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Abstract—Algorithms for direction-of-arrival (DOA) estima-
tion and beamforming will suffer from decreased performance
when the estimated statistics deviate from the underlying model.
This can be due to estimation from a finite number of data
vectors or in case of correlation between signals. Covariance
matrix estimators can attempt to counteract these effects by
forcing the estimate to have a Toeplitz structure, such as
redundancy averaging. It is known that redundancy averaging
improves performance, but results in biased DOA estimates that
are worse than what can be accomplished with non-Toeplitz
constrained techniques such as e.g. spatial averaging. In this
letter/correspondence we introduce an optimal, iterative Toeplitz-
constrained covariance matrix estimator. We show that the
estimator yields redundancy averaging as its first step, and that
subsequent steps improve the DOA estimates by reducing the bias
and increasing resolution beyond that of redundancy averaging.

I. INTRODUCTION

Several adaptive beamforming and DOA estimation meth-
ods are based on examining the spatial covariance matrix. For
certain array geometries, such as the uniformly spaced linear
array (ULA), the covariance matrix should ideally be Toeplitz.
Due to different deviations from our assumptions, such as too
few data vectors and/or signal correlation (should we mention
element position errors?) this criterion is often not satisfied.
Several authors have suggested so-called Toeplitz-completion-
based estimation methods that force the estimated covariance
matrix to be nearly Toeplitz, e.g. adaptive spatial averaging
[1], or perfectly Toeplitz, e.g. redundancy averaging [2]. We
have chosen to investigate the latter method. It is known
that redundancy averaging creates a covariance matrix that is
inconsistent with the underlying signal model, yielding biased
DOA estimates [3] that can be outperformed by ordinary
spatial averaging. It is not obvious how to further develop
or modify redundancy averaging to improve its performance,
as the technique does not include any parameters and has not
been derived using any optimality criterion.

In this correspondence we derive a novel technique for co-
variance matrix decorrelation through Toeplitz completion and
show that a slightly modified form of redundancy averaging
is the result of the first iteration. Although the covariance
matrix estimates are still inconsistent, the bias induced in the
DOA estimates by this inconsistency is significantly reduced
for each iteration. The new technique is shown through simu-
lations to have better threshold and resolution properties than
both redundancy averaging avd spatial averaging, as well as
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a DOA RMSE that is superior to redundancy averaging and
approaches spatial averaging as SNR increases.

II. BACKGROUND

A. Array and Signal Model

We assume an M -element uniformly spaced linear array
(ULA) which captures N temporal samples of a spatial data
vector, ~x[n], consisting of D ≤ M plane-wave signals of
interest, ~s[n], and spatially white noise, ~n[n]:

~x[n] = ~s[n] + ~n[n] ∈ CM , n = 0, 1, · · · , N − 1 (1)

The signals of interest can be described as:

~s[n] = eiωn
D−1∑
d=0

Ad~v(kd) (2)

where Ad are the complex signal amplitudes, and the propa-
gation vectors ~v(kd) for signals arriving at the ULA are:

~v(kd) =
[
1, eikd , · · · , eikd(M−1)

]T
. (3)

where the signal wavenumbers kd are defined from the direc-
tions of arrival (DOA) θd as as:

kd =
2π

λ
sin θd, (4)

Our primary goal is to estimate the DOAs θd from the data
~x[n]. The number of signals, D, is either known, or it must
be estimated from the data as well.

We will make use of the wavenumber domain representation
of data, which relates to the spatio-temporal domain through
a Fourier transformation:

S(k) =

∞∑
m=−∞

sme
−ikm (5)

sm =
1

2π

∫ π

−π
S(k)eikm dk. (6)

Using an M -element ULA restricts our knowledge of sm to
the interval m = 0, · · · ,M − 1.

We define the data spatial covariance matrix of the data as:

R = E
{
~x[n]~xH [n]

}
(7)

When the signals of interest are uncorrelated, i.e.
E
{
AdA

∗
d+d′

}
= σ2

dδd′ or ~vHd ~vd+d′ ∝ δd′ , the covariance
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matrix can be decomposed into the signal and noise covariance
matrices:

R = Rs + Rn (8)

Rs =

D−1∑
d=0

σ2
d~vd~v

H
d

Rn = σ2
nI.

These covariance matrices have a Toeplitz structure. When R
is not known, it must be estimated from the data. A common
estimator is the sample covariance matrix:

R̂ =
1

N

N−1∑
n=0

~x[n]~xH [n]. (9)

B. Subspace-Based Methods for DOA Estimation

There are several non-parametric and parametric techniques
for achieving our primary goal. The non-parametric methods
are typically beamscan algorithms (see e.g. [4]), which form
a spatial spectrum over all wavenumbers and locate the D
largest peaks within. The most researched parametric methods
are MUSIC [5] and ESPRIT [6], and we will concern ourselves
with the former. Both these methods are subspace-based, and
use the eigendecomposition of the spatial covariance matrix
R to estimate the DOAs of the D signals:

R = VΛVH . (10)

The eigenvector matrix is divided into the orthogonal signal-
plus-noise- and noise subspaces, where the former consists of
the eigenvectors corresponding to the D largest eigenvalues:

Λ = diag {λ0, · · · , λM−1} , λ0 ≥ λ1 ≥ · · · ≥ λM−1
V = [~v0, · · · , ~vM−1] = [VS+N ,VN ]

VS+N = [~v0, · · · , ~vD−1] ,VN = [~vD, · · · , ~vM−1] (11)

MUSIC is based on forming the so-called null spectrum from
the eigenvectors in the noise subspace:

QMU (k) = ~vH(k)VNVH
N~v(k) (12)

The signal wavenumbers are estimated by finding the roots
of the null spectrum, and the DOAs are derived from these
wavenumbers using the relationship in (4).

C. Robust Covariance Matrix Estimation

In practice, the sample covariance matrix of (9) will not be
identical to the ideal covariance matrix of (8). This can be
due to different reasons. If R̂ is based on a finite number
of temporal samples, the deviation from the ideal Toeplitz
structure will typically increase as the number of samples N is
decreased. If the signals of interest are correlated, the sample
covariance matrix will always have a non-Toeplitz structure
independent of N . An interesting problem is whether it is still
possible to regain the Toeplitz covariance matrix of (8) despite
these deviations. Several techniques have been suggested, the
most well-known being spatial averaging [7]. Spatial averaging
consists of dividing the array data vectors ~x[n] into K subarray

data vectors ~xk[n] of length L = M −K + 1 that overlap by
all but one element:

~xk[n] = [xk[n], · · · , xk+L−1[n]]
T ∈ CL. (13)

The spatially averaged covariance matrix is formed by aver-
aging the subarray data vectors:

R̂SA =
1

KN

N−1∑
n=0

K−1∑
k=0

~xk[n]~xHk [n]. (14)

Unfortunately, this matrix only achieves Toeplitz structure
asymptotically as K →∞, which is an unrealistic assumption.
Therefore, the alternative method of redundancy averaging was
suggested to achieve Toeplitz structure for any value of K
and N [2]. Redundancy averaging consists of replacing all
elements of the covariance matrix by the average across the
corresponding matrix diagonal:

[R̂RA]m,n =
1

M − P

P−1∑
p=0

[
R̂
]
p,p+P

, P = |m− n| (15)

Redundancy averaging can also be derived as a least-squares
structured covariance estimate [8]. Both spatial and redun-
dancy averaging achieves some degree of robustness against
above-mentioned model deviations, and they both have their
advantages and disadvantages.

The main advantage of spatial averaging is that it preserves
the underlying covariance matrix structure. Therefore, it con-
verges to the true covariance matrix, i.e. limK→∞ R̂SA = R.
The disadvantage is that increasing K decreases the degrees of
freedom by the same amount, which means that fewer sources
can be detected.

The advantage of redundancy averaging is that it can yield
a fully Toeplitz matrix with full rank from as little as a single
data vector without any reduction of the degrees of freedom.
The disadvantage is that it does not preserve the underlying
covariance matrix structure, and can therefore not be used to
perfectly regain R except for certain exceptional scenarios. It
has been shown that the bias induced in the DOA estimates
from redundancy averaging can be rather large [3].

Although redundancy averaging has its merits, it is not
obvious how it could be improved or modified to reduce
the associated DOA bias. In the next section we present an
alternative approach to covariance matrix Toeplitz completion,
which is more flexible and can be interpreted as an extension
of redundancy averaging.

III. COVARIANCE MATRIX DECORRELATION THROUGH
OPTIMAL TOEPLITZ COMPLETION

Instead of deriving a covariance matrix estimator in the
spatio-temporal domain, it can be advantageous to look at the
problem in the wavenumber domain. An element of the signal
covariance matrix from (8) can be written in the wavenumber
domain through a Fourier transformation:

[Rs]m,n =
1

2π

∫ π

−π
|S(k)|2 ei(m−n)k dk (16)
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The wavefield magnitude at wavenumber ks, |S(ks)|2, is
generally unknown, but can be estimated using beamforming:

Ŝ(ks) = ~wH~x⇒ E

{∣∣∣Ŝ(ks)
∣∣∣2} = ~wHR~w. (17)

The quality of the estimate depends on the properties of the
beamformer. A simple example is the uniformly weighted
delay-and-sum beamformer, which is given as:

~wDAS =
1

M
~v(ks). (18)

We note that the expected power of the beamformer estimate
in (17) can be written in the wavenumber domain:

~wHR~w = E

{∣∣∣∣ 1

2π

∫ π

−π
W (k)S(k) dk

∣∣∣∣2
}
. (19)

However, we want to select ~w to optimize our estimate of the
wavefield. An optimum estimator of |S(k)|2 is the Minimum
Variance Distortionless Response (MVDR) beamformer, also
known as the Capon beamformer, which is defined as:∣∣∣ŜMV (ks)

∣∣∣2 = ~wHMVR~wMV (20)

where ~wMV = argmin~wVAR
{
~wH~x

}
s.t. ~wH~v(ks) = 1.

Given our underlying assumption of an uncorrelated wavefield,
(20) can be written in the wavenumber domain as in (19):

~wMV = argmin~w
1

2π

∫ π

−π
|W (k)|2E

{
|S(k)|2

}
dk (21)

subject to W (ks) = 1 and wm = 0 for m < 0 or m ≥M.

Since this expression depends on |S(k)|2, the very quantity
we are trying to estimate, we can define an iterative estimator
of the uncorrelated wavefield (for steps e = 1, 2, · · · ,∞):∣∣∣Ŝ(e+1)(ks)

∣∣∣2 = ~w
(e+1)H
MV R̂~w

(e+1)
MV (22)

where ~w
(e+1)
MV = argmin~w

1

2π

∫ π

−π

∣∣∣W (k)Ŝ(e)(k)
∣∣∣2 dk

subject to W (ks) = 1 and wm = 0 for m < 0 or m ≥M.

It is well known that the solution of this MVDR optimization
problem is:

~w
(e+1)
MV =

R̂−(e)~v(k)

~vH(k)R̂−(e)~v(k)
, (23)

where R̂−(e) is shorthand for
(
R̂(e)

)−1
.This estimate can

be used with (16) to specify an iterative Toeplitz covariance
matrix estimator of the associated uncorrelated wavefield:[
R̂(e+1)

]
m,n

=
1

2π

∫ π

−π

~vH(k)R̂−(e)R̂R̂−(e)~v(k)∣∣∣~vH(k)R̂−(e)~v(k)
∣∣∣2 ei(m−n)k dk.

(24)
As for any other iterative algorithm, there is the question of

initialization. A plausible initial estimate
∣∣∣Ŝ(0)(k)

∣∣∣2 requiring
no knowledge about the situation at hand could be the positive,
constant spectrum: ∣∣∣Ŝ(0)(k)

∣∣∣2 = α > 0. (25)

However, this automatically yields a closed-form solution for
the next step, namely the delay-and-sum beamformer of (18),
as is shown in Appendix A. Therefore, it makes more sense
to initialize with the delay-and-sum beamformer directly:∣∣∣Ŝ(0)(k)

∣∣∣2 =
1

M2
~vH(k)R̂~v(k) (26)

An interesting observation comes when inserting (26) into
(22) and, subsequently, the result into (24) to estimate R̂(1),
namely that the first covariance matrix estimate becomes (see
Appendix B for a proof):

[R̂(1)]m,n =
1

M2

P−1∑
p=0

[
R̂
]
p,p+P

, P = |m− n| . (27)

This is equal to the redundancy averaged estimator of (15)
except for the denominator of the leading fraction. As we will
show in the next section, both this scaling and iterating further
will improve the performance beyond that of redundancy
averaging. However, since step 1 of the iteration still yields a
closed form solution, it ultimately makes more sense to start
with (27) instead of the conventional beamformer estimate.

Unfortunately, it is not trivial to prove the convergence
of the iterative estimator in (24). In the next section, we
will demonstrate convergence for a range of cases through
simulations.

It is worth noting that the suggested method is more
computationally demanding than both spatial and redundancy
averaging. Each iteration requires the formation of an M×M
Toeplitz matrix, where the value along each of the M di-
agonals is calculated from the integral in (24). As there is
no closed form solution to this integral, it must be done
numerically. The resulting covariance matrix must be then be
inverted, which has complexity of O(M2) or less due to its
Toeplitz structure.

IV. SIMULATIONS AND DISCUSSION

In this section we will compare the performance of redun-
dancy averaging, spatial averaging, and the suggested method
for DOA estimation using the Root-MUSIC algorithm.

We will first investigate the performance with respect to
DOA estimation. We simulate a scenario with a ULA of
M = 10 elements in the presence of two equally strong
sources located at broadside (i.e. θ = 0) and the half-power
beamwidth angle (i.e. θ = 2 sin−1

(
0.891
M

)
). In Fig. 1 we show

the DOA RMSE normalized by the null-to-null beamwidth of
the full array for N = 100. In Fig. 2 we see the single-snapshot
behavior.

We will also investigate the probability of resolution (POR)
for the different methods. Resolution can be a tricky thing
to define, especially for parametric, non-spectral methods like
Root-MUSIC because the number of sources is defined be-
forehand and there is no continuous spectral curve to evaluate
with respect to peaks and variations. There are several existing
interpretations, but we have chosen to define that two sources
are resolved if they are both detected within one (null-to-null)
beamwidth from their actual positions. In Fig. 3 we show the
POR as a function of SNR for N = 100.
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Fig. 1. DOA RMSE as a function of SNR. Parameters: θ0 = 0, θ1 =
2 sin−1(0.0891), N = 100, M = 10, K = 2, E = 20.
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Fig. 2. DOA RMSE as a function of SNR, the single-snapshot case.
Parameters: θ0 = 0, θ1 = 2 sin−1(0.0891), N = 1, M = 10, K = 2
and M/2, E = 20.

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

0.8

1

N=100, M=10

SNR (dB)

P
ro

b
a
b
ili

ty
 o

f 
R

e
s
o
lu

ti
o
n

 

 

Suggested

Spatial avg. (L=M−1)

Spatial avg. (L=M/2)

Spatial avg. (L=3)

Redundancy avg.

Fig. 3. Probability of resolution as a function of SNR. N = 100,M = 10.

0 2 4 6 8 10 12 14 16 18 20
−40

−35

−30

−25

−20

−15

−10

−5

Number of iterations, E)

D
O

A
 R

M
S

E
/B

W
N

N
 (

d
B

)

DOA RMSE, M=10,N=1

 

 

Suggested

Spatial avg. (K=2)

Spatial avg. (K=M/2)

Redundancy avg.

Fig. 4. DOA RMSE as a function of E. Parameters: θ0 = 0, θ1 =
2 sin−1(0.0891), N = 100, M = 10, K = 2 and M/2, SNR = 20dB.

An interesting observation is that the bias introduced by
redundancy averaging has a more severe effect; the DOA
RMSE is almost binary in nature and does not decrease in
any significant manner after the threshold has been met. The
threshold of spatial averaging occurs at a high SNR, and
its performance improves very rapidly from here on. The
threshold of the suggested method occurs first of all, and
while its performance does not increase as quickly as spatial
averaging, it is a significant improvement from redundancy
averaging.

In Fig. X we show the DOA RMSE of the suggested
method, compared to the others, as a function of the number
of iterations E for an SNR of 20dB with N = 100. By
observing the behavior of the suggested method as a function
of E, we see that convergence is achieved approximately
around E = 10. We also see that even for e = 1, a significant
improvement over redundancy averaging can be achieved.

Summary of conclusions:
• The suggested method is always better than redundancy

averaging, except for when there is both low correlation
(ρ ≤ 0.4) and small angles.

• Redundancy averaging and the suggested method are bet-
ter than spatial averaging for small separation angles or or
low-to-medium SNR; i.e. both redundancy averaging and
the suggested method have lower performance thresholds
and better resolution than spatial averaging.

• Spatial averaging is always superior for high SNR and
large separation angles.

V. CONCLUSION

We have introduced a covariance matrix estimator for use in
parametric DOA estimation, which achieves robustness against
low sample count and correlation through optimal Toeplitz
completion. The estimator is iterative, and we have shown
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that its first step yields a slightly modified redundancy average
estimator, while the subsequent steps result in improved DOA
estimates and resolution.

APPENDIX A: PROOF OF EQUATION (26)

Because the covariance matrix of (16) is Toeplitz, we will
investigate the value along the lth diagonal:[

R̂(1)
]
m,n

=
1

2π

∫ π

−π

∣∣∣Ŝ(0)(k)
∣∣∣2 eilk dk,

=
α

2π

∫ π

−π
eilk dk = αδl ⇒ R̂−(1) = α−1I

(28)

Inserting (28) into (23) yields:

~w(1) =
1

M
~v(ks) (29)

APPENDIX B: PROOF OF EQUATION (27)

Because the covariance matrix of (16) is Toeplitz, we will
investigate the value along the lth diagonal:[
R̂(1)

]
m,n

=
1

2π

∫ π

−π

∣∣∣Ŝ(0)(k)
∣∣∣2 eilk dk,

for l , m− n

=
1

2πM2

∫ π

−π
~vH(k)R̂~v(k)eilk dk

=
1

2πTM2

T−1∑
n=0

M−1∑
m′=0

M−1∑
n′=0

xm′ [t]x∗n′ [t]

∫ π

−π
ei(l−l

′)k dk,

for l′ , m′ − n′

=
1

M2

M−1∑
m′=0

M−1∑
n′=0

δl−l′
1

T

T−1∑
t=0

xm′ [t]x∗n′ [t]

=
1

M2

l−1∑
p=0

[
R̂
]
p,p+l

.

(30)

The resulting expression is equal to (27) and nearly equal to
the redundancy averaged estimate of the covariance matrix
as given in (15), except for the denominator in the leading
fraction.
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