
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 1

A Survey of Software Refactoring
Tom Mens, Tom Tourwé

Abstract— This paper provides an extensive overview of
existing research in the field of software refactoring. This re-
search is compared and discussed based on a number of dif-
ferent criteria: the refactoring activities that are supported;
the specific techniques and formalisms that are used for sup-
porting these activities; the types of software artifacts that
are being refactored; the important issues that need to be
taken into account when building refactoring tool support;
and the effect of refactoring on the software process. A run-
ning example is used throughout the paper to explain and
illustrate the main concepts.

Keywords— D.2.3 Coding Tools and Techniques;
D.2.6 Programming Environments/Construction Tools;
D.2.7.m Restructuring, reverse engineering, and reengi-
neering

I. Introduction

AN intrinsic property of software in a real-world envi-
ronment is its need to evolve. As the software is en-

hanced, modified and adapted to new requirements, the
code becomes more complex and drifts away from its orig-
inal design, thereby lowering the quality of the software.
Because of this, the major part of the total software de-
velopment cost is devoted to software maintenance [1], [2],
[3]. Better software development methods and tools do not
solve this problem, because their increased capacity is used
to implement more new requirements within the same time
frame [4], making the software more complex again.

To cope with this spiral of complexity there is an urgent
need for techniques that reduce software complexity by in-
crementally improving the internal software quality. The
research domain that addresses this problem is referred to
as restructuring [5], [79] or, in the specific case of object-
oriented software development, refactoring [6], [7].

According to the taxonomy of Chikofsky and Cross [8],
restructuring is defined as “the transformation from one
representation form to another at the same relative abstrac-
tion level, while preserving the subject system’s external
behaviour (functionality and semantics). A restructuring
transformation is often one of appearance, such as alter-
ing code to improve its structure in the traditional sense of
structured design. While restructuring creates new versions
that implement or propose change to the subject system, it
does not normally involve modifications because of new re-
quirements. However, it may lead to better observations of
the subject system that suggest changes that would improve
aspects of the system.”

The term refactoring was originally introduced by
William Opdyke in his PhD dissertation [6]. Refactoring is
basically the object-oriented variant of restructuring: “the

Tom Mens (tom.mens@umh.ac.be), Université de Mons-Hainaut,
Avenue du Champ de Mars 6, B 7000 Mons, Belgium.

Tom Tourwé (tom.tourwe@cwi.nl), Centrum voor Wiskunde en
Informatica, P.O. Box 94079, NL 1090 GB Amsterdam, The Nether-
lands.

process of changing a [object-oriented] software system in
such a way that it does not alter the external behaviour of
the code, yet improves its internal structure” [7]. The key
idea here is to redistribute classes, variables and methods
across the class hierarchy in order to facilitate future adap-
tations and extensions.

In the context of software evolution, restructuring and
refactoring are used to improve the quality of the soft-
ware (e.g., extensibility, modularity, reusability, complex-
ity, maintainability, efficiency). Refactoring and restruc-
turing are also used in the context of reengineering [9],
which is the examination and alteration of a subject sys-
tem to reconstitute it in a new form and the subsequent
implementation of the new form [8]. In this context, re-
structuring is needed to convert legacy code or deteriorated
code into a more modular or structured form [10], or even
to migrate code to a different programming language or
even language paradigm [11].

The remainder of this paper is structured as follows. Sec-
tion II explains general ideas of refactoring by means of
an illustrative example. Section III identifies and explains
the different refactoring activities. Section IV provides an
overview of various formalisms and techniques that can be
used to support these refactoring activities. Section V sum-
marises different types of software artifacts for which refac-
toring support has been provided. Section VI discusses
essential issues that have to be considered in developing
refactoring tools. Section VII discusses how refactoring
fits in the software development process. Finally, Section
VIII concludes.

II. Running example

In this section we introduce a running example that will
be used throughout the paper. The example illustrates
a typical non-trivial refactoring of an object-oriented de-
sign. The initial design depicted in Figure 1 represents an
object-oriented class hierarchy. It shows a Document class
that is refined into three specific subclasses ASCIIDoc, PS-
Doc and PDFDoc. A document provides preview and print
facilities, which are realised by invoking the appropriate
methods in the associated Previewer and Printer classes,
respectively. Before these methods can be invoked, some
preprocessing or conversion needs to be done, which is re-
alized differently for each of the Document subclasses. In
Figure 1 this is represented by the different code fragments
A, B, C and X, Y, Z, respectively.

This design is not optimal because different function-
alities of the Document class are distributed over all the
subclasses. In order to add a new functionality to the Doc-
ument class, such as a text search or a spell checker, we
need to change every subclass of Document and we need
to define the appropriate helper classes. Moreover, many

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 2

Document

print
preview

ASCIIDoc

print { X }
preview { A }

PSDoc

print { Y }
preview { B }

PDFDoc

print { Z }
preview { C }

Printer

print(Document d)

Previewer

preview(Document d)

Fig. 1. Document class hierarchy and helper classes

such evolutions increase the complexity and reduce the un-
derstandability of the design, because the Document class
has many associations and no explicit relationship between
all helper classes exists, although their roles are similar.

To overcome these problems, the design needs to be
refactored. By introducing a so-called Visitor design pat-
tern [12], the same functionality can be achieved in a more
localised fashion, while at the same time the understand-
ability of the design is improved. This is illustrated in
Figure 2. The idea is to introduce a Visitor class hierar-
chy, that groups all helper classes and defines a common
interface for them (the visit* methods). At the same time,
a generic accept method is implemented in all classes of the
Document hierarchy. The accept method in each subclass
calls a method, specifically defined for that subclass, of the
Visitor hierarchy interface.

In this refactored design model, new functionality can
be added by simply creating a new subclass of Visitor, and
implementing the visit* methods appropriately. As can be
seen in Figure 2, the implementations of the print and pre-
view methods previously in subclasses of Document (i.e.,
A, B, C, X, Y, Z) have been moved to the visit* meth-
ods of the Printer and Previewer classes (i.e., A’, B’, C’,
X’, Y’, Z’).

Although the above example is relatively simple, it al-
ready requires over twenty primitive refactorings to intro-
duce the Visitor design pattern:
1. The print method in each Document subclass (3 occur-
rences) is moved to class Printer using a MoveMethod
refactoring
2. To avoid name conflicts, each of the 3 moved print meth-
ods needs to be renamed first to a visit* method using a
RenameMethod refactoring
3. The preview method in each Document subclass
(3 occurrences) is moved to class Previewer using a
MoveMethod refactoring
4. To avoid name conflicts, each of the 3 moved preview
methods needs to be renamed first to a visit* method using
a RenameMethod refactoring
5. An abstract Visitor class is introduced as superclass for
Printer and Previewer using an AddClass refactoring
6. Three abstract visit* methods are introduced in the new

Visitor class using an AddMethod refactoring
7. An accept method is introduced in all three subclasses
of Document by extracting it from the print method and
preview methods, using an ExtractMethod refactoring
8. All preview and print methods now call the accept
method with an instance of the appropriate Visitor sub-
class. Therefore, their definition can be pulled up to the
Document class, by using a PullUpMethod refactoring.

The refactorings in the above list are referred to as
primitive refactorings. They are elementary behaviour-
preserving transformations that can be used as building
blocks to create the so-called composite refactorings [6],
[13]. These composite refactorings are usually defined as
a sequence of primitive refactorings, and reflect more com-
plex behaviour-preserving transformations that are more
meaningful to the user. For example, the six refactorings
in steps 1 and 2 of the above enumeration can be combined
into the single composite refactoring MoveMethodsTo-
Visitor shown in Figure 3. In a similar way, steps 3 and
4 in the above enumeration can be combined into a single
composite refactoring.

Rename
(print,ASCIIDoc,visitASCII)

MoveMethod
(visitASCII,ASCIIDoc,Printer)

Rename
(print,PSDoc,visitPS)

MoveMethod
(visitPS,PSDoc,Printer)

Rename
(print,PDFDoc,visitPDF)

MoveMethod
(visitPDF,PDFDoc,Printer)

Fig. 3. Composite refactoring for renaming and moving print meth-
ods from the Document subclasses to the Printer class

III. Refactoring activities

The refactoring process consists of a number of distinct
activities:
1. Identify where the software should be refactored;
2. Determine which refactoring(s) should be applied to the
identified places;
3. Guarantee that the applied refactoring preserves be-
haviour;
4. Apply the refactoring;
5. Assess the effect of the refactoring on quality character-
istics of the software (e.g., complexity, understandability,
maintainability) or the process (e.g., productivity, cost, ef-
fort);
6. Maintain the consistency between the refactored pro-
gram code and other software artifacts (such as documen-
tation, design documents, requirements specifications, tests
and so on)

As will be illustrated below, each of these activities can
be supported by different tools, techniques or formalisms.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 3

Document

print { this.accept(new Printer()) }
preview { this.accept(new Previewer()) }
accept(Visitor v)

Printer

visitASCII(ASCIIDoc d) { X' }
visitPS(PSDoc d) { Y' }
visitPDF(PDFDoc d) { Z' }

Previewer

visitASCII(ASCIIDoc d) { A' }
visitPS(PSDoc d) { B' }
visitPDF(PDFDoc d) { C' }

Visitor

visitASCII(ASCIIDoc d)
visitPS(PSDoc d)
visitPDF(PDFDoc d)

ASCIIDoc

accept(Visitor v)
 { v.visitASCII(this) }

PDFDoc

accept(Visitor v)
 { v.visitPDF(this) }

PSDoc

accept(Visitor v)
 { v.visitPS(this) }

Fig. 2. Refactored design model for the Document class hierarchy

A. Identifying where to apply which refactorings

A first decision that needs to be made here is to deter-
mine the appropriate level of abstraction to apply the refac-
toring. Should the refactorings be applied to the program
itself (i.e., the source code), or to more abstract software
artifacts such as design models or requirements documents,
for example?1 We will tackle this particular question in de-
tail in Section V, and restrict ourselves to the subdomain of
program refactoring here. In this subdomain, the activity
of identifying the parts of the program that require refac-
toring (activity 1), and proposing refactorings that should
be applied to these (activity 2), are usually combined.

Kataoka et al. implemented the Daikon tool to indicate
where refactorings might be applicable by automatically
detecting program invariants [14]. One invariant may be
that a certain parameter of a method is always constant,
or is a function of the other parameters of a method. In
that case, it might be possible to apply a removeParameter
refactoring. The main problem with this approach is that
it requires dynamic analysis of the runtime behaviour: the
application needs to be executed to infer the program in-
variants. To this extent, the tool uses a representative set
of test suites. It is however impossible to guarantee that a
test suite covers all possible runs of a program. Therefore,
the invariants may not hold in general. Nonetheless, very
good results have been obtained in practice. Moreover, the
approach is complementary to other approaches that rely
on static information.

Probably the most widespread approach to detect pro-
gram parts that require refactoring is the identification of
bad smells. According to Kent Beck, bad smells are “struc-
tures in the code that suggest (sometimes scream for) the
possibility of refactoring” [7]. As a concrete example of a
bad smell, reconsider the Document class hierarchy design
in Figure 1 of Section II. By analysing the code fragments
A, B, C and X, Y, Z, respectively, it is very likely that one
can detect a significant amount of code duplication. This

1As a terminological side note, when we use to term program in
the remainder of this paper, we specifically refer to the source code
or executable code. In contrast, when we use the term software, we
refer to any type of software artifact (including code, design models,
requirements specifications, and so on).

is a typical example of a bad smell, since code duplication
should be avoided, as it decreases maintainability. Balazin-
ska et al. use a clone analysis tool to identify duplicated
code that suggests candidates for refactoring [15]. Ducasse
et al. sketch an approach to detect duplicated code in soft-
ware and propose refactorings that can eliminate this du-
plication [16]. The approach is based on an object-oriented
meta model of the source code and a tool that is capable
of detecting duplication in code. The proposed refactor-
ings consist of removing duplicated methods, extracting
duplicated code from within a method and inserting an
intermediate subclass to factor out the common code.

Martin Fowler informally links bad smells to refactor-
ings [7]. Tourwé and Mens use a semi-automated approach
based on logic meta programming to formally specify and
detect these bad smells, and to propose refactoring oppor-
tunities that remove these bad smells [17]. A more ad hoc
approach to detect structural weaknesses in object-oriented
source code and solve them by refactorings is proposed by
Dudziak and Wloka [19]. van Emden and Moonen com-
bine the detection of bad smells in Java with a visuali-
sation mechanism [18]. Simon et al. use object-oriented
metrics to identify bad smells and propose adequate refac-
torings [20] . They focus on use relations to propose move
method/attribute and extract/inline class refactorings. The
key underlying concept is the distance-based cohesion met-
ric, which measures the degree to which methods and vari-
ables of a class belong together. Especially in combination
with software visualisation, the use of object-oriented met-
rics seems well suited to detect places in the source code
that are in need of refactoring [20], [21].

A final but important issue is that identification of which
refactorings to apply can be highly dependent on the par-
ticular application domain. If we restrict ourselves to, for
example, web-based software the question of “where and
why” to refactor is partially answered by the high-level
refactorings from [22].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 4

B. Guaranteeing that the refactoring preserves software be-
haviour

By definition, a refactoring should not alter the be-
haviour of the software. Unfortunately, a precise definition
of behaviour is rarely provided, or may be inefficient to be
checked in practice.

The original definition of behaviour preservation as sug-
gested by Opdyke [6] states that, for the same set of
input values, the resulting set of output values should
be the same before and after the refactoring. Opdyke
suggests to ensure this particular notion of behaviour
preservation by specifying refactoring preconditions. As
a concrete example of such a refactoring precondition,
reconsider the primitive refactorings in the running ex-
ample of Section II. The first refactoring suggested
is MoveMethod(print,ASCIIDoc,Printer). It has a
number of necessary preconditions: the classes ASCIIDoc
and Printer should be defined; the method print should
be implemented in ASCIIDoc; the method signature of
print should not be present in class Printer. As can be
seen in Figure 1, the third precondition is not satisfied,
which is precisely why the refactoring RenameMethod
(print,ASCIIDoc,visitASCII) was suggested to avoid
the method signature conflict.

In many application domains, requiring the preservation
of input-output behaviour is insufficient, since many other
aspects of the behaviour may be relevant as well. This im-
plies that we need a wider range of definitions of behaviour
that may or may not be preserved by a refactoring, de-
pending on domain-specific or even user-specific concerns:
• For real-time software, an essential aspect of the be-
haviour is the execution time of certain (sequences of) op-
erations. In other words, refactorings should preserve all
kinds of temporal constraints;
• For embedded software, memory constraints and power
consumption are also important aspects of the behaviour
that may need to be preserved by a refactoring;
• For safety-critical software, there are concrete notions
of safety (e.g., liveness) that need to be preserved by a
refactoring.

One may deal with behaviour preservation in a very prag-
matic way, for example by means of a rigorous testing disci-
pline. If we have an extensive set of test cases, and all these
tests still pass after the refactoring, there is a good evidence
that the refactoring preserves the program behaviour. Un-
fortunately, some refactorings will invalidate existing tests,
even if the refactoring does no alter the behaviour [23],
[24]. The reason for this is that the tests may rely on the
program structure that is modified by the refactoring.

Another pragmatic, but slightly more formal, approach
is to adopt a weaker notion of behaviour preservation that
is insufficient to formally guarantee the full preservation
of program semantics, but that works well in many prac-
tical situations. For example, we can define a notion of
call preservation, which guarantees that all method calls
are preserved by the refactoring [25]. In the presence of
a type system, one can show that a refactoring preserves
type correctness [26].

A more fundamental approach is to formally prove that
refactorings preserve the full program semantics. For a lan-
guage with a simple and formally defined semantics, such
as the logic programming language Prolog, one can prove
that some refactorings that improve the efficiency actually
preserve the program semantics [27]. For more complex
languages such as C++, where a formal semantics is ex-
tremely difficult to define, we typically have to put restric-
tions on the allowed language constructs or refactorings,
and the applicability of a refactoring tool may be limited
to a particular version of a particular compiler [28].

C. Assessing the effect of refactoring on quality

For any piece of software we can specify its external qual-
ity attributes (such as robustness, extensibility, reusability,
performance). Refactorings can be classified according to
which of these quality attributes they affect. This allows
us to improve the quality of software by applying the rele-
vant refactorings at the right places. To achieve this, each
refactoring has to be analysed according to its particular
purpose and effect. Some refactorings remove code redun-
dancy, some raise the level of abstraction, some enhance
the reusability, and so on. This efffect can be estimated
to a certain extent by expressing the refactorings in terms
of the internal quality attributes they affect (such as size,
complexity, coupling and cohesion).

An important software quality characteristic that can
be affected by refactoring is performance. It is a common
misconception that improving the program structure has a
negative effect on the program performance. In the context
of logic and functional programs, restructuring transforma-
tions typically have the goal to improve program perfor-
mance while preserving the program semantics [27], [29].
In the context of object-oriented programs, Demeyer [30]
investigated the effect of refactorings that replace condi-
tional logic by polymorphism. He concludes that the pro-
gram performance gets better after the refactoring, because
of the efficient way in which current compiler technology
optimises polymorphic methods.

To measure or estimate the impact of a refactoring on
quality characteristics, many different techniques can be
used. Examples include, but are not limited to, software
metrics, empirical measurements, controlled experiments
and statistical techniques. Kataoka et al. propose cou-
pling metrics as an evaluation method to determine the
effect of refactoring on the maintainability of the program
[31]. Tahvildari et al. encode design decisions as soft-goal
graphs to guide the application of the transformation pro-
cess [32]. These soft-goal graphs describe correlations be-
tween quality attributes. The association of refactorings
with a possible effect on soft-goals addresses maintainabil-
ity enhancements through primitive and composite refac-
torings. Tahvildari et al. use a catalogue of object-oriented
metrics as indicator to detect automatically where a par-
ticular refactoring can be applied to improve the software
quality [33]. This is achieved by analysing the impact of
each refactoring on these object-oriented metrics.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 5

D. Maintaining consistency of refactored software

Typically, software development involves a wide range
of software artifacts such as requirements specifications,
software architectures, design models, source code, docu-
mentation, test suites, and so on. If we refactor any of
these software artifacts, we need mechanisms to maintain
their consistency. Since the activity of inconsistency man-
agement is a research area in its own right [34], [35], [36],
we will not treat it in detail here. We only discuss a few
approaches that relate consistency maintenance to refac-
toring.

Bottoni et al. propose to maintain consistency between
the program and design models by describing refactoring
as coordinated graph transformation schemes [37]. These
schemes have to be instantiated according to the specific
code modification and applied to the design models affected
by the change.

Within the same level of abstraction, there is also a need
to maintain consistency. For example, if we want to refac-
tor source code, we have to ensure that the corresponding
unit tests are kept consistent [23]. Similarly, if we have
different kinds of UML design models, and any of these
is being refactored, the others have to be kept consistent.
Van Der Straeten et al. suggest to do this by means of
logic rules [39].

Rajlich uses the technique of change propagation to cope
with inconsistencies between different software artifacts
[38]. This technique deals with the phenomenon that, when
one part of a software is changed, dependent parts of the
software may need to be changed as well.

IV. Refactoring techniques and formalisms

A wide variety of formalisms and techniques have been
proposed and used to deal with one or more refactoring
activities. We discuss two such techniques in detail: the
use of assertions (preconditions, postconditions and invari-
ants) and the use of graph transformation. Next, we discuss
how formalisms can help us to guarantee program correct-
ness and preservation in the context of refactoring. Finally,
we provide an indicative, but inevitably incomplete, list of
other useful techniques to support refactoring activities.

A. Invariants, pre- and postconditions

A refactoring’s definition often includes invariants that
should remain satisfied and pre- and postconditions that
should hold before and after the refactoring has been
applied. These constitute a lightweight and automati-
cally verifiable means to ensure that (certain parts of)
the behaviour of the software is preserved by the refac-
toring. A concrete example of the use of preconditions
was already presented for the refactoring MoveMethod
(print,ASCIIDoc,Printer) in Section III-B. A set of
postconditions for the same refactoring would be: (1) the
print method must be implemented in Printer after the
refactoring; (2) the method signature of print does not ex-
ist in ASCIIDoc after the refactoring. An example of an
invariant is the fact that classes ASCIIDoc and Printer are

defined before and after the refactoring.
The use of preconditions and invariants has been sug-

gested repeatedly in research literature as a way to address
the problem of behaviour preservation when restructuring
or refactoring software artifacts. In the context of object-
oriented database schemas (which are similar to UML class
diagrams), Banerjee and Kim identified a set of invariants
that preserve the behaviour of these schemas [40]. Opdyke
adopted this approach to object-oriented programs, and
additionally provided preconditions or enabling conditions
for each refactoring [6]. He argued that these preconditions
preserve the invariants. Roberts used first order predicate
calculus to specify these preconditions in a formal way [41].
The notion of preconditions or applicability conditions is
also available in the formal restructuring approach of Ward
and Bennett, using the formal language WSL [42].

Preconditions may vary depending on the complexity of
the language studied. More complex languages typically re-
quire more preconditions on the refactoring in order to pre-
serve the invariants. Unfortunately, there are some prac-
tical problems with preconditions. One problem is that
the static checking of some preconditions may require very
expensive analysis, or may even be impossible. Another
problem is that the preconditions do not consider the size
or structure of the program [6]. For example, C++ pro-
grams may perform integer arithmetic with the address of
a variable in a class, which is problematic if the refactoring
changes the physical ordering of the variables in that class.

A number of suggestions have been made to overcome
the above problems with preconditions. Tip et al. suggest
to use type constraints to efficiently verify preconditions
that depend on interprocedural relationships between vari-
able types [26]. This is particularly useful for refactorings
that are concerned with generalisation. Roberts suggests
to augment refactorings with postconditions [41]. These
postconditions are particularly useful for those invariants
that rely on dynamic information that is difficult to ex-
press, or expensive to check statically, with preconditions.
Postconditions can also be used to increase the efficiency
of a refactoring tool. From a theoretical point of view it
can be shown that a set of postconditions can be trans-
lated into an equivalent set of preconditions [43]. Roberts
provided an algorithm to perform this translation for se-
quences of program transformations. Ó Cinnéide extended
this algorithm to deal with iteration and conditional con-
structs [13].

B. Graph transformation

Traditionally, refactorings are specified as parameterized
program transformations along with a set of pre- and post-
conditions that guarantee behavior preservation if satisfied
[6], [44]. If we adopt this view, there is a direct corre-
spondence between refactorings and graph transformations.
Programs (or other kinds of software artifacts) can be ex-
pressed as graphs, refactorings correspond to graph pro-
duction rules, the application of a refactoring corresponds
to a graph transformation, refactoring pre- and postcondi-
tions can be expressed as application pre- and postcondi-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 6

tions [43], [45]. Table I summarises some formal properties
of graph transformation that may be used to address im-
portant issues in refactoring.

TABLE I

Correspondence between refactoring and graph

transformation

Refactoring Graph transformation
software artifact graph
refactoring graph production
composite refactoring composition of graph pro-

ductions
refactoring application graph transformation
refactoring precondition application precondition
refactoring postcondition application postcondition
(in)dependence between
refactorings in a sequence

parallel or sequential
(in)dependence

conflict between refactor-
ings applied in parallel to
the same software artifact

confluency and critical
pair analysis

Hence, it is not surprising that the theory of graph trans-
formations has been used to provide more formal support
for software refactoring. Mens et al. use the graph rewrit-
ing formalism to prove that refactorings preserve certain
kinds of relationships (updates, accesses and invocations)
that can be inferred statically from the source code [25].
Bottoni et al. describe refactorings as coordinated graph
transformation schemes in order to maintain consistency
between a program and its design when any of them evolves
by means of a refactoring [37]. Heckel [43] uses graph trans-
formations to formally prove the claim (and correspond-
ing algorithm) of Roberts [41] that any set of refactoring
postconditions can be translated into an equivalent set of
preconditions. Van Eetvelde and Janssens [46] propose a
hierarchical graph transformation approach to be able to
view and manipulate the software and its refactorings at
different levels of detail.

The properties of sequential and parallel (in)dependence
of graph transformations are also extremely suitable to rea-
son about the dependence between refactorings. Two refac-
torings are independent if they can be applied in any order,
i.e., the order in which they are applied does not affect the
end result. This gives rise to a whole range of useful appli-
cation scenarios.

One scenario is the serialisation of refactorings that have
been applied in parallel to the same software artifact [102].
During this serialisation process, it is possible that conflicts
arise because the refactorings make incompatible changes.
To detect and resolve such conflicts, one can rely on existing
results about parallelism and confluence [110] and critical
pair analysis [111].

Analysis of sequential dependencies can also be used to
reorder a given sequence of refactorings, for example, to
normalise the sequence, to identify refactorings that an-
nihilate each other’s effect, to regroup subsequences into
predefined composite refactorings, and so on.

When building composite refactorings it is useful to de-
termine which refactorings have to be applied sequentially
and which refactorings are mutually independent [41]. For
example, the composite refactoring shown in Figure 3 of
Section II consists of a sequence of 6 primitive refactorings,
but there are only 3 sequential dependencies (represented
by straight arrows): each MoveMethod refactoring has
to be preceded by a Rename refactoring. The order in
which the three (Rename,MoveMethod) pairs have to
be applied, however, is irrelevant. This is represented by
dashed arrows. This means that, to increase the efficiency
of the refactoring, one may decide to apply these 3 pairs of
primitive refactorings in parallel.

C. Formalisms for program correctness and preservation

Formal approaches are needed to guarantee that certain
program properties remain invariant to a program transfor-
mation. We will make a distinction between the property
of program correctness and the property of preservation.2

Program correctness is the property that a program will
work without errors. The preservation property of a pro-
gram transformation guarantees that (some aspect of) the
program behaviour is preserved by the transformation.

Obviously, any program transformation should preserve
the syntactic rules (or well-formedness rules) of the pro-
gramming language. After the transformation, the soft-
ware should still be syntactically correct. This can be
checked by using a scanner and a parser. The semantics of
the program should also remain correct, i.e., the program
should not give rise to run-time errors. Unfortunately, the
correctness property is in general undecidable. Gupta et
al. showed that we cannot prove, for an arbitrary running
program and an arbitrary update to it, that the update is
valid in the sense that it will eventually result in a reach-
able program state of the newly added program code [63] .
Because of the undecidability of this property, we can only
take a conservative approach. For example, if we only con-
sider restructurings of the same algorithm (as opposed to
changes to program functionality), a syntactic analysis of
the old and new program code can identify program points
that preserve update validity.

The preservation property can either be checked stati-
cally or dynamically. The checking of refactoring precon-
ditions [6], [41] can be considered as a static approach.
However, the preconditions that are expressed in first-order
predicate logic are only a conservative approximation, and
hence rule out many legal refactorings. Mens et al. sug-
gest other notions of behaviour preservation that can be
checked statically and show how this can be realised using
a graph transformation formalism [25]. Access preserva-
tion means that all variable accesses should be preserved
by the refactoring. Update preservation means that all vari-
able updates should be preserved by the refactoring. Call

2This distinction is not made in the domain of program transforma-
tion for functional languages [29]. In this domain, the term correct-
ness is used to indicate that a program transformation preserves the
extensional meaning of programs. We will not use correctness in this
sense, because it leads to confusion with the more widely accepted
definition of program correctness.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 7

preservation means that all method calls should be pre-
served by the refactoring. Another static way to check
preservation of program behaviour to a certain extent is by
means of type checking : all typed software entities should
still have the same type after the refactoring. This con-
straint can be loosened by allowing a type to be replaced
by a subtype (in the presence of a subtyping mechanism).

To be able to check that more aspects of the program be-
haviour are preserved one needs to remove the restrictions
imposed by static conservative approximations by taking
more dynamic information into account. However, one
should be aware that even then it is impossible to guar-
antee full behaviour preservation in its generality. Moore
proposes a more dynamic notion of call preservation, where
the transformation guarantees that the same messages in a
class will be sent in the same order [64]. Mortimer presents
an approach for restructuring program data types to iden-
tify, group and/or restrict their possible values, while at
the same time preserving the dynamic behaviour of the
software [65].

Bergstein defines a set of primitive refactorings that reor-
ganise classes and methods across a class hierarchy, in such
a way that the same set of objects can still be instantiated
after the refactoring [66]. This specific notion of behaviour
preservation is called object equivalence. Later, this work
was extended to a special kind of graph transformations
that have the property of being language-preserving [67]:
the set of all acceptable program inputs before and after the
transformations must be the same. As such, it provides a
framework for refactoring with a theoretical basis in formal
language theory. Hwang et al. propose another extension
by using a notion of object semi-equivalence between class
hierarchies, which is a direct extension of object equiva-
lence to take composite objects into account [68]. They
propose a set of primitive transformations that preserves
object semi-equivalence, is complete (i.e., any transforma-
tion can be expressed as a sequence of the primitive trans-
formations), and is minimal (i.e., no smaller set of primitive
transformations can be found).

Hursch and Seiter guaranteed preservation by uncou-
pling the class structure from the object behaviour, using
class graphs and propagation patterns [69]. This allows
them to define a restricted set of refactorings that change
the structure without affecting the dynamic behaviour.

Ward and Bennett provide a formal imperative language
WSL and associated tool that comes with a library of pro-
gram transformations that have been proven to preserve
the dynamic behaviour [42]. A disadvantage of the ap-
proach is that, if we want to apply it to some “informal”
programming language, we first have to write a transla-
tor of this language to and from WSL, and we cannot use
formal methods to prove that this translation is correct.

For logic programming languages, there are several no-
tions of program semantics: least Herbrand model seman-
tics [70], set of computed answer substitutions semantics
[71], sequence of computed answer substitutions semantics
[72]. Transformation rules (such as Unfold/Fold) can be
applied to restructure logic programs with the aim of im-

proving efficiency. For these rules, it can be theoretically
shown that they preserve program equivalence under the
above notions of semantics, given some suitable restrictions
[27]. Similar results have been obtained for functional pro-
gramming languages [29].

D. Other useful techniques and formalisms

Many other techniques and formalisms have been pro-
posed and used to support restructuring and refactoring
activities. We provide a brief overview below, and refer to
the literature for more detailed information.

Program slicing is a technique which extracts all state-
ments that may possibly affect a certain set of variables in a
program [47]. This technique, based on system dependence
graphs, can be used to guarantee that a restructuring pre-
serves some selected behaviour of interest. For example, it
has been proposed to deal with a specific kind of program
restructurings: function or procedure extraction [48], [49].
A similar, but less formal approach is presented in [50],
where an algorithm is proposed to move a selected set of
nodes in a control-flow graph together so that they become
extractable while preserving program semantics. Since pro-
gram slicing can be applied to object-oriented programs too
[51], it is likely that this technique can be used to deal with
program refactorings as well.

Sands developed a formal improvement theory to be able
to transform functional programs to improve their effi-
ciency [29]. The transformations are guaranteed to be
“meaning preserving”, which boils down to the preserva-
tion of (global) equivalence. This is a non-trivial property,
since a sequence of transformations that preserve the local
equivalence does not necessarily preserve (global) equiva-
lence. Nevertheless, Sands provides a condition to achieve
such global equivalence on recursive programs in higher-
order functional languages including lazy data structures.

Formal concept analysis provides a conceptual tool for
the analysis of data [52]. The formalism uses lattice theory
to provide a way to group and discuss objects based upon
their common attributes. Snelting and Tip use concept
analysis to refactor object-oriented class hierarchies, based
on the “usage” of this hierarchy by a set of software systems
[53]. The result is guaranteed to be behaviourally equiva-
lent to the original hierarchy. Tonella uses the same tech-
nique to restructure software modules [54]. van Deursen
and Kuipers use concept analysis to semi-automatically re-
structure legacy data structures into object-oriented soft-
ware by identifying object structures [55].

Program refinement encompasses a collection of formal
techniques to transform a program specification into an
executable program in a stepwise fashion. Philipps and
Rumpe [56] suggest to use refinement approaches [57], [58]
as a way to formally deal with the notions of behaviour,
behavioral equivalence and behaviour preservation. Ward
and Bennett illustrate how to apply refinement in the con-
text of program restructuring [42]. They define a formally
defined imperative language WSL that provides three kinds
of program transformations: (behaviour-preserving) re-
structurings, (behaviour-extending) refinements and their

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 8

opposite: abstractions. Refinement of dataflow architec-
tures uses a clearly defined notion of observable behaviour
that allows to precisely define what preservation and re-
finement of behaviour means [59].

Software metrics can be used to deal with refactorings
as well. Numerical measures can be used before applying
a refactoring, to measure the (internal or external) quality
of software, or after the refactoring, to measure improve-
ments of the quality. Demeyer et al. propose to use change
metrics to detect refactorings between two successive soft-
ware releases [60]. Simon et al. use distance-based cohesion
metrics to detect where in a given piece of software there
is a need for refactoring [20]. Kataoka et al. use coupling
metrics to evaluate the effect of refactoring on maintain-
ability [31]. Coleman et al. use a polynomial of multiple
measures to define a maintainability index by which the
effect of refactoring can be evaluated [61].

Software visualisation is another technique that can help
with software refactoring. Griswold et al. propose to use
star diagrams for this purpose [62]. Ducasse et al. propose
DupLoc, a graphical tool for detecting code duplication
[16]. Simon et al. use a generic visualisation framework
based on static structure analysis and a cohesion-based dis-
tance metric to identify pathological situations that may
be improved by applying refactorings [20]. van Emden and
Moonen detect bad smells in Java code, and visualise them
using the Rigi software visualisation tool [18]. Lanza and
Ducasse propose the evolution matrix, a lightweight com-
bination of software metrics and visualisation to identify
patterns of evolution within object-oriented software [21].
Some of these patterns can be used to reveal where refac-
torings have been applied in the evolution history, or to
identify places in the code that are in need of refactoring.

Dynamic program analysis is a useful technique when not
all desired preconditions of a refactoring can be statically
computed in a reasonable amount of time, or with a rea-
sonable computation effort. For these situations, Roberts
suggests to use dynamic program analysis to verify the pre-
conditions of a refactoring, or to deal with program in-
variants that cannot be specified or checked statically [41].
Runtime program information may also be used to identify
where refactorings might be desirable. Kataoka et al. do
this by dynamically inferring program invariants using the
Daikon tool [14].

V. Types of software artifacts

Although contemporary IDEs limit support for refactor-
ing to the source code only, refactoring can be applied to
any type of software artifact. For example, it is possible
and useful to refactor design models, database schemas,
software architectures and software requirements. Refac-
toring of these kinds of software artifacts rids the devel-
oper from many implementation-specific details, and raises
the expressive power of the changes that are made. On
the other hand, applying refactorings to different types of
software artifacts introduces the need to keep them all in
sync.

TABLE II

Restructuring support in different programming languages

language paradigm programming language
imperative Fortran [73], [74]

Cobol [75], [76]
C [77], [78]

imperative formal WSL [42]
functional Scheme [79]

Lisp [80]
Haskell [82], [83]

logic [84], [85] Prolog [72], [27]
class-based OO Smalltalk [44]

Java [7], [86], [13], [87]
C++ [88], [89], [90], [91], [28]

prototype-based OO Self [64]
aspect-oriented AspectJ [92]

A. Programs

Support for program restructuring and refactoring has
been provided in a variety of different programming lan-
guages and programming paradigms. This is summarised
in Table II.

Programs that are not written in an object-oriented lan-
guage are more difficult to restructure because data flow
and control flow are tightly interwoven. Because of this,
restructurings are typically limited to the level of a func-
tion or a block of code [79], [48], [49], [50]. On the other
hand, the very nature of object-oriented principles makes
some seemingly straightforward restructurings surprisingly
hard to implement. The encountered difficulties typically
have to do with the inheritance mechanism, and more in
particular the notions of dynamic binding, interfaces, sub-
typing, overriding and polymorphism. For example, Najjar
et al. mention the inconsistent use of super calls and the
lack of scope when using interfaces as concrete problems in
the context of program refactoring [87].

Also note that, the more complex a language, the more
difficult to automate the refactoring process. For exam-
ple, a C or C++ program transformation tool cannot deal
with preprocessor directives because they are not part of
the actual language syntax [10], [28], [77]. This problem
is tackled by XRefactory [78], a refactoring browser that
allows one to refactor C programs in presence of a C pre-
processor.

B. Designs

A recent research trend is to deal with refactoring at de-
sign level, for example in the form of UML models [93],
[37], [94]. Boger et al. developed a refactoring browser
integrated with a UML modeling tool [95]. It supports
refactoring of class diagrams, statechart diagrams and ac-
tivity diagrams. For each of these diagrams, the user can
apply refactorings that cannot easily or naturally be ex-
pressed in other diagrams or in the source code. Van Gorp
et al. propose a UML extension to express the pre- and
postconditions of source code refactorings using OCL [96] .

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 9

The proposed extension allows an OCL empowered CASE
tool to verify non-trivial pre- and postconditions, to com-
pose sequences of refactorings, and to use the OCL query
engine to detect bad code smells. Such an approach is
desirable as a way to refactor designs independent of the
underlying programming language.

Design patterns provide a means to describe the program
structure at a high level of abstraction [12]. Often, refac-
torings are used to introduce new design pattern instances
into the software [88], [90], [91]. We already illustrated this
in our running example of Section II, where refactorings
were used to introduce a Visitor design pattern. Design
patterns also impose constraints on the software structure,
which may limit applicability of certain refactorings. To de-
tect this, Mens and Tourwé resort to logic reasoning [109].
Jahnke and Zündorf use graph transformation techniques
to restructure/replace occurrences of poor design patterns
in a legacy program by good design patterns [97].

Object-oriented database schemas can be seen as the pre-
decessor of UML class diagrams. Because their main focus
is on how data should be structured, they are an ideal can-
didate for refactoring. In fact, the research area of object-
oriented software refactoring originates in the research on
how to restructure object-oriented database schemas [40],
[66], [69].

To deal with refactoring of software architectures,
Philipps and Rumpe propose a promising approach where
refactoring rules are based directly on the graphical rep-
resentation of a system architecture [59]. These rules pre-
serve the behaviour specified by the causal relationship be-
tween the components. A more pragmatic approach is pre-
sented by Tokuda and Batory [28]: architectural changes to
two software systems are made by performing a sequence of
primitive refactorings (81 refactorings in a first case study,
800 refactorings in a second case study).

C. Software requirements

Restructuring can also be applied at the level of require-
ments specifications. For example, Russo et al. suggest
to restructure natural language requirements specifications
by decomposing them into a structure of viewpoints [98].
Each viewpoint encapsulates partial requirements of some
system components, and interactions between these view-
points are made explicit. This restructuring approach in-
creases requirements understanding, and facilitates detect-
ing inconsistencies and managing requirements evolution.

VI. Tool support

Although it is possible to refactor manually, tool support
is considered crucial. Today, a wide range of tools is avail-
able that automate various aspects of refactoring.3 In this
section, we explore the different characteristics that affect
the usability of a tool. More specifically, we discuss the
notions of automation, reliability, configurability, coverage
and scalability of refactoring tools.

3For an extensive and up-to-date overview of refactoring tools, we
refer to http://www.refactoring.com/.

A. Automation

The degree of automation of a refactoring tool varies
depending on which of the refactoring activities of section
III are supported by the tool, as well as the extent to which
support for each of these activities is automated.

For example, contemporary IDEs often include a refac-
toring browser that supports a semi-automatic approach to
refactoring. While it remains the task of the developer to
identify which part of the software needs to be refactored,
and to select the most appropriate refactoring to apply,
the actual application of the refactoring is automated. As
indicated by Tokuda and Batory [28], a semi-automatic ap-
proach can drastically increase the productivity (in terms
of coding and debugging time) when compared to refactor-
ing by hand. Based on two non-trivial case studies, they
estimate this to be a factor of 10 or more. Similarly, one
can expect developer productivity to improve after the soft-
ware has been refactored, because the software generally
is more understandable, maintainable and evolvable. An-
other main advantage of refactoring tools from the view-
point of the developer is that their behaviour-preserving
nature significantly reduces the need for debugging and
testing, two activities that are known to be very time con-
suming and labour intensive.

As an alternative to this semi-automatic approach, some
researchers demonstrated the feasibility of fully automated
refactoring. For example, Guru is a fully automated
tool for refactoring inheritance hierarchies and refactoring
methods in SELF programs [64]. Another automatic refac-
toring approach is proposed by Casais [99]. Optimisation
techniques as performed by compilers can also be consid-
ered as fully automated refactoring techniques. While these
optimising transformations are completely transparent to
the user, their goal is to improve the performance of the
program, yet preserving its behaviour [100].

In many cases, automating refactoring activities gives
rise to new activities or opportunities that were not possible
without automation. For example, the added benefit of
automatically applying refactorings is that its application
can be easily undone, to allow the software to return to its
original state if it turns out the refactoring did not have
the desired effect.

Compared to partial automation, fully automated refac-
toring and restructuring tools exhibit the disadvantage of
doing too much work, in the sense that certain parts of
the refactored software become more difficult to under-
stand than before. This is confirmed by Callis who identi-
fied some shortcomings of automatic program restructuring
tools [101]. He pointed out that interactive restructuring
tools do not have many of these shortcomings. On the other
hand, the problem with interactive restructuring tools is
that they involve a lot of human interaction when faced
with large software, making it a time-consuming activity.
Despite this problem, semi-automatic refactoring remains
the most useful approach in practice, except in specific sit-
uations such as compiler optimisation. The main reason
for this is that a significant part of the knowledge required
to perform the refactoring cannot be extracted from the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 10

software, but remains implicit in the developer’s head.

B. Reliability

The reliability of a refactoring tool mainly depends on
the ability to guarantee that its provided refactoring trans-
formations are truly behaviour preserving. As we have seen
in section IV-C, it is only possible to guarantee this in very
specific cases (e.g., for simple languages, for a limited num-
ber of refactorings, given a clearly defined notion of seman-
tics). Because of these restrictions, most tools check the
refactoring preconditions before applying it, and perform
tests afterwards.

In absence of a full guarantee of behaviour preservation,
it is essential that a refactoring tool provides an undo mech-
anism to make undesired changes undone [41].

C. Configurability and openness

There is a tendency to integrate refactoring tools directly
into industrial strength IDEs. This is typically achieved
using the built-in extensibility mechanisms of these tools
(e.g., plug-ins, APIs or wizards). Unfortunately, these ex-
tensibility mechanisms are often inadequate for the pur-
pose of configuring the tools with user-specific or domain-
specific information.

There is a variety of ways in which a user (or a group or
users) should be able to configure a refactoring tool for a
particular usage:
• By adding new, or removing or modifying existing refac-
torings and bad smell specifications
• By changing the way bad smells and refactorings are
linked [17]
• By defining composite refactorings from primitive ones
[13]

Having an open configurable tool is a necessity to allow
one to configure the above information according to the
needs in a user-friendly way. To make it easier for the user
to specify and modify refactorings, Leitão suggests to use
a pattern language (i.e., a collection of related patterns to-
gether with rules explaining how to apply them) to express
refactorings [80]. Muñoz provides user-configurable tresh-
old values to specify under which conditions a bad smell
needs to be detected [81].

D. Coverage

As mentioned in section III, there is a wide range of
refactoring activities that can be covered by a tool. An
ideal refactoring tool should be as complete as possible,
i.e., it should cover most of these activities. Unfortunately,
most commercial refactoring tools only provide support for
automatically applying refactorings, whereas the other ac-
tivities of the refactoring process are neglected.

E. Scalability

Contemporary software development tools only support
primitive refactorings. As illustrated in the example of
Section II, refactoring even the simplest design already re-
quires applying a large number of primitive refactorings.

To increase the scalability and performance of a refactor-
ing tool, frequently used sequences of primitive refactorings
should be combined into composite refactorings.

The use of composite refactorings has several advantages.
First of all, they better capture the specific intent of the
software change induced by the refactoring. As such, it
becomes easier to understand how the software has been
refactored. Secondly, composite refactorings result in a
performance gain because the tool needs to check the pre-
conditions only once for the composite refactoring, rather
than for each primitive refactoring in the sequence sepa-
rately [41], [102]. A third advantage of composite refac-
torings is that we can weaken the behaviour preservation
requirements of its primitive constituents. The primitive
refactorings in a sequence do not have to be behaviour pre-
serving, as long as the net effect of their composition is
behaviour preserving. This interesting idea is referred to
as transactional refactoring by Tokuda and Batory [28].
As an example, they show that the refactoring Dele-
gateMethodAcrossObjectBoundary is a sequence of
two primitive refactorings MoveMethodAcrossObject-
Boundary (which removes the method entirely from its
original class) and CreateMethod Accessor (which rein-
troduces the method to the original class and delegates its
execution to the moved method). While the net result of
applying both refactorings in sequence is behaviour pre-
serving, the primitive refactorings are not. If clients of
the original class reference the target method, the enabling
conditions of the move method refactoring will prevent the
method from being moved.

Similar to the use of composite refactorings, Ó Cinnéide
and Nixon [103] propose to use refactorings to introduce
design patterns by first splitting up the design pattern into
a sequence of minipatterns, and then applying a sequence
of corresponding minitransformations to introduce these
minipatterns. Each minitransformation is expressed as a
composition of primitive refactorings, using sequencing and
iteration constructs [13].

Tokuda and Batory [28] also tested the scalability of
refactorings on two non-trivial evolving software systems
written in C++, a mainstream object-oriented language.
The first system consisted of 11K lines of code, and the
code was refactored by executing 81 refactorings, modify-
ing in total 486 lines of source code. The second system
was modified by executing about 800 refactorings, resulting
in 14K lines of code change. Despite these large numbers,
the changes boiled down to 8 (respectively 20) conceptual
transformation steps that had to be carried out sequen-
tially.

A final aspect of scalability has to do with change propa-
gation [38]. Because changes tend to propagate throughout
the software, the application of a certain refactoring may
suggest or even require other refactorings to be applied as
well, in order to achieve the goal intended by the original
refactoring. Tourwé and Mens refer to this idea as cas-
caded refactorings [17], and provide tool support for it by
means of logic rules that are implemented on top of an
existing object-oriented IDE in Smalltalk. Like with com-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 11

posite refactorings, the main idea is to identify and specify
sequential dependencies between refactorings.

F. Language independence

A tool or formal model for refactoring should be suffi-
ciently abstract to be applicable to different programming
languages, but should also provide the necessary hooks to
add language-specific behaviour.

Lämmel [104] introduces the notion of generic program
refactoring as an initial proposal towards a language-
parametric framework that can be instantiated for a vari-
ety of different languages such as Java, Prolog, Haskell and
XML. The framework is implemented in the functional pro-
gramming language Haskell, and provides hot spots for the
language-specific ingredients for refactoring. The under-
lying idea is that functional strategies are used to specify
reusable parse tree traversal schemes.

Meta modelling is a useful technique to make refactoring
less dependent on the implementation language. Tichelaar
et al. [105] and Mens et al. [25] both propose a metamodel-
based approach for language-independent refactoring.

Ward and Bennett suggest to achieve language indepen-
dence by translating code written in some language to the
intermediate formal language WSL, where the code can
be restructured, refined and abstracted [42] . After trans-
formation, the modified code can be translated again to
the same language or to another language. This use of an
intermediate language representation makes the approach
language independent. For any new language, one only
needs to write an automatic translator to or from WSL.

Language independence is not only important between
different languages, but also if we have a language that is
an extension of another one. For example, although As-
pectJ is an extension of Java, existing Java refactorings
are not always valid in AspectJ, as they do not consider
the impact the modifications made by the refactoring have
on the AspectJ code. Conversely, there are also new refac-
torings that are needed to deal with the features in AspectJ
that do not occur in Java [92].

VII. Process support

Refactoring is an important activity in the software de-
velopment process. In this section, we discuss how refactor-
ing fits into the processes of software reengineering, agile
software development, and framework-based software de-
velopment.

A. Software reengineering

Refactoring naturally fits in the process of software
reengineering [9], the aim of which is to restructure legacy
software. In this process, refactoring is only the last stage,
and addresses the technical issue of (semi-)automatically
modifying the software to implement a new solution. The
more important problems, however, are to determine which
parts of the legacy software should be converted, and ex-
actly how to convert them, taking into account the con-
straints that reengineers are facing and the potential im-
pact of the suggested changes. Even trying to understand

what the legacy software does in the first place is already
a significant problem.

Unlike forward engineering, that is supported by a va-
riety of processes such as the spiral and waterfall models
of software development, no established process for reengi-
neering is available. Due to the absence of such a process,
reengineering patterns are the next best thing [9]. They
codify and record best practice knowledge about modifying
legacy software. They provide generic solutions based on
recurring reengineering problems that were encountered in
real-life situations. In this sense, they provide stable units
of expertise that can be consulted in any reengineering ef-
fort.

Refactoring also seems to fit well into a model-driven
reengineering process. One of the goals of model-driven
architectures (MDA) is to facilitate platform migration by
code generation from abstract models [106]. At first sight,
this reduces the refactoring effort for platform migration
substantially. However, code generation implies forward
engineering and introduces a fixed architecture which typ-
ically is not present in hand-written code. Refactoring can
be applied to transform the design of existing code into
a form that can be understood by the reverse engineering
facilities of an MDA tool. More research is required to de-
cide which refactorings can be applied where and when in
a model-driven reengineering process and what other tech-
niques are complementary.

B. Agile software development

Typically, major reengineering efforts are carried out
only when the software has already degraded so much that
it has turned into legacy code. In contrast, the agile soft-
ware development community, with eXtreme Programming
(XP) as its main proponent [107], suggests to support a
culture of continuous reengineering. They propose a pro-
cess where one develops and reengineers software in small
iterations: you develop a little (to implement the desired
behaviour), reengineer a little (to improve the structure),
develop a little more, and so on. Unfortunately, these short
iterative development cycles do not seem to fit very well in
a more classical software development process.

Refactoring is one of the cornerstones in the XP process.
Many object-oriented IDEs provide considerable support
for XP, using a combination of refactoring support and
unit testing, two core activities in XP. In [23], [24], the
relationship between testing and refactoring is explored in
more detail to address the practical problem that refac-
torings often invalidate tests. Whenever this occurs, Pipka
suggests to modify the tests first, and apply the refactoring
afterwards, to guarantee that we can still use the tests for
program verification [23]. van Deursen et al. [108] show
that refactorings of test code is different from refactoring
production code in two ways: (a) there is a distinct set of
bad smells involved, and (b) improving test code involves
additional test-specific refactorings.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 12

C. Framework-based or product line software development

Parallel application of refactorings often leads to unex-
pected evolution conflicts [102]. This issue is particularly
relevant for object-oriented application frameworks, where
the framework may be instantiated into many different soft-
ware systems, while the framework itself is also subject to
evolution. This implies that a refactoring of the framework
may lead to evolution conflicts in each of its instantiations
[102]. The same issue holds for software families or product
lines.

As an example, consider what happens when a devel-
oper extends the design of Figure 1 by implementing a spell
checking algorithm for documents. This requires him to de-
fine checkSpelling methods in all classes of the Document
class hierarchy, as well as a SpellChecker helper class. At
the same time, and independent of the first change, an-
other developer decides to refactor the design to introduce
the Visitor design pattern, as depicted in Figure 2. Both
changes need to be combined into a single design, that in-
cludes both the Visitor design pattern and the spell check-
ing algorithm. We can not simply merge both evolutions,
as this would lead to an inconsistent design: the print and
preview algorithms would use the Visitor design pattern,
whereas the spell checking algorithm does not. Tourwé
and Mens [109] propose logic metaprogramming as a way
to detect and resolve such problems.

VIII. Conclusions

This paper provides an extensive overview of existing
research in the domain of software refactoring and soft-
ware restructuring. We classified this research according
to five different criteria: the refactoring activities that are
supported; the specific techniques and formalisms that are
used to support these activities; the kinds of software arti-
facts that are being refactored; the important characteris-
tics that need to be taken into account when building refac-
toring tools; and the effect of refactoring on the software de-
velopment process. In each of these categories we indicated
important open issues that remain to be solved. In general,
we identified a need for formalisms, processes, methods and
tools that address refactoring in a more consistent, generic,
scalable and flexible way. Although commercial refactoring
tools begin to proliferate, research into software restructur-
ing and refactoring continues to be very active, and remains
essential to reveal and address the shortcomings of these
tools.

Acknowledgments

This research was funded by the FWO Project G.0452.03
“A formal foundation for software refactoring” and was car-
ried out in the context of the scientific networks “Formal
Foundations of Software Evolution” and “Research Links
to Explore and Advance Software Evolution” financed by
the Fund for Scientific Research - Flanders and the Eu-
ropean Science Foundation, respectively. We thank Jean-
Marc Jézéquel and the anonymous reviewers for their excel-
lent reviews that turned this paper into a far better paper

than it would have been otherwise.

References

[1] D. M. Coleman, D. Ash, B. Lowther, and P. W. Oman, “Us-
ing metrics to evaluate software system maintainability,” IEEE
Computer, vol. 27, no. 8, pp. 44–49, August 1994.

[2] T. Guimaraes, “Managing application program maintenance ex-
penditure,” Comm. ACM, vol. 26, no. 10, pp. 739–746, 1983.

[3] B. P. Lientz and E. B. Swanson, Software maintenance man-
agement: a study of the maintenance of computer application
software in 487 data processing organizations, Addison-Wesley,
1980.

[4] R. L. Glass, “Maintenance: Less is not more,” IEEE Software,
July/August 1998.

[5] R. S. Arnold, “An introduction to software restructuring,” in
Tutorial on Software Restructuring, Robert S. Arnold, Ed. IEEE,
1986.

[6] W. F. Opdyke, Refactoring: A Program Restructuring Aid in De-
signing Object-Oriented Application Frameworks, Ph.D. thesis,
University of Illinois at Urbana-Champaign, 1992.

[7] M. Fowler, Refactoring: Improving the Design of Existing Pro-
grams, Addison-Wesley, 1999.

[8] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: A taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17,
1990.

[9] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented
Reengineering Patterns, Morgan Kaufmann and DPunkt, 2002.

[10] R. Fanta and V. Rajlich, “Reengineering object-oriented code,”
in Proc. Int’l Conf. Software Maintenance. 1998, pp. 238–246,
IEEE Computer Society.

[11] R. Fanta and V. Rajlich, “Restructuring legacy C code into
C++,” in Proc. Int’l Conf. Software Maintenance. 1999, pp. 77–
85, IEEE Computer Society.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Languages and Sys-
tems, Addison-Wesley, 1994.

[13] M. Ó Cinnéide and P. Nixon, “Composite refactorings for Java
programs,” Tech. Rep., Department of Computer Science, Uni-
versity College Dublin, 2000.

[14] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin, “Au-
tomated support for program refactoring using invariants,” in
Proc. Int’l Conf. Software Maintenance. 2001, pp. 736–743, IEEE
Computer Society.

[15] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe and Kostas
Kontogiannis, “Advanced clone-analysis to support object-
oriented system refactoring,” in Proc. Working Conf. Reverse
Engineering. 2000, pp. 98-107, IEEE Computer Society.

[16] S. Ducasse, M. Rieger, and S. Demeyer, “A language indepen-
dent approach for detecting duplicated code,” in Proc. Int’l Conf.
Software Maintenance, 1999, pp. 109–118, IEEE Computer Soci-
ety.

[17] T. Tourwé and T. Mens, “Identifying refactoring opportunities
using logic meta programming,” in Proc. Int’l Conf. Software
Maintenance and Re-engineering. 2003, pp. 91–100, IEEE Com-
puter Society.

[18] E. van Emden and L. Moonen, “Java quality assurance by de-
tecting code smells,” in Proc. Working Conf. Reverse Engineer-
ing. 2002, pp. 97-108, IEEE Computer Society.

[19] T. Dudziak and J. Wloka, “Tool-supported discovery and refac-
toring of structural weaknesses in code,” M.S. thesis, Faculty of
Computer Science, Technical University of Berlin, February 2002.

[20] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics based
refactoring,” in Proc. European Conf. Software Maintenance and
Reengineering. 2001, pp. 30–38, IEEE Computer Society.

[21] M. Lanza and S. Ducasse, “Understanding software evolution
using a combination of software visualization and software met-
rics,” in Proc. Langages et Modèles á Objets.2002, L’objet, pp.

135–149, Éditions Hermes.
[22] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns, Sun

Microsystems Press, 2001.
[23] J. U. Pipka, “Refactoring in a “test first”-world,” in Proc.

3rd Int’l Conf. eXtreme Programming and Flexible Processes in
Software Engineering, 2002.

[24] A. van Deursen and L. Moonen, “The video store revisited –
thoughts on refactoring and testing,” in Proc. 3rd Int’l Conf.
eXtreme Programming and Flexible Processes in Software Engi-
neering, 2002, pp. 71–76.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 13

[25] T. Mens, S. Demeyer, and D. Janssens, “Formalising behaviour
preserving program transformations,” in Graph Transformation.
2002, vol. 2505 of Lecture Notes in Computer Science, pp. 286–
301, Springer-Verlag.

[26] F. Tip, A. Kiezun, D. Bäumer, “Refactoring for generalization
using type constraints,” in Proc. SIGPLAN Conf. Object-oriented
programming, systems, languages, and applications, 2003, pp. 13-
26, ACM.

[27] M. Proietti and A. Pettorossi, “Semantics preserving transfor-
mation rules for Prolog,” in Proc. Symp. Partial evaluation and
semantics-based program evaluation, 1991, vol. 26(9), pp. 274–
284.

[28] L. Tokuda and D. S. Batory, “Evolving object-oriented designs
with refactorings,” Automated Software Engineering, vol. 8, no.
1, pp. 89–120, 2001.

[29] D. Sands, “Total correctness by local improvement in the trans-
formation of functional programs,” Trans. Programming Lan-
guages and Systems, vol. 18, no. 2, pp. 175–234, March 1996,
ACM.

[30] S. Demeyer, “Maintainability versus performance: What’s the
effect of introducing polymorphism?,” Tech. Rep., Lab on Reengi-
neering, Universiteit Antwerpen, Belgium, 2002.

[31] Y. Kataoka, T. Imai, H. Andou and T. Fukaya, “A quantitative
evaluation of maintainability enhancement by refactoring,” in
Proc. Int’l Conf. Software Maintenance. 2002, pp. 576-585, IEEE
Computer Society.

[32] L. Tahvildari and K. Kontogiannis, “A methodology for devel-
oping transformations using the maintainability soft-goal graph,”
in Proc. Working Conf. Reverse Engineering. 2002, pp. 77–86,
IEEE Computer Society.

[33] L. Tahvildari and K. Kontogiannis, “A metric-based approach
to enhance design quality through meta-pattern transformations,”
in Proc. European Conf. Software Maintenance and Reengineer-
ing. 2003, pp. 183–192, IEEE Computer Society.

[34] J. Grundy, J. Hosking, and W. Mugridge, “Inconsistency man-
agement for multiple-view software development environments”,
Trans. Software Engineering, vol. 24, no. 11, pp. 960-981, 1998.

[35] B.Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging incon-
sistency in software development”, IEEE Computer, vol. 33, no.
4, pp. 24-29, 2000.

[36] G. Spanoudakis and A. Zisman, “Inconsistency management in
software engineering: Survey and open research issues”, Handbook
of Software Engineering and Knowledge Engineering, vol. 1, pp.
24-29, 2001.

[37] P. Bottoni, F. Parisi-Presicce, and G. Taentzer, “Coordinated
distributed diagram transformation for software evolution,” Elec-
tronic Notes in Theoretical Computer Science, vol. 72, no. 4,
2002.

[38] V. Rajlich, “A model for change propagation based on graph
rewriting,” in Proc. Int’l Conf. Software Maintenance. 1997, pp.
84–91, IEEE Computer Society.

[39] R. Van Der Straeten, J. Simmonds, T. Mens, and V. Jonckers,
“Using description logic to maintain consistency between UML
models,” in Proc. UML 2003. 2003, vol. 2863 of Lecture Notes in
Computer Science, pp. 326–340, Springer-Verlag.

[40] J. Banerjee and W. Kim, “Semantics and implementation of
schema evolution in object-oriented databases,” in Proc. SIG-
MOD Conf., 1987, ACM.

[41] Don Roberts, Practical Analysis for Refactoring, Ph.D. thesis,
University of Illinois at Urbana-Champaign, 1999.

[42] M. P. Ward and K. H. Bennett, “Formal methods to aid the
evolution of software,” Int’l Journal of Software Engineering and
Knowledge Engineering, vol. 5, no. 1, pp. 25–47, 1995.

[43] Reiko Heckel, “Algebraic graph transformations with application
conditions,” M.S. thesis, TU Berlin, 1995.

[44] D. Roberts, J. Brant, and R. E. Johnson, “A refactoring tool for
Smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4,
pp. 253–263, 1997.

[45] A. Habel, R. Heckel, and G. Täntzer, “Graph Grammars with
Negative Application Conditions,” Fundamenta Informaticae,
vol. 26 no. 3,4, pp. 287313, June 1996.

[46] N. Van Eetvelde and D. Janssens, “A hierarchical program rep-
resentation for refactoring,” in Proc. of UniGra’03 Workshop,
2003.

[47] M. Weiser, “Program slicing,” Trans. Software Engineering,
vol. 10, no. 4, pp. 352–357, 1984.

[48] F. Lanubile and G. Visaggio, “Extracting reusable functions by

flow graph-based program slicing,” Trans. Software Engineering,
vol. 23, no. 4, pp. 246–258, April 1997.

[49] A. Lakhotia and J.-C. Deprez, “Restructuring programs by tuck-
ing statements into functions,” in Special Issue on Program Slic-
ing, vol. 40 of Information and Software Technology, pp. 677–689.
Elsevier, 1998.

[50] R. Komondoor and S. Horwitz, “Semantics-preserving proce-
dure extraction,” Tech. Rep., Computer Sciences Department,
University of Wisconsin-Madison, 2000.

[51] L. Larsen and M.J. Harrold. “Slicing Object-Oriented Software,”
in Proc. Int’l Conf. Software Engineering, 1996, pp. 495-505,
ACM.

[52] B. Ganter and R. Wille, Formal Concept Analysis: Mathemati-
cal Foundations, Springer-Verlag, 1999.

[53] G. Snelting and F. Tip, “Reengineering class hierarchies using
concept analysis,” in Proc. Foundations of Software Engineering.
1998, vol. 23, no. 6 of SIGSOFT Software Engineering Notes, pp.
99-110, ACM.

[54] P. Tonella, “Concept analysis for module restructuring,” Trans.
Software Engineering, vol. 27, no. 4, pp. 351–363, April 2001.

[55] A. van Deursen and T. Kuipers, “Identifying objects using clus-
ter and concept analysis,” in Proc. 21st Int’l Conf. Software
Engineering. 1999, pp. 246-255, ACM Press.

[56] J. Philipps and B. Rumpe, “Roots of refactoring,” in Proc. 10th
OOPSLA Workshop on Behavioral Semantics. 2001, Northeast-
ern University, Tampa Bay, Florida, USA.

[57] N. Wirth, “Program development by stepwise refinement,”
Comm. ACM, vol. 14, pp. 221–227, 1971.

[58] R.-J. Back, “Correctness preserving program refinements,”
Tech. Rep. Mathematical Centre Tracts #131, Mathematisch
Centrum Amsterdam, 1980.

[59] J. Philipps and B. Rumpe, “Refinement of information flow ar-
chitectures,” in Proc. ICFEM’97. 1997, IEEE Computer Society.

[60] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings
via change metrics,” in Proc. Int’l Conf. OOPSLA 2000. 2000,
vol. 35, no. 10 of SIGPLAN Notices, pp. 166–177, ACM.

[61] D. Coleman, P. Arnold, S. Bdoff, H. Gilchrist, F. Hayes, and
P. Jeremaes, Object-oriented Development: the Fusion method,
Prentice Hall, Englewood Cliffs, NJ, 1994.

[62] W. G. Griswold, M. I. Chen, R. W. Bowdidge, and J. David
Morgenthaler, “Tool support for planning the restructuring of
data abstractions in large systems,” in Proc. SIGSOFT Symp.
Foundations of Software Engineering. 1996, ACM.

[63] D. Gupta, P. Jalote, and G. Barua, “A formal framework for
on-line software version change,” Trans. Software Engineering,
vol. 22, no. 2, pp. 120–131, February 1996.

[64] I. Moore, “Automatic inheritance hierarchy restructuring and
method refactoring,” in Proc. Int’l Conf. OOPSLA ’96. 1996,
SIGPLAN Notices, pp. 235–250, ACM.

[65] R. E. Mortimer and K. H. Bennett, “Maintenance and abstrac-
tion of program data using formal transformations,” in Proc.
Int’l Conf. on Software Maintenance, 1996, pp. 301–311, IEEE
Computer Society.

[66] P. L. Bergstein, “Object-preserving class transformations,” SIG-
PLAN Notices, vol. 26, no. 11, pp. 299–313, November 1991,
ACM.

[67] P. L. Bergstein, “Maintenance of object-oriented systems during
structural evolution,” Theory and Practice of Object Systems, vol.
3, no. 3, pp. 185–212, 1991.

[68] S. H. Hwang, Y. Tsujino, and N. Tokura, “A reorganization
framework of the object-oriented class hierarchy,” in Proc. Asia
Pacific Conf. Software Engineering. 1995, pp. 117–126, IEEE
Computer Society.

[69] W. L. Hürsch and L. M. Seiter, “Automating the evolution of
object-oriented systems,” in Proc. ISOTAS ’96, 1996, pp. 2–21.

[70] H. Tamaki and T. Sato, “Unfold/Fold transformation of logic
programs,” in Proc. Int’l Conf. Logic Programming, 1984, pp.
127–138.

[71] T. Kawamura and T. Kanamori, “Preservation of stronger equiv-
alence in unfold/fold logic program transformation,” in Proc. Int’l
Conf. Fifth Generation Computer Systems, 1988, pp. 413–422.

[72] N. Jones and A. Mycroft, “Stepwise development of operational
and denotational semantics for Prolog,” in Proc. Int’l Symp. Logic
Programming, 1984, pp. 289–298.

[73] F. Bodin, “Sage++: an object-oriented toolkit and class library
for building Fortran and C++ restructuring tools,” in Proc. Conf.
Object-Oriented Numerics, 1994, Sunriver, Oregon.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 2004 14

[74] C. T. H. Everaars, F. Arbab, and F. J. Burger, “Restructuring
sequential Fortran code into a parallel/distributed application,”
in Proc. Int’l Conf. Software Maintenance. 1996, pp. 13–22, IEEE
Computer Society.

[75] J. C. Miller and B. M. Strauss, “Implications of automatic re-
structuring of Cobol,” SIGPLAN Notices, vol. 22, pp. 76–82,
June 1987, ACM.

[76] T. J. Harmer, P. J. McParland, and J. M. Boyle, “Us-
ing knowledge-based transformations to reverse-engineer COBOL
programs,” in Proc. Conf. Knowledge Based Software Engineer-
ing. 1996, pp. 114–123, IEEE Computer Society.

[77] A. Garrido and R. Johnson, “Challenges of refactoring C pro-
grams,” in Proc. Int’l Workshop Principles of Software Evolution.
2002, Orlando, Florida.

[78] M. Vittek, “Refactoring browser with preprocessor,” in Proc.
European Conf. Software Maintenance and Reengineering. 2003,
pp. 101-110, IEEE Computer Society.

[79] W. G. Griswold and D. Notkin, “Automated assistance for pro-
gram restructuring,” Trans. Software Engineering and Method-
ology, vol. 2, no. 3, pp. 228–269, July 1993, ACM.

[80] A. M. Leitão, “A formal pattern language for refactoring of Lisp
programs,” in Proc. European Conf. Software Maintenance and
Reengineering. 2002, pp. 186–192, IEEE Computer Society.

[81] F. Muñoz “A logic metaprogramming framework for supporting
the refactoring process,” M.S. thesis, Vrije Universiteit Brussel,
September 2003.

[82] R. Lämmel, “Reuse by program transformation,” Functional
Programming Trends, 1999, Selected papers from the 1st Scottish
functional programming workshop.

[83] H. Li, S. Thompson and C. Reinke, “Tool support for refactoring
functional programs,” in Proc. SIGPLAN workshop on Haskell,
pp. 27-38, 2003, ACM.

[84] A.Pettorossi and M. Proietti, “Rules and strategies for trans-
forming functional and logic programs,” Computing Surveys, vol.
28, no. 2, pp. 360–414, June 1996, ACM.

[85] A. Power and L. Sterling, “A notion of map between logic pro-
grams,” in Proc. Int’l Conf. Logic Programming. 1990, pp. 390–
404, MIT.

[86] J. Farrell, “Make bad code good – refactor broken Java code for
fun and profit,” JavaWorld, March 2001.

[87] R. Najjar, S. Counsell, G. Loizou, and K. Mannock, “The role
of constructors in the context of refactoring large-scale object-
oriented systems,” in Proc. European Conf. Software Mainte-
nance and Reengineering. 2003, pp. 111-122, IEEE Computer So-
ciety.

[88] T. Genssler, B. Mohr, B. Schulz, and W. Zimmer, “On the com-
puter aided introduction of design patterns into object-oriented
systems,” in Proc. Conf. TOOLS. 1998, IEEE Computer Society.

[89] W. F. Opdyke, “Refactoring C++ programs,” Tech. Rep., Lu-
cent Technologies/ Bell Labs, 1999.

[90] W. Scherlis, “Systematic change of data representation: pro-
gram manipulations and case study,” in Proc. ESOP’98, 1998.

[91] L. Tokuda and D. S. Batory, “Automated software evolution
via design pattern transformations,” in Proc. Int’l Symp. Applied
Corporate Computing, October 1995.

[92] P. Borba and S. Soares, “Refactoring and code generation tools
for AspectJ,” in OOPSLA 2002 Workshop on Tools for Aspect-
Oriented Software Development, November 2002, Lecture Notes
in Computer Science.

[93] D. Astels, “Refactoring with UML,” in Proc. Int’l Conf. eX-
treme Programming and Flexible Processes in Software Engineer-
ing, 2002, pp. 67–70, Alghero, Sardinia, Italy.

[94] G. Sunyé, D. Pollet, Y. LeTraon, and J.-M. Jézéquel, “Refactor-
ing UML models,” in Proc. UML 2001. 2001, vol. 2185 of Lecture
Notes in Computer Science, pp. 134–138, Springer-Verlag.

[95] M. Boger, T. Sturm, and P. Fragemann, “Refactoring browser
for UML,” in Proc. Int’l Conf. on eXtreme Programming and
Flexible Processes in Software Engineering, 2002, pp. 77–81, Al-
ghero, Sardinia, Italy.

[96] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer, “Towards
automating source consistent UML refactorings,” in Proc. UML
2003. 2003, vol. 2863 of Lecture Notes in Computer Science, pp.
144–158, Springer-Verlag.

[97] J. H. Jahnke and A. Zündorf, “Rewriting poor design patterns
by good design patterns,” in Proc. ESEC/FSE ’97 Workshop
on Object-Oriented Reengineering. 1997, Technical Report TUV-
1841-97-10 Technical University of Vienna.

[98] A. Russo, B. Nuseibeh, and J. Kramer, “Restructuring require-
ments specifications for managing inconsistency and change: A
case study,” in Proc. Int’l Conf. Requirements Engineering, 1998,
pp. 51-61, Colorado Spring, USA.

[99] E. Casais, “Automatic reorganization of object-oriented hierar-
chies: a case study,” Object Oriented Systems, vol. 1, pp. 95–115,
1994.

[100] T. Tourwé and W. De Meuter, “Optimizing Object-Oriented
Languages Through Architectural Transformations,” in Proc.
Int’l Conf. Compiler Construction, 1999.

[101] F. W. Callis, “Problems with automatic restructurers,” SIG-
PLAN Notices, vol. 23, pp. 13–21, March 1988, ACM.

[102] T. Mens, A Formal Foundation for Object-Oriented Software
Evolution, Ph.D. thesis, Department of Computer Science, Vrije
Universiteit Brussel, Belgium, September 1999.

[103] M. Ó Cinnéide and P. Nixon, “A methodology for the au-
tomated introduction of design patterns,” in Proc. Int’l Conf.
Software Maintenance. 1999, pp. 463-474, IEEE Computer Soci-
ety.

[104] R. Lämmel, “Towards generic refactoring,” in Proc. SIGPLAN
Workshop on Rule-Based Programming. 2002, ACM.

[105] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A
meta-model for language-independent refactoring,” in Proc. Int’l
Symp. Principles of Software Evolution. 2000, pp. 157–169, IEEE
Computer Society.

[106] C. Atkinson and T. Kühne, “The role of meta-modeling in
MDA,” in Proc. UML 2002 Workshop on Software Model Engi-
neering, October 2002, pp. 67–70, Dresden, Germany.

[107] K. Beck, Extreme Programming Explained: Embrace Change,
Addison Wesley, 2000.

[108] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok,
“Refactoring test code,” in Extreme Programming Perspectives,
M. Marchesi, Ed., 2001, pp. 92-95, Addison-Wesley, 2002.

[109] T. Mens and T. Tourwé, “A declarative evolution framework
for object-oriented design patterns,” in Proc. Int’l Conf. Software
Maintenance. 2001, pp. 570–579, IEEE Computer Society.

[110] P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and
F. Rossi, Handbook of Graph Grammars and Graph Transforma-
tion, chapter Concurrent Semantics of Algebraic Graph Transfor-
mations, pp. 107–188, World scientific, 1999.

[111] R. Heckel, J. Malte Küster, and G. Taentzer, “Confluence of
typed attributed graph transformation systems,” in Graph Trans-
formation. 2002, vol. 2505 of Lecture Notes in Computer Science,
pp. 161–176, Springer-Verlag,

