 GeV/c, than one
should use the following settings:

Bool t bConstantHarmonics = kFALSE;

Double t dV2RPMax = 0.20;

Double t dPtCutOff = 2.0;

Example plot is given in Figure ??.

(Remark: Add further explanation here.)

3.3 Nonflow

One can simply simulate strong 2-particle nonflow correlations by taking each
particle twice.

9



Example: If one wants to simulate strong 2-particle nonflow correlations
one should simply set

Int t iLoops = 2;

3.4 Detector inefficiencies

In reality we never deal with a detector with uniform azimuthal coverage,
hence a need for a thorough studies of the systematic bias originating from
the non-uniform acceptance.

Example: One wants to simulate a detector whose acceptance is uniform
except for the sector which spans the azimuthal interval [60o, 120o]. In this
sector there are some issues, so only half of the particles are reconstructed.
To simulate this acceptance one should use the following settings:

Bool t uniformAcceptance = kFALSE;

Double t phimin1 = 60;

Double t phimax1 = 120;

Double t p1 = 1/2.;

Double t phimin2 = 0.0;

Double t phimax2 = 0.0;

Double t p2 = 0.0;

The resulting azimuthal profile is shown in Figure (??).

One can also simulate two problematic sectors.

Example: One wants to simulate a detector whose acceptance is uniform
except for the two sectors which span azimuth [60o, 120o] and [270o, 330o],
respectively. In the first sector only 1/2 of the particles are reconstructed and
only 1/3 of the particles are reconstructed in the second. To simulate this
acceptance one should use the following settings:

10



 for RP selectionφ
0 1 2 3 4 5 6

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

Figure 6: Non-uniform acceptance.

 for RP selectionφ
0 1 2 3 4 5 6

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

Figure 7: Non-uniform acceptance.

Bool t uniformAcceptance = kFALSE;

Double t phimin1 = 60;

Double t phimax1 = 120;

Double t p1 = 1/2.;

Double t phimin2 = 270.0;

Double t phimax2 = 330.0;

Double t p2 = 1/3.;

The resulting azimuthal profile is shown in Figure (??).

3.5 Selecting the methods

3.6 Particle weights

4 Extra

4.1 Running on Stoomboot

11


