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Robust Covariance Matrix Estimation
Carl-Inge C. Nilsen, Member, IEEE, Ines Hafizovic, Student Member, IEEE

A. Estimating the Covariance Matrix

We have an M -element array with elements located along
the x-axis at positions dxm for m = 0, 1, · · · ,M − 1. They
sample a wavefield s(x) consisting of P sources arriving from
angles θp. The signal observed by the mth array element is:

am = s(xm) + nm =

P−1∑
p=0

Ape
ik(θp)dxm + nm, (1)

for m = 0, 1, · · · ,M − 1. The P sources contribute to
the signal in the form of complex exponentials with spatial
frequencies k̃(θp) = 2π

λ sin θpdx. The sequence nm represents
spatially white noise (element self-noise), which is defined
through:

E {nm} = 0, E
{
nmn

∗
m+l

}
= σ2

nδl, (2)

where δl is the Kronecker delta function for index l.
Our goal is to use the array data vector, ~a =

[a0, · · · , aM−1]
T , to estimate one or more of the unknown

parameters of the wavefield, e.g. the complex amplitudes
{Ap}P−1p=0 or the directions of arrival {θp}P−1p=0 using adaptive
array processing. In most adaptive array processing methods,
it is necessary to estimate the covariance matrix of the array:

R = E
{
~a~aH

}
. (3)

An element in the covariance matrix is given by:

[R]m,n = E {ama∗n} = E {s(xm)s∗(xn)}
= E {s(xm)s∗(xm + ∆x[m,n])} , (4)

where [R]m,n means the element in row m and column n of
the matrix R, and ∆x[m,n] is the spatial lag (i.e. distance)
between array elements m and n:

∆x[m,n] = xm − xn. (5)

For ULAs, the lag function is very simple:

∆x[m,n] = dxl for l = m− n. (6)

A wavefield of monochromatic plane waves is stationary,
meaning that the spatial correlation depends on lag only:

E {s(xm)s∗(xm + dxl)} = E {s(x)s∗(x+ dxl)} ∀x∀l (7)

Therefore, we can define the spatial correlation function of a
ULA with the single parameter l = m− n:

[R]m,n = r[l] = E {s(0)s∗(dxl)} (8)
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Since s(x) can be written as a function of its DTFT S(k̃), we
can rewrite the spatial correlation function as:

r[l] =
1

4π2

∫ π

−π

∫ π

−π
E
{
S(k̃)S∗(k̃′)

}
e−ik̃

′l dk̃′ dk̃. (9)

Because S(k̃) is bandlimited as specified in (??), we can
rewrite the integration limits:

r[l] =
1

4π2

∫ κπ

−κπ

∫ κπ

−κπ
E
{
S(k̃)S∗(k̃′)

}
e−ik̃

′l dk̃′ dk̃. (10)

The expectation in the above expression depends on the actual
statistics of the complex plane wave amplitudes Ap. The basis
for most algorithms such as MVDR, MUSIC, ESPRIT, etc. is
the assumption that they are uncorrelated:

E
{
ApA

∗
p′
}

= |Ap|2 δp−p′ . (11)

This implies that the wavefield is uncorrelated across
wavenumbers:

E
{
S(k̃)S∗(k̃′)

}
=
∣∣∣S(k̃)

∣∣∣2 δ(k̃ − k̃′) (12)

In reality, this may not be the case. However, when they are
uncorrelated the inverse DTFT in (10) reduces to:

r[l] =
1

2π

∫ κπ

−κπ

∣∣∣S(k̃)
∣∣∣2 e−ik̃l dk̃. (13)

We will use this expression for our covariance matrix esti-
mator. Since we do not know S(k̃), we will first need to
estimate it. An obvious estimator is DAS, as given in (??)
with w̃ = M−1. Inserting (??) into (13) and carrying out the
integration yields:

r[l] = M−2
M−1∑
m=0

M−1∑
n=0

aman
sin(κπ(m− n))

m− n
(14)

For the special case of dx = λ
2 , this reduces to:

r[l] = M−1
M−l−1∑
m=0

amam+l, (15)

which is the sum along the lth diagonal of the sample
covariance matrix, divided by the number of elements in the
array.

B. Additional points

1) Spatially white noise is not covered by the current
method. Introduce via diagonal loading?

2) Importance of including κ in integration limits, cf. (10).


