
1 Alice TPC calibration using tracks

All calibration classes (components) using the tracks and ESDs derives from
the AliTPCcalibBase. Following classes implemented:

• AliTPCcalibCalib. Re-apply calibration on the cluster level, refit
the track. To be (optionally) used as prefilter before calibration.

• AliTPCcalibTracks. Cluster shape and error parameterization.

• AliTPCcalibTracksGain. Gain calibration

• AliTPCcalibAlign. Internal alignment of the TPC chambers.

• AliTPCcalibLaser. Calibration using laser tracks. Drift vleloctity
and unlinearities. ExB effect.

• AliTPCcalibTime. Time dependent calibration of drift velocity and
the gain.

• AliTPCcalibCosmic. Currently only for performance study.

• AliTPCcalibUnlinearity. Unlinearity calibration.

Additional class AliTPCAnalysisTaskcalib was implemented as a steer-
ing class to invoke the calibration tasks inside the AliROOT Analysis frame-
work.

The base functionality to be optionally implemented by the derived classes.

• Process(AliESDEvent *event) To implement if full even necessary:
AliTPCcalibLaser, AliTPCcalibCosmic, AliTPCcalibTime.

• Process(AliTPCseed *track) All clusters needed: AliTPCcalib-
Tracks, AliTPCcalibTracksGain

• Process(AliESDtrack *track)

•

• Merge(TCollection) All components are able to merge results. (His-
tograms, AliTPCCalPads, Fitters)

• Terminate() Function to be called before saving results. (Usually
update of fitters)

• Bool AcceptTrigger() Don’t process event with non appropriate trig-
ger mask

1

• Analyze() Analyze raw data (histograms, calPads fitters). Extract
parameterizations fits.

Using the components inside of the Analysis framework, optionaly
streamers (Trees) can be used. By default the usage of the streamers is
disabled. They have to be explicitly enabled in the task configuration
macro.

The usage of stremers is important during the development phase (see
example 1):

– 1. Possible to debug derivation of the intermediate results. Im-
portant when the derivation is not straightforward.

– 2. Possible to tune selection criteria

– 3. If the variable of interest is function of many other variables

1 {

//

// 0. Enabling stremer - to be done in the ConfigurationMacro: e.g $ALICE_ROO

//

AliTPCcalibTime *calibTime = new AliTPCcalibTime("calibTime","calibTime", s

6 calibTime ->SetDebugLevel (20);

calibTime ->SetStreamLevel (10);

}

{

11 //

// Example filling of debug streamer in the AliTPCcalibTime.cxx component

//

if (fStreamLevel >0){

TTreeSRedirector *cstream = GetDebugStreamer ();

16 if (cstream){

(* cstream)<<"dz"<<

"run="<<fRun << // run number

"event="<<fEvent << // event number

"time="<<fTime << // time stamp of event

21 "trigger="<<fTrigger << // trigger

"mag="<<fMagF << // magnetic field

// dump the info which we fill in histogram

"dz="<<fDz <<

"psurface="<<psurface <<

26 "ppit="<<ppit <<

"tsidea="<<tsidea <<

"tsidec="<<tsidec <<

"viroc="<<viroc <<

"voroc="<<voroc <<

31 "\n";

2

}

}

}

//

36 // Using debug stremers - fitting visualization

//

{

TFile f("calibTime.root");

TTree * tree = (TTree *)f.Get("dz");

41 tree ->Draw("dz:time"); // visualize the delta z as function of time

tree ->Draw("dz:time","abs(dz)<20"); // apply delta z cut

tree ->Draw("dz:time","abs(dz)<20&& trigger ==16"); // apply trigger type sel

tree ->Draw("dz:time","abs(dz)<20&& trigger ==16&& viroc ==1400");

// select only data with nominal gain

}

Listing 1: StreamerExample.C

1.1 Usage of the calibration components in Analysis
framework

The calibration components were designed in the way that they can be used
stand-alone or inside of the AliRoot Analysis framework. Possibility to use
components inside of the Analysis framework is important mainly during the
development phase.

(see example macros 2). New calibration entries created by calibration
can be stored at differnt locations. In order to verify calibration the OCDB
has to be setup. See example macro 3. In order to reaply the new calibration
from specific storage the calibration component for track refitting has to be
activated, the component AliTPCcalibCalib has to added to the task in
calibration configuration macro.

//

// Config calibration

// example macro in $ALICE_ROOT/TPC/macros/CalibrateTPC.C

// To be modified according studies

5

AliAnalysisTask * SetupCalibTask (){

//1. Make calibration task

AliTPCAnalysisTaskcalib *task1=new AliTPCAnalysisTaskcalib ("TPCÃcalibrationÃtask

10 //

//2. Make calibration components

//

AliTPCcalibTracks *calibTracks =

3

new AliTPCcalibTracks("calibTracks", "ResolutionÃcalibrationÃobjectÃforÃtracks

15 AliTPCcalibTracksGain *calibTracksGain =

new AliTPCcalibTracksGain("calibTracksGain","GainÃcalibrationÃusingÃtracks",cu

AliTPCcalibAlign *calibAlign = new AliTPCcalibAlign ("alignTPC","AlignmentÃofÃthe

AliTPCcalibAlign *calibAlignAll = new AliTPCcalibAlign ("alignTPCAll","AlignmentÃ

AliTPCcalibLaser *calibLaser = new AliTPCcalibLaser ("laserTPC","laserTPC");

20 AliTPCcalibCosmic *calibCosmic = new AliTPCcalibCosmic("cosmicTPC","cosmicTPC");

AliTPCcalibCalib *calibCalib = new AliTPCcalibCalib ("calibTPC","calibTPC");

//

//3. Setup calibration components - Example

//

25 calibTime ->SetDebugLevel (20);

calibTime ->SetStreamLevel (10);

calibUnlinearity ->SetDebugLevel (20);

calibUnlinearity ->SetStreamLevel (10);

calibUnlinearityAll ->SetDebugLevel (20);

30 calibUnlinearityAll ->SetStreamLevel (10);

calibCalib ->SetTriggerMask (-1,-1,kFALSE);

calibTracks ->SetTriggerMask (-1,16,kTRUE);

//

//4. Plugin the calibration components to tasks

35 //

task1 ->AddJob(calibCalib);

task1 ->AddJob(calibAlign);

task1 ->AddJob(calibAlignAll);

task1 ->AddJob(calibLaser);

40 task1 ->AddJob(calibCosmic);

task1 ->AddJob(calibTime);

task1 ->AddJob(calibTracksGain);

task1 ->AddJob(calibTracks);

task1 ->AddJob(calibUnlinearity);

45 task1 ->AddJob(calibUnlinearityAll);

//

//

return task1;

}

Listing 2: CalibrateTPC.C

1 //

// Config OCDB for calibration

// example macro in $ALICE_ROOT/TPC/macros/ConfigOCDB.C

//

6

void ConfigOCDB(Float_t bfield , Int_t runNumber){

//

// import geometry

4

//

11 printf("SETUPÃOCBDÃforÃPROOF\n");

TGeoManager :: Import("/u/miranov/proof/geometry.root");

AliGeomManager :: LoadGeometry("/u/miranov/proof/geometry.root");

//

// Setup magnetic field

16 //

AliMagF* field = new AliMagFMaps("Maps","Maps", 2, 1., 10., AliMagFMaps ::k5kG);

AliTracker :: SetFieldMap(field ,0);

//

// Setup calibration entries

21 //

AliCDBManager :: Instance()-> SetDefaultStorage("local :// $ALICE_ROOT");

AliCDBManager :: Instance()-> SetSpecificStorage("TPC/Calib/Parameters","local :// $

AliCDBManager :: Instance()-> SetSpecificStorage("TPC/Calib/ClusterParam","local ://

// AliCDBManager :: Instance()-> SetSpecificStorage ("TPC/Calib/PadTime0 ","local ://

26 AliCDBManager :: Instance()-> SetSpecificStorage("TPC/Calib/PadTime0","local :///u/

//

AliCDBManager :: Instance()->SetRun(runNumber);

}

Listing 3: ConfigOCDB.C

The calibration components are self containing, they can be optionally
stored in the reference OCDB. For real correction, values extracted from the
components are used to fill OCDB entries.

The usage cluster error and shape parameterization and the gain parame-
terization (position- due electron attachementand diffusion, and the angular)
is implemented in the AliTPCclusterParam class.

AliTPCcalibTracks and AliTPCcalibTracksGain component will provide
the functionality to update current AliTPCclusterParam. Currently it is
done in the macros. Calibration sequence:

• Reconstruction with current AliTPCclusterParam

• Calibration, filling the fitters and histograms

• Analyze fits and histogram. Visual inspection.

• Update AliTPCclusterParam

1.2 Cluster error and shape parameterization - AliT-
PCcalibTracks

The main purpose, get the cluster error and shape parameterization as func-
tion of the cluster position, inclination angle and amplitude.

5

The mean width of the cluster distribution is given by:

σ2
t = σ2

preamp + D2
LLdrift +

tan2 α L2
pad

12
, (1)

σ2
p = σ2

PRF + D2
TLdrift +

tan2 β L2
pad

12
, (2)

where σpreamp and σPRF are the r.m.s. of the time response function and pad
response function, respectively.

The measured width is binned in the L and in the inclination angle tanPRF.
Following parameters are fitted:

σ2
y = k0 + k1Ldrift + k2 tan2 α (3)

The agreement between the data and the theoretical formula is on the level of
5% over the full drift length, and inclination angle tan from 0 up to 1.4. Such
precision is sufficient to signed overlapped tracks. In order to estimate the
drift length, more precise formula should be used. The second order Taylor
approximation can be used:

σ2
y = k0 + k1Ldrift + k2 tan2 α + k3L

2
drift + k4 tan4 α + k5Ldrift tan2 α (4)

The measured width of the cluster distribution depends also on the de-
posited charge, this dependence we consider as second order correction. (To
be implemented in the AliTPCClusterparam)

σ2
y = k0+k1Ldrift+k2 tan2 α+k3L

2
drift+k4 tan4 α+k5Ldrift tan2 α+k6/Qmax+k7Ldrift/Qmax+k8 tan2 α/Qmax

(5)
Pictures to be added: First approximation, second order approximation,

comparison of MC and real data. The track mean shape, real track, over-
lapped events.

1.3 Laser calibration, drift velocity, ExB - AliTPCcal-
ibLaser

The resolution of the v drift velocity determination using laser tracks is on the
level of 10−4 for one event 250 microns for full drift length. This number
critically depends on how many laser tracks are we using. If the laser intensity
is low, we have smaller number of tracks and the resolution is worse. This
number is already on the edge of our knowledge of the temperature condition
(map) in the TPC. Therefore one event is sufficient to determine the drift
velocity. Some rough cut on the chi2 of fit should be applied.

6

In AliTPCcalibLaser for drift velocity we fit 3 parameters: P0 = t0 offset
P1 = vd correction P2 = vd global y correction event by event. I prefer to
store the graph of the fitted parameters. P0, P11 and P2 as function of time
stamps.

7

