
Automated Composition of
Refactorings
Composing the Extract and Move Method refactorings in
Eclipse

Erlend Kristiansen
Master’s Thesis Spring 2014

Abstract

Remove all todos (including list) before delivery/printing!!!
Can be done by removing “draft” from documentclass.
Write abstract

i

ii

Contents

1 What is Refactoring? 1
1.1 Defining refactoring . 1
1.2 The etymology of ’refactoring’ 2
1.3 Motivation – Why people refactor 3
1.4 The magical number seven . 4
1.5 Notable contributions to the refactoring literature 5
1.6 Tool support (for Java) . 6
1.7 The relation to design patterns 7
1.8 The impact on software quality 9

1.8.1 What is software quality? 9
1.8.2 The impact on performance 9

1.9 Composite refactorings . 10
1.10 Manual vs. automated refactorings 10
1.11 Correctness of refactorings . 11
1.12 Refactoring and the importance of testing 12

1.12.1 Testing the code from correctness section 13

2 The Project 15
2.1 Project description . 15
2.2 The primitive refactorings . 15

2.2.1 The Extract Method refactoring 15
2.2.2 The Move Method refactoring 16

2.3 The Extract and Move Method refactoring 17
2.4 Research questions . 17
2.5 Choosing the target language 18
2.6 Choosing the tools . 18

3 Refactorings in Eclipse JDT: Design, Shortcomings and
Wishful Thinking 21
3.1 Design . 21

3.1.1 The Language Toolkit 21
3.2 Shortcomings . 23

3.2.1 Absence of Generics in Eclipse Source Code 23
3.2.2 Composite Refactorings Will Not Appear as Atomic

Actions . 23
3.3 Wishful Thinking . 24

iii

4 Composite Refactorings in Eclipse 25
4.1 A Simple Ad Hoc Model . 25

4.1.1 A typical RefaktorChanger 25
4.2 The Extract and Move Method Refactoring 25

4.2.1 The Building Blocks 25
4.2.2 The ExtractAndMoveMethodChanger 26
4.2.3 The SearchBasedExtractAndMoveMethodChanger . . 29
4.2.4 The Prefix Class . 32
4.2.5 The PrefixSet Class 32
4.2.6 Hacking the Refactoring Undo History 33

5 Analyzing Source Code in Eclipse 35
5.1 The Java model . 35
5.2 The Abstract Syntax Tree . 36

5.2.1 The AST in Eclipse 38
5.3 The ASTVisitor . 39
5.4 Property collectors . 41

5.4.1 The PrefixesCollector 41
5.4.2 The UnfixesCollector 42
5.4.3 The ContainsReturnStatementCollector 43
5.4.4 The LastStatementCollector 43

5.5 Checkers . 43
5.5.1 The CallToProtectedOrPackagePrivateMethodChecker 44
5.5.2 The InstantiationOfNonStaticInnerClassChecker . . . 44
5.5.3 The EnclosingInstanceReferenceChecker 45
5.5.4 The ReturnStatementsChecker 45
5.5.5 The AmbiguousReturnValueChecker 47
5.5.6 The IllegalStatementsChecker 47

6 Benchmarking 49
6.1 The benchmark setup . 49

6.1.1 The ProjectImporter 49
6.2 Statistics . 50

6.2.1 AspectJ . 50
6.2.2 The Statistics class . 50
6.2.3 Advices . 51

6.3 Optimizations . 51
6.3.1 Caching . 51
6.3.2 Memento . 53

7 Technicalities 55
7.1 Source code organization . 55

7.1.1 The no.uio.ifi.refaktor project 56
7.2 Continuous integration . 58

7.2.1 Problems with AspectJ 58

iv

8 Methodology 61
8.1 Evolutionary design . 61
8.2 Test-driven development . 61
8.3 Continuous integration . 62

9 Eclipse Bugs Found 63
9.1 Eclipse bug 420726: Code is broken when moving a method

that is assigning to the parameter that is also the move
destination . 63
9.1.1 The bug . 63
9.1.2 The solution . 63

9.2 Eclipse bug 429416: IAE when moving method from
anonymous class . 63
9.2.1 The bug . 63
9.2.2 How I solved the problem 64

9.3 Eclipse bug 429954: Extracting statement with reference to
local type breaks code . 64
9.3.1 The bug . 64
9.3.2 Actions taken . 65

10 Conclusions and Future Work 67
10.1 Future work . 67

11 Related Work 69
11.1 The compositional paradigm of refactoring 69

v

vi

List of Figures

1.1 The Extract Superclass refactoring, with united interfaces. . . 11

5.1 The Java model of Eclipse. “{ SomeElement }*” means
SomeElement zero or more times. For recursive structures,
“...” is used. 36

5.2 Interrupted compilation process. (Full compilation process
borrowed from Compiler construction: principles and practice by
Kenneth C. Louden [Lou97].) . 37

5.3 The abstract syntax tree for the expression (5 + 7) * 2. . . 38
5.4 The format of the abstract syntax tree in Eclipse. 39
5.5 The Visitor Pattern. 40

vii

viii

List of Tables

5.1 The elements of the Java Model. Taken from http://www.vogella.
com/tutorials/EclipseJDT/article.html 35

ix

http://www.vogella.com/tutorials/EclipseJDT/article.html
http://www.vogella.com/tutorials/EclipseJDT/article.html

x

Preface

The discussions in this report must be seen in the context of object oriented
programming languages, and Java in particular, since that is the language
in which most of the examples will be given. All though the techniques
discussed may be applicable to languages from other paradigms, they will
not be the subject of this report.

xi

xii

Chapter 1

What is Refactoring?

This question is best answered by first defining the concept of a refactoring,
what it is to refactor, and then discuss what aspects of programming make
people want to refactor their code.

1.1 Defining refactoring
Martin Fowler, in his classic book on refactoring [Fow99], defines a
refactoring like this:

Refactoring (noun): a change made to the internal structure1 of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]

This definition assigns additional meaning to the word refactoring, beyond
the composition of the prefix re-, usually meaning something like “again”
or “anew”, and the word factoring, that can mean to isolate the factors
of something. Here a factor would be close to the mathematical definition
of something that divides a quantity, without leaving a remainder. Fowler
is mixing the motivation behind refactoring into his definition. Instead it
could be more refined, formed to only consider themechanical and behavioral
aspects of refactoring. That is to factor the program again, putting it
together in a different way than before, while preserving the behavior of
the program. An alternative definition could then be:

Definition. A refactoring is a transformation done to a program without
altering its external behavior.

From this we can conclude that a refactoring primarily changes how the
code of a program is perceived by the programmer, and not the behavior
experienced by any user of the program. Although the logical meaning is
preserved, such changes could potentially alter the program’s behavior when
it comes to performance gain or -penalties. So any logic depending on the
performance of a program could make the program behave differently after
a refactoring.

1The structure observable by the programmer.

1

In the extreme case one could argue that software obfuscation is
refactoring. It is often used to protect proprietary software. It restrains
uninvited viewers, so they have a hard time analyzing code that they are
not supposed to know how works. This could be a problem when using a
language that is possible to decompile, such as Java.

Obfuscation could be done composing many, more or less randomly
chosen, refactorings. Then the question arises whether it can be called
a composite refactoring or not (see section 1.9 on page 10)? The answer
is not obvious. First, there is no way to describe the mechanics of
software obfuscation, because there are infinitely many ways to do that.
Second, obfuscation can be thought of as one operation: Either the code is
obfuscated, or it is not. Third, it makes no sense to call software obfuscation
a refactoring, since it holds different meaning to different people.

This last point is important, since one of the motivations behind defining
different refactorings, is to establish a vocabulary for software professionals to
use when reasoning about and discussing programs, similar to the motivation
behind design patterns [Gam+95].

1.2 The etymology of ’refactoring’
It is a little difficult to pinpoint the exact origin of the word “refactoring”,
as it seems to have evolved as part of a colloquial terminology, more than a
scientific term. There is no authoritative source for a formal definition of it.

According to Martin Fowler [Fow03], there may also be more than one
origin of the word. The most well-known source, when it comes to the origin
of refactoring, is the Smalltalk1 community and their infamous Refactoring
Browser2 described in the article A Refactoring Tool for Smalltalk [RBJ97],
published in 1997. Allegedly [Fow03], the metaphor of factoring programs
was also present in the Forth1 community, and the word “refactoring” is
mentioned in a book by Leo Brodie, called Thinking Forth [Bro04], first
published in 19843. The exact word is only printed one place [Bro04, p. 232],
but the term factoring is prominent in the book, that also contains a whole
chapter dedicated to (re)factoring, and how to keep the (Forth) code clean
and maintainable.

. . . good factoring technique is perhaps the most important skill
for a Forth programmer. [Bro04, p. 172]

Brodie also express what factoring means to him:

Factoring means organizing code into useful fragments. To make
a fragment useful, you often must separate reusable parts from

1Programming language
2http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html
3Thinking Forth was first published in 1984 by the Forth Interest Group. Then it was

reprinted in 1994 with minor typographical corrections, before it was transcribed into an
electronic edition typeset in LATEX and published under a Creative Commons licence in
2004. The edition cited here is the 2004 edition, but the content should essentially be as
in 1984.

2

http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html

non-reusable parts. The reusable parts become new definitions.
The non-reusable parts become arguments or parameters to the
definitions. [Bro04, p. 172]

Fowler claims that the usage of the word refactoring did not pass between
the Forth and Smalltalk communities, but that it emerged independently in
each of the communities.

1.3 Motivation – Why people refactor
There are many reasons why people want to refactor their programs. They
can for instance do it to remove duplication, break up long methods or to
introduce design patterns into their software systems. The shared trait for
all these are that peoples’ intentions are to make their programs better, in
some sense. But what aspects of their programs are becoming improved?

As just mentioned, people often refactor to get rid of duplication. They
are moving identical or similar code into methods, and are pushing methods
up or down in their class hierarchies. They are making template methods
for overlapping algorithms/functionality, and so on. It is all about gathering
what belongs together and putting it all in one place. The resulting code
is then easier to maintain. When removing the implicit coupling1 between
code snippets, the location of a bug is limited to only one place, and new
functionality need only to be added to this one place, instead of a number
of places people might not even remember.

A problem you often encounter when programming, is that a program
contains a lot of long and hard-to-grasp methods. It can then help to break
the methods into smaller ones, using the Extract Method refactoring [Fow99].
Then you may discover something about a program that you were not aware
of before; revealing bugs you did not know about or could not find due to
the complex structure of your program. Making the methods smaller and Proof?Proof?
giving good names to the new ones clarifies the algorithms and enhances the
understandability of the program (see section 1.4 on the next page). This
makes refactoring an excellent method for exploring unknown program code,
or code that you had forgotten that you wrote.

Most primitive refactorings are simple, and usually involves moving code
around [Ker05]. The motivation behind them may first be revealed when
they are combined into larger — higher level — refactorings, called composite
refactorings (see section 1.9 on page 10). Often the goal of such a series of
refactorings is a design pattern. Thus the design can evolve throughout the
lifetime of a program, as opposed to designing up-front. It is all about being
structured and taking small steps to improve a program’s design.

Many software design pattern are aimed at lowering the coupling between
different classes and different layers of logic. One of the most famous
is perhaps the Model-View-Controller [Gam+95] pattern. It is aimed at

1When duplicating code, the duplicate pieces of code might not be coupled, apart from
representing the same functionality. So if this functionality is going to change, it might
need to change in more than one place, thus creating an implicit coupling between multiple
pieces of code.

3

lowering the coupling between the user interface, the business logic and the
data representation of a program. This also has the added benefit that
the business logic could much easier be the target of automated tests, thus
increasing the productivity in the software development process.

Another effect of refactoring is that with the increased separation of
concerns coming out of many refactorings, the performance can be improved.
When profiling programs, the problematic parts are narrowed down to
smaller parts of the code, which are easier to tune, and optimization can be
performed only where needed and in a more effective way [Fow99].

Last, but not least, and this should probably be the best reason to
refactor, is to refactor to facilitate a program change. If one has managed
to keep one’s code clean and tidy, and the code is not bloated with design
patterns that are not ever going to be needed, then some refactoring might
be needed to introduce a design pattern that is appropriate for the change
that is going to happen.

Refactoring program code — with a goal in mind — can give
the code itself more value. That is in the form of robustness to
bugs, understandability and maintainability. Having robust code is an
obvious advantage, but understandability and maintainability are both very
important aspects of software development. By incorporating refactoring in
the development process, bugs are found faster, new functionality is added
more easily and code is easier to understand by the next person exposed to
it, which might as well be the person who wrote it. The consequence of this,
is that refactoring can increase the average productivity of the development
process, and thus also add to the monetary value of a business in the long
run. The perspective on productivity and money should also be able to open
the eyes of the many nearsighted managers that seldom see beyond the next
milestone.

1.4 The magical number seven
The article The magical number seven, plus or minus two: some limits on
our capacity for processing information [Mil56] by George A. Miller, was
published in the journal Psychological Review in 1956. It presents evidence
that support that the capacity of the number of objects a human being can
hold in its working memory is roughly seven, plus or minus two objects.
This number varies a bit depending on the nature and complexity of the
objects, but is according to Miller “. . . never changing so much as to be
unrecognizable.”

Miller’s article culminates in the section called Recoding, a term he
borrows from communication theory. The central result in this section is
that by recoding information, the capacity of the amount of information
that a human can process at a time is increased. By recoding, Miller means
to group objects together in chunks, and give each chunk a new name that
it can be remembered by.

. . . recoding is an extremely powerful weapon for increasing the
amount of information that we can deal with. [Mil56, p. 95]

4

By organizing objects into patterns of ever growing depth, one can
memorize and process a much larger amount of data than if it were to
be represented as its basic pieces. This grouping and renaming is analogous
to how many refactorings work, by grouping pieces of code and give them
a new name. Examples are the fundamental Extract Method and Extract
Class refactorings [Fow99].

An example from the article addresses the problem of memorizing a
sequence of binary digits. The example presented here is a slightly modified
version of the one presented in the original article [Mil56], but it preserves the
essence of it. Let us say we have the following sequence of 16 binary digits:
“1010001001110011”. Most of us will have a hard time memorizing this
sequence by only reading it once or twice. Imagine if we instead translate it
to this sequence: “A273”. If you have a background from computer science,
it will be obvious that the latter sequence is the first sequence recoded to be
represented by digits in base 16. Most people should be able to memorize
this last sequence by only looking at it once.

Another result from the Miller article is that when the amount of
information a human must interpret increases, it is crucial that the
translation from one code to another must be almost automatic for the
subject to be able to remember the translation, before he is presented with
new information to recode. Thus learning and understanding how to best
organize certain kinds of data is essential to efficiently handle that kind of
data in the future. This is much like when humans learn to read. First they
must learn how to recognize letters. Then they can learn distinct words, and
later read sequences of words that form whole sentences. Eventually, most of
them will be able to read whole books and briefly retell the important parts
of its content. This suggest that the use of design patterns is a good idea
when reasoning about computer programs. With extensive use of design
patterns when creating complex program structures, one does not always
have to read whole classes of code to comprehend how they function, it may
be sufficient to only see the name of a class to almost fully understand its
responsibilities.

Our language is tremendously useful for repackaging material
into a few chunks rich in information. [Mil56, p. 95]

Without further evidence, these results at least indicate that refactoring
source code into smaller units with higher cohesion and, when needed,
introducing appropriate design patterns, should aid in the cause of creating
computer programs that are easier to maintain and have code that is easier
(and better) understood.

1.5 Notable contributions to the refactoring liter-
ature

Thinking Forth?

5

1992 William F. Opdyke submits his doctoral dissertation called Refac-
toring Object-Oriented Frameworks [Opd92]. This work defines a set
of refactorings, that are behavior preserving given that their precon-
ditions are met. The dissertation is focused on the automation of
refactorings.

1999 Martin Fowler et al.: Refactoring: Improving the Design of Existing
Code [Fow99]. This is maybe the most influential text on refactoring.
It bares similarities with Opdykes thesis [Opd92] in the way that it
provides a catalog of refactorings. But Fowler’s book is more about
the craft of refactoring, as he focuses on establishing a vocabulary
for refactoring, together with the mechanics of different refactorings
and when to perform them. His methodology is also founded on the
principles of test-driven development.

2005 Joshua Kerievsky: Refactoring to Patterns [Ker05]. This book is
heavily influenced by Fowler’s Refactoring [Fow99] and the “Gang of
Four” Design Patterns [Gam+95]. It is building on the refactoring
catalogue from Fowler’s book, but is trying to bridge the gap between
refactoring and design patterns by providing a series of higher-level
composite refactorings, that makes code evolve toward or away from
certain design patterns. The book is trying to build up the reader’s
intuition around why one would want to use a particular design
pattern, and not just how. The book is encouraging evolutionary
design (see section 1.7 on the next page).

1.6 Tool support (for Java)
This section will briefly compare the refactoring support of the three IDEs
Eclipse1, IntelliJ IDEA2 and NetBeans3. These are the most popular Java
IDEs [11].

All three IDEs provide support for the most useful refactorings, like the
different extract, move and rename refactorings. In fact, Java-targeted IDEs
are known for their good refactoring support, so this did not appear as a
big surprise.

The IDEs seem to have excellent support for the Extract Method refac-
toring, so at least they have all passed the first “refactoring rubicon” [Fow01;
VJ12].

Regarding theMove Method refactoring, the Eclipse and IntelliJ IDEs do
the job in very similar manners. In most situations they both do a satisfying
job by producing the expected outcome. But they do nothing to check that
the result does not break the semantics of the program (see section 1.11 on
page 11). The NetBeans IDE implements this refactoring in a somewhat
unsophisticated way. For starters, the refactoring’s default destination for
the move, is the same class as the method already resides in, although it

1http://www.eclipse.org/
2The IDE under comparison is the Community Edition, http://www.jetbrains.com/idea/
3https://netbeans.org/

6

http://www.eclipse.org/
http://www.jetbrains.com/idea/
https://netbeans.org/

refuses to perform the refactoring if chosen. But the worst part is, that if
moving the method f of the class C to the class X, it will break the code.
The result is shown in listing 1 on the current page.

public class C {
private X x;
...
public void f() {

x.m();
x.n();

}
}

public class X {
...
public void f(C c) {

c.x.m();
c.x.n();

}
}

Listing 1: Moving method f from C to X.

NetBeans will try to create code that call the methods m and n of X by
accessing them through c.x, where c is a parameter of type C that is added
the method f when it is moved. (This is seldom the desired outcome of this
refactoring, but ironically, this “feature” keeps NetBeans from breaking the
code in the example from section 1.11 on page 11.) If c.x for some reason
is inaccessible to X, as in this case, the refactoring breaks the code, and it
will not compile. NetBeans presents a preview of the refactoring outcome,
but the preview does not catch it if the IDE is about break the program.

The IDEs under investigation seem to have fairly good support for
primitive refactorings, but what about more complex ones, such as Extract
Class [Fow99]? IntelliJ handles this in a fairly good manner, although, in
the case of private methods, it leaves unused methods behind. These are
methods that delegate to a field with the type of the new class, but are
not used anywhere. Eclipse has added its own quirk to the Extract Class
refactoring, and only allows for fields to be moved to a new class, not
methods. This makes it effectively only extracting a data structure, and
calling it Extract Class is a little misleading. One would often be better off
with textual extract and paste than using the Extract Class refactoring in
Eclipse. When it comes to NetBeans, it does not even show an attempt on
providing this refactoring.

1.7 The relation to design patterns
Refactoring and design patterns have at least one thing in common, they
are both promoted by advocates of clean code [MC09] as fundamental tools
on the road to more maintainable and extendable source code.

Design patterns help you determine how to reorganize a design,
and they can reduce the amount of refactoring you need to do
later. [Gam+95, p. 353]

Although sometimes associated with over-engineering [Ker05; Fow99],
design patterns are in general assumed to be good for maintainability of

7

source code. That may be because many of them are designed to support
the open/closed principle of object-oriented programming. The principle was
first formulated by Bertrand Meyer, the creator of the Eiffel programming
language, like this: “Modules should be both open and closed.” [Mey88] It
has been popularized, with this as a common version:

Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification.1

Maintainability is often thought of as the ability to be able to introduce
new functionality without having to change too much of the old code. When
refactoring, the motivation is often to facilitate adding new functionality. It
is about factoring the old code in a way that makes the new functionality
being able to benefit from the functionality already residing in a software
system, without having to copy old code into new. Then, next time someone
shall add new functionality, it is less likely that the old code has to change.
Assuming that a design pattern is the best way to get rid of duplication
and assist in implementing new functionality, it is reasonable to conclude
that a design pattern often is the target of a series of refactorings. Having
a repertoire of design patterns can also help in knowing when and how to
refactor a program to make it reflect certain desired characteristics.

There is a natural relation between patterns and refactorings.
Patterns are where you want to be; refactorings are ways to get
there from somewhere else. [Fow99, p. 107]

This quote is wise in many contexts, but it is not always appropriate
to say “Patterns are where you want to be. . . ”. Sometimes, patterns are
where you want to be, but only because it will benefit your design. It is not
true that one should always try to incorporate as many design patterns as
possible into a program. It is not like they have intrinsic value. They only
add value to a system when they support its design. Otherwise, the use
of design patterns may only lead to a program that is more complex than
necessary.

The overuse of patterns tends to result from being patterns
happy. We are patterns happy when we become so enamored
of patterns that we simply must use them in our code. [Ker05,
p. 24]

This can easily happen when relying largely on up-front design. Then
it is natural, in the very beginning, to try to build in all the flexibility that
one believes will be necessary throughout the lifetime of a software system.
According to Joshua Kerievsky “That sounds reasonable — if you happen
to be psychic.” [Ker05, p. 1] He is advocating what he believes is a better
approach: To let software continually evolve. To start with a simple design

1See http://c2.com/cgi/wiki?OpenClosedPrinciple or https://en.wikipedia.org/wiki/
Open/closed_principle

8

http://c2.com/cgi/wiki?OpenClosedPrinciple
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Open/closed_principle

that meets today’s needs, and tackle future needs by refactoring to satisfy
them. He believes that this is a more economic approach than investing time
and money into a design that inevitably is going to change. By relying on
continuously refactoring a system, its design can be made simpler without
sacrificing flexibility. To be able to fully rely on this approach, it is of utter
importance to have a reliable suit of tests to lean on (see section 1.12 on
page 12). This makes the design process more natural and less characterized
by difficult decisions that has to be made before proceeding in the process,
and that is going to define a project for all of its unforeseeable future.

1.8 The impact on software quality

1.8.1 What is software quality?

The term software quality has many meanings. It all depends on the context
we put it in. If we look at it with the eyes of a software developer, it usually
means that the software is easily maintainable and testable, or in other
words, that it is well designed. This often correlates with the management
scale, where keeping the schedule and customer satisfaction is at the center.
From the customers point of view, in addition to good usability, performance
and lack of bugs is always appreciated, measurements that are also shared
by the software developer. (In addition, such things as good documentation
could be measured, but this is out of the scope of this document.)

1.8.2 The impact on performance

Refactoring certainly will make software go more slowly1, but
it also makes the software more amenable to performance
tuning. [Fow99, p. 69]

There is a common belief that refactoring compromises performance, due
to increased degree of indirection and that polymorphism is slower than
conditionals.

In a survey, Demeyer [Dem02] disproves this view in the case of
polymorphism. He did an experiment on, what he calls, “Transform Self
Type Checks” where you introduce a new polymorphic method and a new
class hierarchy to get rid of a class’ type checking of a “type attribute“.
He uses this kind of transformation to represent other ways of replacing
conditionals with polymorphism as well. The experiment is performed on
the C++ programming language and with three different compilers and
platforms. Demeyer concludes that, with compiler optimization turned on,
polymorphism beats middle to large sized if-statements and does as well
as case-statements. (In accordance with his hypothesis, due to similarities
between the way C++ handles polymorphism and case-statements.)

1With todays compiler optimization techniques and performance tuning of e.g. the
Java virtual machine, the penalties of object creation and method calls are debatable.

9

The interesting thing about performance is that if you analyze
most programs, you find that they waste most of their time in a
small fraction of the code. [Fow99, p. 70]

So, although an increased amount of method calls could potentially slow
down programs, one should avoid premature optimization and sacrificing
good design, leaving the performance tuning until after profiling the software
and having isolated the actual problem areas.

1.9 Composite refactorings
Generally, when thinking about refactoring, at the mechanical level, theremotivation,

examples, manual
vs automated?,
what about
refactoring in a
very large code
base?

motivation,
examples, manual
vs automated?,
what about
refactoring in a
very large code
base?

are essentially two kinds of refactorings. There are the primitive refactorings,
and the composite refactorings.

Definition. A primitive refactoring is a refactoring that cannot be
expressed in terms of other refactorings.

Examples are the Pull Up Field and Pull Up Method refactorings [Fow99],
that move members up in their class hierarchies.

Definition. A composite refactoring is a refactoring that can be expressed
in terms of two or more other refactorings.

An example of a composite refactoring is the Extract Superclass refactor-
ing [Fow99]. In its simplest form, it is composed of the previously described
primitive refactorings, in addition to the Pull Up Constructor Body refac-
toring [Fow99]. It works by creating an abstract superclass that the target
class(es) inherits from, then by applying Pull Up Field, Pull Up Method and
Pull Up Constructor Body on the members that are to be members of the
new superclass. If there are multiple classes in play, their interfaces may
need to be united with the help of some rename refactorings, before extract-
ing the superclass. For an overview of the Extract Superclass refactoring,
see fig. 1.1 on the facing page.

1.10 Manual vs. automated refactorings
Refactoring is something every programmer does, even if she does not known
the term refactoring. Every refinement of source code that does not alter the
program’s behavior is a refactoring. For small refactorings, such as Extract
Method, executing it manually is a manageable task, but is still prone to
errors. Getting it right the first time is not easy, considering the method
signature and all the other aspects of the refactoring that has to be in place.

Consider the renaming of classes, methods and fields. For complex
programs these refactorings are almost impossible to get right. Attacking
them with textual search and replace, or even regular expressions, will fall
short on these tasks. Then it is crucial to have proper tool support that
can perform them automatically. Tools that can parse source code and thus
have semantic knowledge about which occurrences of which names belong

10

Department

getTotalAnnualCost
getName
getHeadCount

Employee

getAnnualCost
getName
getId

Department

getAnnualCost
getHeadCount

Employee

getAnnualCost
getId

Party

getAnnualCost
getName

Figure 1.1: The Extract Superclass refactoring, with united interfaces.

to what construct in the program. For even trying to perform one of these
complex task manually, one would have to be very confident on the existing
test suite (see section 1.12 on the next page).

1.11 Correctness of refactorings

For automated refactorings to be truly useful, they must show a high degree
of behavior preservation. This last sentence might seem obvious, but there
are examples of refactorings in existing tools that break programs. In an
ideal world, every automated refactoring would be “complete”, in the sense
that it would never break a program. In an ideal world, every program
would also be free from bugs. In modern IDEs the implemented automated
refactorings are working for most cases, that is enough for making them
useful.

I will now present an example of a corner case where a program breaks
when a refactoring is applied. The example shows an Extract Method
refactoring followed by a Move Method refactoring that breaks a program
in both the Eclipse and IntelliJ IDEs1. The target and the destination for
the composed refactoring is shown in listing 2 on the next page. Note that
the method m(C c) of class X assigns to the field x of the argument c that
has type C.

The refactoring sequence works by extracting line 6 through 8 from the
original class C into a method f with the statements from those lines as its
method body (but with the comment left out, since it will no longer hold
any meaning). The method is then moved to the class X. The result is shown
in listing 3 on the following page.

Before the refactoring, the methods m and n of class X are called on

1The NetBeans IDE handles this particular situation without altering the program’s
behavior, mainly because its Move Method refactoring implementation is a bit flawed in
other ways (see section 1.6 on page 6).

11

1 // Refactoring target
2 public class C {
3 public X x = new X();
4

5 public void f() {
6 x.m(this);
7 // Not the same x
8 x.n();
9 }

10 }

// Method destination
public class X {
public void m(C c) {
c.x = new X();
// If m is called from
// c, then c.x no longer
// equals ’this’

}
public void n() {}

}

Listing 2: The target and the destination for the composition of the Extract
Method and Move Method refactorings.

different object instances (see line 6 and 8 of the original class C in listing 2).
After the refactoring, they are called on the same object, and the statement
on line 3 of class X (in listing 3) no longer has the desired effect in our
example. The method f of class C is now calling the method f of class X (see
line 5 of class C in listing 3), and the program now behaves different than
before.

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.f(this);
6 }
7 }

1 public class X {
2 public void m(C c) {
3 c.x = new X();
4 }
5 public void n() {}
6 // Extracted and
7 // moved method
8 public void f(C c) {
9 m(c);

10 n();
11 }
12 }

Listing 3: The result of the composed refactoring.

The bug introduced in the previous example is of such a nature1 that it
is very difficult to spot if the refactored code is not covered by tests. It does
not generate compilation errors, and will thus only result in a runtime error
or corrupted data, which might be hard to detect.

1.12 Refactoring and the importance of testing
If you want to refactor, the essential precondition is having solid
tests. [Fow99]

1Caused by aliasing. See https://en.wikipedia.org/wiki/Aliasing_(computing)

12

https://en.wikipedia.org/wiki/Aliasing_(computing)

When refactoring, there are roughly three classes of errors that can be
made. The first class of errors are the ones that make the code unable to
compile. These compile-time errors are of the nicer kind. They flash up at
the moment they are made (at least when using an IDE), and are usually
easy to fix. The second class are the runtime errors. Although they take
a bit longer to surface, they usually manifest after some time in an illegal
argument exception, null pointer exception or similar during the program
execution. These kind of errors are a bit harder to handle, but at least they
will show, eventually. Then there are the behavior-changing errors. These
errors are of the worst kind. They do not show up during compilation and
they do not turn on a blinking red light during runtime either. The program
can seem to work perfectly fine with them in play, but the business logic
can be damaged in ways that will only show up over time.

For discovering runtime errors and behavior changes when refactoring, it
is essential to have good test coverage. Testing in this context means writing
automated tests. Manual testing may have its uses, but when refactoring, it
is automated unit testing that dominate. For discovering behavior changes
it is especially important to have tests that cover potential problems, since
these kind of errors does not reveal themselves.

Unit testing is not a way to prove that a program is correct, but it is a
way to make you confident that it probably works as desired. In the context
of test-driven development (commonly known as TDD), the tests are even a
way to define how the program is supposed to work. It is then, by definition,
working if the tests are passing.

If the test coverage for a code base is perfect, then it should, theoretically,
be risk-free to perform refactorings on it. This is why automated tests and
refactoring are such a great match.

1.12.1 Testing the code from correctness section

The worst thing that can happen when refactoring is to introduce changes
to the behavior of a program, as in the example on section 1.11 on page 11.
This example may be trivial, but the essence is clear. The only problem
with the example is that it is not clear how to create automated tests for it,
without changing it in intrusive ways.

Unit tests, as they are known from the different xUnit frameworks
around, are only suitable to test the result of isolated operations. They
can not easily (if at all) observe the history of a program.

This problem is still open.

13

14

Chapter 2

The Project

2.1 Project description

The aim of this master’s project will be to explore the relationship between
the Extract Method and the Move Method refactorings. This will be done
by composing the two into a composite refactoring. The refactoring will be
called the Extract and Move Method refactoring.

The composition of the Extract Method and Move Method refactorings
springs naturally out of the need to move procedures closer to the data
they manipulate. This composed refactoring is not well described in the
literature, but it is implemented in at least one tool called CodeRush1, that
is an extension for MS Visual Studio2. In CodeRush it is called Extract
Method to Type3, but I choose to call it Extract and Move Method, since I
feel this better communicates which primitive refactorings it is composed of.

The project will consist of implementing the Extract and Move Method
refactoring, as well as executing it over a larger code base, as a case study.
To be able to execute the refactoring automatically, I have to make it analyze
code to determine the best selections to extract into new methods.

2.2 The primitive refactorings

The refactorings presented here are the primitive refactorings used in this
project. They are the abstract building blocks used by the Extract and Move
Method refactoring.

2.2.1 The Extract Method refactoring

The Extract Method refactoring is used to extract a fragment of code from
its context and into a new method. A call to the new method is inlined
where the fragment was before. It is used to break code into logical units,
with names that explain their purpose.

1https://help.devexpress.com/#CodeRush/CustomDocument3519
2http://www.visualstudio.com/
3https://help.devexpress.com/#CodeRush/CustomDocument6710

15

https://help.devexpress.com/#CodeRush/CustomDocument3519
http://www.visualstudio.com/
https://help.devexpress.com/#CodeRush/CustomDocument6710

An example of an Extract Method refactoring is shown in listing 4 on this
page. It shows a method containing calls to the methods foo and bar of a
type X. These statements are then extracted into the new method fooBar.

// Before
class C {
void method() {

X x = new X();
x.foo(); x.bar();

}
}

// After
class C {
void method() {
X x = new X();
fooBar(x);

}
void fooBar(X x) {
x.foo(); x.bar();

}
}

Listing 4: An example of an Extract Method refactoring.

2.2.2 The Move Method refactoring

The Move Method refactoring is used to move a method from one class to
another. This can be appropriate if the method is using more features of
another class than of the class which it is currently defined.

Listing 5 on the current page shows an example of this refactoring. Here
a method fooBar is moved from the class C to the class X.

// Before
class C {
void method() {
X x = new X();
fooBar(x);

}
void fooBar(X x) {
x.foo(); x.bar();

}
}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

// After
class C {
void method() {
X x = new X();
x.fooBar();

}
}

class X {
void fooBar() {
foo(); bar();

}
void foo(){/*...*/ }
void bar(){/*...*/ }

}

Listing 5: An example of a Move Method refactoring.

16

2.3 The Extract and Move Method refactoring

The Extract and Move Method refactoring is a composite refactoring
composed of the primitive Extract Method and Move Method refactorings.
The effect of this refactoring on source code is the same as when extracting
a method and moving it to another class. Conseptually, this is done without
an intermediate step. In practice, as we shall see later, an intermediate step
may be necessary.

An example of this composite refactoring is shown in listing 6 on this
page. The example joins the examples from listing 4 and listing 5. This
means that the selection consisting of the consecutive calls to the methods
foo and bar, is extracted into a new method fooBar located in the class X.

// Before
class C {
void method() {
X x = new X();
x.foo(); x.bar();

}
}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

// After
class C {
void method() {
X x = new X();
x.fooBar();

}
}

class X {
void fooBar() {
foo(); bar();

}
void foo(){/*...*/ }
void bar(){/*...*/ }

}

Listing 6: An example of the Extract and Move Method refactoring.

2.4 Research questions

The main question that I seek an answer to in this thesis is:

Is it possible to automate the analysis and execution of the
Extract and Move Method refactoring, and do so for all of the
code of a larger project?

The secondary questions will then be:

Can we do this efficiently? Can we automate the analysis and execution
of the refactoring so it can be run in a reasonable amount of time? And
what does reasonable mean in this context?

And, assuming the refactoring does in fact improve the quality of source
code:

17

How can the automation of the refactoring be helpful? What is
the usefullness of the refactoring in a software development setting? In what
parts of the development process can the refactoring play a role?

2.5 Choosing the target language
Choosing which programming language the code that shall be manipulated
shall be written in, is not a very difficult task. We choose to limit the possible
languages to the object-oriented programming languages, since most of the
terminology and literature regarding refactoring comes from the world of
object-oriented programming. In addition, the language must have existing
tool support for refactoring.

The Java programming language1 is the dominating language when
it comes to example code in the literature of refactoring, and is thus a
natural choice. Java is perhaps, currently the most influential programming
language in the world, with its Java Virtual Machine that runs on all of the
most popular architectures and also supports dozens of other programming
languages2, with Scala, Clojure and Groovy as the most prominent ones.
Java is currently the language that every other programming language is
compared against. It is also the primary programming language for the
author of this thesis.

2.6 Choosing the tools
When choosing a tool for manipulating Java, there are certain criteria that
have to be met. First of all, the tool should have some existing refactoring
support that this thesis can build upon. Secondly it should provide some
kind of framework for parsing and analyzing Java source code. Third,
it should itself be open source. This is both because of the need to be
able to browse the code for the existing refactorings that is contained in
the tool, and also because open source projects hold value in them selves.
Another important aspect to consider is that open source projects of a
certain size, usually has large communities of people connected to them,
that are committed to answering questions regarding the use and misuse of
the products, that to a large degree is made by the community itself.

There is a certain class of tools that meet these criteria, namely the
class of IDEs3. These are programs that is meant to support the whole
production cycle of a computer program, and the most popular IDEs that
support Java, generally have quite good refactoring support.

The main contenders for this thesis is the Eclipse IDE, with the Java
development tools (JDT), the IntelliJ IDEA Community Edition and the
NetBeans IDE (see section 1.6 on page 6). Eclipse and NetBeans are both
free, open source and community driven, while the IntelliJ IDEA has an
open sourced community edition that is free of charge, but also offer an

1https://www.java.com/
2They compile to java bytecode.
3Integrated Development Environment

18

https://www.java.com/

Ultimate Edition with an extended set of features, at additional cost. All
three IDEs supports adding plugins to extend their functionality and tools
that can be used to parse and analyze Java source code. But one of the
IDEs stand out as a favorite, and that is the Eclipse IDE. This is the most
popular [11] among them and seems to be de facto standard IDE for Java
development regardless of platform.

19

20

Chapter 3

Refactorings in Eclipse JDT:
Design, Shortcomings and
Wishful Thinking

This chapter will deal with some of the design behind refactoring support in
Eclipse, and the JDT in specific. After which it will follow a section about
shortcomings of the refactoring API in terms of composition of refactorings.
The chapter will be concluded with a section telling some of the ways the
implementation of refactorings in the JDT could have worked to facilitate
composition of refactorings.

3.1 Design

The refactoring world of Eclipse can in general be separated into two
parts: The language independent part and the part written for a specific
programming language – the language that is the target of the supported
refactorings. What about the

language specific
part?

What about the
language specific
part?3.1.1 The Language Toolkit

The Language Toolkit1, or LTK for short, is the framework that is used to
implement refactorings in Eclipse. It is language independent and provides
the abstractions of a refactoring and the change it generates, in the form of
the classes Refactoring2 and Change3.

There are also parts of the LTK that is concerned with user interaction,
but they will not be discussed here, since they are of little value to us and
our use of the framework. We are primarily interested in the parts that can
be automated.

1The content of this section is a mixture of written material from https:
//www.eclipse.org/articles/Article-LTK/ltk.html and http://www.eclipse.org/articles/article.
php?file=Article-Unleashing-the-Power-of-Refactoring/index.html, the LTK source code and
my own memory.

2org.eclipse.ltk.core.refactoring.Refactoring
3org.eclipse.ltk.core.refactoring.Change

21

https://www.eclipse.org/articles/Article-LTK/ltk.html
https://www.eclipse.org/articles/Article-LTK/ltk.html
http://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/index.html
http://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/index.html

The Refactoring Class

The abstract class Refactoring is the core of the LTK framework. Every
refactoring that is going to be supported by the LTK have to end up creating
an instance of one of its subclasses. The main responsibilities of subclasses
of Refactoring is to implement template methods for condition checking
(checkInitialConditions1 and checkFinalConditions2), in addition to
the createChange3 method that creates and returns an instance of the
Change class.

If the refactoring shall support that others participate in it when it is
executed, the refactoring has to be a processor-based refactoring4. It then
delegates to its given RefactoringProcessor5 for condition checking and
change creation. Participating in a refactoring can be useful in cases where
the changes done to programming source code affects other related resources
in the workspace. This can be names or paths in configuration files, or
maybe one would like to perform additional logging of changes done in the
workspace.

The Change Class

This class is the base class for objects that is responsible for performing the
actual workspace transformations in a refactoring. The main responsibilities
for its subclasses is to implement the perform6 and isValid7 methods. The
isValid method verifies that the change object is valid and thus can be
executed by calling its perform method. The perform method performs the
desired change and returns an undo change that can be executed to reverse
the effect of the transformation done by its originating change object.

Executing a Refactoring

The life cycle of a refactoring generally follows two steps after creation:
condition checking and change creation. By letting the refactoring object
be handled by a CheckConditionsOperation8 that in turn is handled by a
CreateChangeOperation9, it is assured that the change creation process is
managed in a proper manner.

The actual execution of a change object has to follow a detailed life
cycle. This life cycle is honored if the CreateChangeOperation is handled
by a PerformChangeOperation10. If also an undo manager11 is set for the
PerformChangeOperation, the undo change is added into the undo history.

1org.eclipse.ltk.core.refactoring.Refactoring#checkInitialConditions()
2org.eclipse.ltk.core.refactoring.Refactoring#checkFinalConditions()
3org.eclipse.ltk.core.refactoring.Refactoring#createChange()
4org.eclipse.ltk.core.refactoring.participants.ProcessorBasedRefactoring
5org.eclipse.ltk.core.refactoring.participants.RefactoringProcessor
6org.eclipse.ltk.core.refactoring.Change#perform()
7org.eclipse.ltk.core.refactoring.Change#isValid()
8org.eclipse.ltk.core.refactoring.CheckConditionsOperation
9org.eclipse.ltk.core.refactoring.CreateChangeOperation

10org.eclipse.ltk.core.refactoring.PerformChangeOperation
11org.eclipse.ltk.core.refactoring.IUndoManager

22

3.2 Shortcomings

This section is introduced naturally with a conclusion: The JDT refactoring
implementation does not facilitate composition of refactorings. This section refinerefine
will try to explain why, and also identify other shortcomings of both the
usability and the readability of the JDT refactoring source code.

I will begin at the end and work my way toward the composition part of
this section.

3.2.1 Absence of Generics in Eclipse Source Code

This section is not only concerning the JDT refactoring API, but also large
quantities of the Eclipse source code. The code shows a striking absence of
the Java language feature of generics. It is hard to read a class’ interface
when methods return objects or takes parameters of raw types such as List
or Map. This sometimes results in having to read a lot of source code to
understand what is going on, instead of relying on the available interfaces.
In addition, it results in a lot of ugly code, making the use of typecasting
more of a rule than an exception.

3.2.2 Composite Refactorings Will Not Appear as Atomic
Actions

Missing Flexibility from JDT Refactorings

The JDT refactorings are not made with composition of refactorings in mind.
When a JDT refactoring is executed, it assumes that all conditions for it to
be applied successfully can be found by reading source files that have been
persisted to disk. They can only operate on the actual source material,
and not (in-memory) copies thereof. This constitutes a major disadvantage
when trying to compose refactorings, since if an exception occurs in the
middle of a sequence of refactorings, it can leave the project in a state
where the composite refactoring was only partially executed. It makes it
hard to discard the changes done without monitoring and consulting the
undo manager, an approach that is not bullet proof.

Broken Undo History

When designing a composed refactoring that is to be performed as a sequence
of refactorings, you would like it to appear as a single change to the
workspace. This implies that you would also like to be able to undo all
the changes done by the refactoring in a single step. This is not the way it
appears when a sequence of JDT refactorings is executed. It leaves the undo
history filled up with individual undo actions corresponding to every single
JDT refactoring in the sequence. This problem is not trivial to handle in
Eclipse (see section 4.2.6 on page 33).

23

3.3 Wishful Thinking

???

24

Chapter 4

Composite Refactorings in
Eclipse

4.1 A Simple Ad Hoc Model
As pointed out in chapter 3 on page 21, the Eclipse JDT refactoring model
is not very well suited for making composite refactorings. Therefore a
simple model using changer objects (of type RefaktorChanger) is used as
an abstraction layer on top of the existing Eclipse refactorings, instead of
extending the Refactoring1 class.

The use of an additional abstraction layer is a deliberate choice. It is
due to the problem of creating a composite Change2 that can handle text
changes that interfere with each other. Thus, a RefaktorChanger may, or
may not, take advantage of one or more existing refactorings, but it is always
intended to make a change to the workspace.

4.1.1 A typical RefaktorChanger

The typical refaktor changer class has two responsibilities, checking
preconditions and executing the requested changes. This is not too different
from the responsibilities of an LTK refactoring, with the distinction that a
refaktor changer also executes the change, while an LTK refactoring is only
responsible for creating the object that can later be used to do the job.

Checking of preconditions is typically done by an Analyzer3. If the
preconditions validate, the upcoming changes are executed by an Executor4.

4.2 The Extract and Move Method Refactoring

4.2.1 The Building Blocks

This is a composite refactoring, and hence is built up using several primitive
refactorings. These basic building blocks are, as its name implies, the Extract

1org.eclipse.ltk.core.refactoring.Refactoring
2org.eclipse.ltk.core.refactoring.Change
3no.uio.ifi.refaktor.analyze.analyzers.Analyzer
4no.uio.ifi.refaktor.change.executors.Executor

25

Method refactoring [Fow99] and the Move Method refactoring [Fow99]. In
Eclipse, the implementations of these refactorings are found in the classes
ExtractMethodRefactoring1 and MoveInstanceMethodProcessor2, where
the last class is designed to be used together with the processor-based
MoveRefactoring3.

The ExtractMethodRefactoring Class

This class is quite simple in its use. The only parameters it requires for
construction is a compilation unit4, the offset into the source code where
the extraction shall start, and the length of the source to be extracted.
Then you have to set the method name for the new method together with
its visibility and some not so interesting parameters.

The MoveInstanceMethodProcessor Class

For the Move Method, the processor requires a little more advanced input
than the class for the Extract Method. For construction it requires a method
handle5 for the method that is to be moved. Then the target for the
move have to be supplied as the variable binding from a chosen variable
declaration. In addition to this, one have to set some parameters regarding
setters/getters, as well as delegation.

To make a working refactoring from the processor, one have to create a
MoveRefactoring with it.

4.2.2 The ExtractAndMoveMethodChanger

The ExtractAndMoveMethodChanger6 class is a subclass of the class
RefaktorChanger7. It is responsible for analyzing and finding the best
target for, and also executing, a composition of the Extract Method and
Move Method refactorings. This particular changer is the one of my changers
that is closest to being a true LTK refactoring. It can be reworked to be
one if the problems with overlapping changes are resolved. The changer
requires a text selection and the name of the new method, or else a
method name will be generated. The selection has to be of the type
CompilationUnitTextSelection8. This class is a custom extension to
TextSelection9, that in addition to the basic offset, length and similar
methods, also carry an instance of the underlying compilation unit handle
for the selection.

1org.eclipse.jdt.internal.corext.refactoring.code.ExtractMethodRefactoring
2org.eclipse.jdt.internal.corext.refactoring.structure.MoveInstanceMethodProcessor
3org.eclipse.ltk.core.refactoring.participants.MoveRefactoring
4org.eclipse.jdt.core.ICompilationUnit
5org.eclipse.jdt.core.IMethod
6no.uio.ifi.refaktor.changers.ExtractAndMoveMethodChanger
7no.uio.ifi.refaktor.changers.RefaktorChanger
8no.uio.ifi.refaktor.utils.CompilationUnitTextSelection
9org.eclipse.jface.text.TextSelection

26

The ExtractAndMoveMethodAnalyzer

The analysis and precondition checking is done by the ExtractAnd-
MoveMethodAnalyzer1. First is check whether the selection is a valid
selection or not, with respect to statement boundaries and that it actually
contains any selections. Then it checks the legality of both extracting the
selection and also moving it to another class. This checking of is performed
by a range of checkers (see section 5.5 on page 43). If the selection is
approved as legal, it is analyzed to find the presumably best target to move
the extracted method to.

For finding the best suitable target the analyzer is using a
PrefixesCollector2 that collects all the possible candidate targets for the
refactoring. All the non-candidates is found by an UnfixesCollector3 that
collects all the targets that will give some kind of error if used. (For details
about the property collectors, see section 5.4 on page 41.) All prefixes (and
unfixes) are represented by a Prefix4, and they are collected into sets of
prefixes. The safe prefixes is found by subtracting from the set of candidate
prefixes the prefixes that is enclosing any of the unfixes. A prefix is enclosing
an unfix if the unfix is in the set of its sub-prefixes. As an example, “a.b”
is enclosing “a”, as is “a”. The safe prefixes is unified in a PrefixSet. If a
prefix has only one occurrence, and is a simple expression, it is considered
unsuitable as a move target. This occurs in statements such as “a.foo()”.
For such statements it bares no meaning to extract and move them. It only
generates an extra method and the calling of it.

The most suitable target for the refactoring is found by finding the prefix
with the most occurrences. If two prefixes have the same occurrence count,
but they differ in length, the longest of them is chosen.
Clean up sections/subsections.

The ExtractAndMoveMethodExecutor

If the analysis finds a possible target for the composite refactoring, it
is executed by an ExtractAndMoveMethodExecutor5. It is composed of
the two executors known as ExtractMethodRefactoringExecutor6 and
MoveMethodRefactoringExecutor7. The ExtractAndMoveMethodExecutor
is responsible for gluing the two together by feeding the MoveMethod-
RefactoringExecutor with the resources needed after executing the extract
method refactoring.

1no.uio.ifi.refaktor.analyze.analyzers.ExtractAndMoveMethodAnalyzer
2no.uio.ifi.refaktor.analyze.collectors.PrefixesCollector
3no.uio.ifi.refaktor.analyze.collectors.UnfixesCollector
4no.uio.ifi.refaktor.extractors.Prefix
5no.uio.ifi.refaktor.change.executors.ExtractAndMoveMethodExecutor
6no.uio.ifi.refaktor.change.executors.ExtractMethodRefactoringExecutor
7no.uio.ifi.refaktor.change.executors.MoveMethodRefactoringExecutor

27

The ExtractMethodRefactoringExecutor

This executor is responsible for creating and executing an instance of the
ExtractMethodRefactoring class. It is also responsible for collecting some
post execution resources that can be used to find the method handle for the
extracted method, as well as information about its parameters, including
the variable they originated from.

The MoveMethodRefactoringExecutor

This executor is responsible for creating and executing an instance
of the MoveRefactoring. The move refactoring is a processor-
based refactoring, and for the Move Method refactoring it is the
MoveInstanceMethodProcessor that is used.

The handle for the method to be moved is found on the basis of the
information gathered after the execution of the Extract Method refactoring.
The only information the ExtractMethodRefactoring is sharing after its
execution, regarding find the method handle, is the textual representation
of the new method signature. Therefore it must be parsed, the strings for
types of the parameters must be found and translated to a form that can
be used to look up the method handle from its type handle. They have to
be on the unresolved form.The name for the type is found from the originalElaborate?Elaborate?
selection, since an extracted method must end up in the same type as the
originating method.

When analyzing a selection prior to performing the Extract Method
refactoring, a target is chosen. It has to be a variable binding, so it is
either a field or a local variable/parameter. If the target is a field, it can be
used with the MoveInstanceMethodProcessor as it is, since the extracted
method still is in its scope. But if the target is local to the originating
method, the target that is to be used for the processor must be among its
parameters. Thus the target must be found among the extracted method’s
parameters. This is done by finding the parameter information object that
corresponds to the parameter that was declared on basis of the original
target’s variable when the method was extracted. (The extracted method
must take one such parameter for each local variable that is declared outside
the selection that is extracted.) To match the original target with the correct
parameter information object, the key for the information object is compared
to the key from the original target’s binding. The source code must then be
parsed to find the method declaration for the extracted method. The new
target must be found by searching through the parameters of the declaration
and choose the one that has the same type as the old binding from the
parameter information object, as well as the same name that is provided by
the parameter information object.

28

4.2.3 The SearchBasedExtractAndMoveMethodChanger

The SearchBasedExtractAndMoveMethodChanger1 is a changer whose
purpose is to automatically analyze a method, and execute the Extract and
Move Method refactoring on it if it is a suitable candidate for the refactoring.

First, the SearchBasedExtractAndMoveMethodAnalyzer2 is used to
analyze the method. If the method is found to be a candidate, the result
from the analysis is fed to the ExtractAndMoveMethodExecutor, whose job
is to execute the refactoring (see section 4.2.2 on page 27).

The SearchBasedExtractAndMoveMethodAnalyzer

This analyzer is responsible for analyzing all the possible text selections of
a method and then choose the best result out of the analysis results that is,
by the analyzer, considered to be the potential candidates for the Extract
and Move Method refactoring.

Before the analyzer is able to work with the text selections of a method,
it needs to generate them. To do this, it parses the method to obtain a
MethodDeclaration for it (see section 5.2.1 on page 38). Then there is a
statement lists creator that creates statements lists of the different groups
of statements in the body of the method declaration. A text selections
generator generates text selections of all the statement lists for the analyzer
to work with.

The statement lists creator is responsible for generating lists of
statements for all the possible levels of statements in the method. The
statement lists creator is implemented as an AST visitor (see section 5.3
on page 39). It generates lists of statements by visiting all the blocks
in the method declaration and stores their statements in a collection of
statement lists. In addition, it visits all of the other statements that can
have a statement as a child, such as the different control structures and the
labeled statement.

The switch statement is the only kind of statement that is not straight
forward to obtain the child statements from. It stores all of its children in
a flat list. Its switch case statements are included in this list. This means
that there are potential statement lists between all of these case statements.
The list of statements from a switch statement is therefore traversed, and
the statements between the case statements are grouped as separate lists.

There is an example of how the statement lists creator would generate
lists for a simple method in listing 7 on the next page.

The text selections generator generates text selections for each
list of statements from the statement lists creator. Conceptually, the
generator generates a text selection for every possible ordered combination make clearermake clearer
of statements in a list. For a list of statements, the boundary statements

1no.uio.ifi.refaktor.change.changers.SearchBasedExtractAndMoveMethodChanger
2no.uio.ifi.refaktor.analyze.analyzers.SearchBasedExtractAndMoveMethodAnalyzer

29

void method() {
if (bool)

b.bar();

switch (val) {
case 1:

b.foo();
c.foo();

default:
c.foo();

}
}

Listing 7: Example of how the statement lists creator would group a simple
method into lists of statements. Each highlighted rectangle represents a list.

span out a text selection. This means that there are many different lists
that could span out the same selection.

In practice, the text selections are calculated by only one traversal of
the statement list. There is a set of generated text selections. For each
statement, there is created a temporary set of selections, in addition to a text
selection based on the offset and length of the statement. This text selection
is added to the temporary set. Then the new selection is added with every
selection from the set of generated text selections. These new selections
are added to the temporary set. Then the temporary set of selections is
added to the set of generated text selections. The result of adding two text
selections is a new text selection spanned out by the two addends.

statement one;
statement two;
...
statement k;

Listing 8: Example of how the text selections generator would generate
text selections based on a lists of statements. Each highlighted rectangle
represents a text selection.

fix listing 8 on this page? Text only? All sub-sequences. . .

Finding the candidate for the refactoring is done by analyzing all
the generated text selection with the ExtractAndMoveMethodAnalyzer
(see section 4.2.2 on page 27). If the analyzer generates a useful
result, an ExtractAndMoveMethodCandidate is created from it, that is
kept in a list of potential candidates. If no candidates are found, the
NoTargetFoundException is thrown.

30

Since only one of the candidates can be chosen, the analyzer must sort
out which candidate to choose. The sorting is done by the static sort
method of Collections. The comparison in this sorting is done by an
ExtractAndMoveMethodCandidateComparator.
Write about the ExtractAndMoveMethodCandidateComparator/Fa-
vorNoUnfixesCandidateComparator

The complexity of how many text selections that needs to be analyzed
for a total of n statements is bounded by O(n2).

Theorem. The number of text selections that need to be analyzed for each
list of statements of length n, is exactly

n∑
i=1

i =
n(n + 1)

2

Proof. For n = 1 this is trivial: 1(1+1)
2 = 2

2 = 1. One statement equals one
selection.

For n = 2, you get one text selection for the first statement. For the
second, you get one selection for the statement itself, and one selection for
the two of them combined. This equals three selections. 2(2+1)

2 = 6
2 = 3.

For n = 3, you get 3 selections for the two first statements, as in the case
where n = 2. In addition you get one selection for the third statement itself,
and two more statements for the combinations of it with the two previous
statements. This equals six selections. 3(3+1)

2 = 12
2 = 6.

Assume that for n = k there exists k(k+1)
2 text selections. Then we

want to add selections for another statement, following the previous k
statements. So, for n = k + 1, we get one additional selection for the
statement itself. Then we get one selection for each pair of the new selection
and the previous k statements. So the total number of selections will be
the number of already generated selections, plus k for every pair, plus one
for the statement itself: k(k+1)

2 + k + 1 = k(k+1)+2k+2
2 = k(k+1)+2(k+1)

2 =
(k+1)(k+2)

2 = (k+1)((k+1)+1)
2 =

∑k+1
i=1 i

Theorem. The number of text selections for a body of statements is
maximized if all the statements are at the same level.

Proof. Assume we have a body of, in total, k statements. Let l, · · · , m, (k−
l − · · · −m) be the lengths of the lists of statements in the body, with
l + · · ·+ m < k ⇒ l, · · · , m < k.

Then, the number of text selections that are generated for the k
statements is

31

(k− l− · · · −m)((k− l− · · · −m) + 1)
2 +

l(l + 1)
2 + · · ·+ m(m + 1)

2 =

k2 − 2kl− · · · − 2km + l2 + · · ·+ m2 + k− l− · · · −m

2 +
l2 + l

2 + · · ·+ m2 + m

2 =

k2 + k + 2l2 − 2kl + · · ·+ 2m2 − 2km

2

It then remains to show that this inequality holds:

k2 + k + 2l2 − 2kl + · · ·+ 2m2 − 2km

2 <
k(k + 1)

2 =
k2 + k

2

By multiplication by 2 on both sides, and by removing the equal parts,
we get

2l2 − 2kl + · · ·+ 2m2 − 2km < 0

Since l, · · · , m < k, we have that ∀i ∈ {l, · · · , m} : 2ki > 2i2, so all the
pairs of parts on the form 2i2 − 2ki are negative. In sum, the inequality
holds.

Therefore, the complexity for the number of selections that needs to be
analyzed for a body of n statements is O

(
n(n+1)

2

)
= O(n2).

4.2.4 The Prefix Class

This class exists mainly for holding data about a prefix, such as the
expression that the prefix represents and the occurrence count of the prefix
within a selection. In addition to this, it has some functionality such as
calculating its sub-prefixes and intersecting it with another prefix. The
definition of the intersection between two prefixes is a prefix representing
the longest common expression between the two.

4.2.5 The PrefixSet Class

A prefix set holds elements of type Prefix. It is implemented with the help
of a HashMap1 and contains some typical set operations, but it does not
implement the Set2 interface, since the prefix set does not need all of the
functionality a Set requires to be implemented. In addition It needs some
other functionality not found in the Set interface. So due to the relatively
limited use of prefix sets, and that it almost always needs to be referenced as
such, and not a Set<Prefix>, it remains as an ad hoc solution to a concrete
problem.

1java.util.HashMap
2java.util.Set

32

There are two ways adding prefixes to a PrefixSet. The first is through
its add method. This works like one would expect from a set. It adds the
prefix to the set if it does not already contain the prefix. The other way is
to register the prefix with the set. When registering a prefix, if the set does
not contain the prefix, it is just added. If the set contains the prefix, its
count gets incremented. This is how the occurrence count is handled.

The prefix set also computes the set of prefixes that is not enclosing any
prefixes of another set. This is kind of a set difference operation only for
enclosing prefixes.

4.2.6 Hacking the Refactoring Undo History

Where to put this section?

As an attempt to make multiple subsequent changes to the workspace
appear as a single action (i.e. make the undo changes appear as such), I
tried to alter the undo changes1 in the history of the refactorings.

My first impulse was to remove the, in this case, last two undo changes
from the undo manager2 for the Eclipse refactorings, and then add them to a
composite change3 that could be added back to the manager. The interface
of the undo manager does not offer a way to remove/pop the last added
undo change, so a possible solution could be to decorate [Gam+95] the undo
manager, to intercept and collect the undo changes before delegating to the
addUndo method4 of the manager. Instead of giving it the intended undo
change, a null change could be given to prevent it from making any changes
if run. Then one could let the collected undo changes form a composite
change to be added to the manager.

There is a technical challenge with this approach, and it relates to the
undo manager, and the concrete implementation UndoManager25. This
implementation is designed in a way that it is not possible to just add an
undo change, you have to do it in the context of an active operation6. One
could imagine that it might be possible to trick the undo manager into
believing that you are doing a real change, by executing a refactoring that
is returning a kind of null change that is returning our composite change of
undo refactorings when it is performed.

Apart from the technical problems with this solution, there is a
functional problem: If it all had worked out as planned, this would leave
the undo history in a dirty state, with multiple empty undo operations
corresponding to each of the sequentially executed refactoring operations,
followed by a composite undo change corresponding to an empty change of
the workspace for rounding of our composite refactoring. The solution to this
particular problem could be to intercept the registration of the intermediate
changes in the undo manager, and only register the last empty change.

1org.eclipse.ltk.core.refactoring.Change
2org.eclipse.ltk.core.refactoring.IUndoManager
3org.eclipse.ltk.core.refactoring.CompositeChange
4org.eclipse.ltk.core.refactoring.IUndoManager#addUndo()
5org.eclipse.ltk.internal.core.refactoring.UndoManager2
6org.eclipse.core.commands.operations.TriggeredOperations

33

Unfortunately, not everything works as desired with this solution. The
grouping of the undo changes into the composite change does not make the
undo operation appear as an atomic operation. The undo operation is still
split up into separate undo actions, corresponding to the change done by
its originating refactoring. And in addition, the undo actions has to be
performed separate in all the editors involved. This makes it no solution at
all, but a step toward something worse.

There might be a solution to this problem, but it remains to be found.
The design of the refactoring undo management is partly to be blamed for
this, as it it is to complex to be easily manipulated.

34

Chapter 5

Analyzing Source Code in
Eclipse

5.1 The Java model

The Java model of Eclipse is its internal representation of a Java project.
It is light-weight, and has only limited possibilities for manipulating source
code. It is typically used as a basis for the Package Explorer in Eclipse.

The elements of the Java model is only handles to the underlying
elements. This means that the underlying element of a handle does not
need to actually exist. Hence the user of a handle must always check that
it exist by calling the exists method of the handle.

The handles with descriptions is listed in table 5.1 on this page.

Project
Element

Java Model element Description

Java project IJavaProject The Java project which
contains all other objects.

Source folder /
binary folder /
external library

IPackageFragmentRoot Hold source or binary files,
can be a folder or a library
(zip / jar file).

Each package IPackageFragment Each package is below the
IPackageFragmentRoot,
sub-packages are not
leaves of the package, they
are listed directed under
IPackageFragmentRoot.

Java Source file ICompilationUnit The Source file is always
below the package node.

Types /
Fields /
Methods

IType / IField /
IMethod

Types, fields and methods.

Table 5.1: The elements of the Java Model. Taken from http://www.vogella.com/
tutorials/EclipseJDT/article.html

35

http://www.vogella.com/tutorials/EclipseJDT/article.html
http://www.vogella.com/tutorials/EclipseJDT/article.html

The hierarchy of the Java Model is shown in fig. 5.1 on the current page.

IJavaProject

IPackageFragmentRoot

IPackageFragment

ICompilationUnit

IType

{ IType }*

...

{ IField }*

IMethod

{ IType }*

...

{ IMethod }*

{ IType }*

{ ICompilationUnit }*

{ IPackageFragment }*

{ IPackageFragmentRoot }*

Figure 5.1: The Java model of Eclipse. “{ SomeElement }*” means
SomeElement zero or more times. For recursive structures, “...” is used.

5.2 The Abstract Syntax Tree
Eclipse is following the common paradigm of using an abstract syntax tree
for source code analysis and manipulation.

When parsing program source code into something that can be used as a
foundation for analysis, the start of the process follows the same steps as in
a compiler. This is all natural, because the way a compiler analyzes code is
no different from how source manipulation programs would do it, except for
some properties of code that is analyzed in the parser, and that they may
be differing in what kinds of properties they analyze. Thus the process of
translation source code into a structure that is suitable for analyzing, can be
seen as a kind of interrupted compilation process (see fig. 5.2 on the facing
page).

The process starts with a scanner, or lexer. The job of the scanner is
to read the source code and divide it into tokens for the parser. Therefore,
it is also sometimes called a tokenizer. A token is a logical unit, defined in
the language specification, consisting of one or more consecutive characters.
In the Java language the tokens can for instance be the this keyword, a

36

source code Scanner Parser

Semantic
Analyzer

Source Code
Optimizer

Code
Generator

Target Code
Optimizer

tokens

syntax tree

annotated
tree

intermediate code

target code target code

Figure 5.2: Interrupted compilation process. (Full compilation process borrowed
from Compiler construction: principles and practice by Kenneth C. Louden [Lou97].)

curly bracket { or a nameToken. It is recognized by the scanner on the basis
of something equivalent of a regular expression. This part of the process is
often implemented with the use of a finite automata. In fact, it is common
to specify the tokens in regular expressions, that in turn is translated into
a finite automata lexer. This process can be automated.

The program component used to translate a stream of tokens into
something meaningful, is called a parser. A parser is fed tokens from the
scanner and performs an analysis of the structure of a program. It verifies
that the syntax is correct according to the grammar rules of a language,
that is usually specified in a context-free grammar, and often in a variant of
the Backus–Naur Form1. The result coming from the parser is in the form
of an Abstract Syntax Tree, AST for short. It is called abstract, because
the structure does not contain all of the tokens produced by the scanner.
It only contain logical constructs, and because it forms a tree, all kinds of
parentheses and brackets are implicit in the structure. It is this AST that
is used when performing the semantic analysis of the code.

As an example we can think of the expression (5 + 7) * 2. The root
of this tree would in Eclipse be an InfixExpression with the operator
TIMES, and a left operand that is also an InfixExpression with the operator
PLUS. The left operand InfixExpression, has in turn a left operand of type
NumberLiteral with the value “5” and a right operand NumberLiteral with
the value “7”. The root will have a right operand of type NumberLiteral
and value “2”. The AST for this expression is illustrated in fig. 5.3 on the
next page.

Contrary to the Java Model, an abstract syntax tree is a heavy-weight
representation of source code. It contains information about properties like

1https://en.wikipedia.org/wiki/Backus-Naur_Form

37

https://en.wikipedia.org/wiki/Backus-Naur_Form

type bindings for variables and variable bindings for names.

InfixExpression

NumberLiteral

“2”

Operator

TIMES

InfixExpression

NumberLiteral

“7”

Operator

PLUS

NumberLiteral

“5”

Figure 5.3: The abstract syntax tree for the expression (5 + 7) * 2.

5.2.1 The AST in Eclipse

In Eclipse, every node in the AST is a child of the abstract superclass
ASTNode1. Every ASTNode, among a lot of other things, provides information
about its position and length in the source code, as well as a reference to its
parent and to the root of the tree.

The root of the AST is always of type CompilationUnit. It
is not the same as an instance of an ICompilationUnit, which is
the compilation unit handle of the Java model. The children of a
CompilationUnit is an optional PackageDeclaration, zero or more nodes
of type ImportDecaration and all its top-level type declarations that has
node types AbstractTypeDeclaration.

An AbstractTypeDeclaration can be one of the types AnnotationType-
Declaration, EnumDeclaration or TypeDeclaration. The children of
an AbstractTypeDeclaration must be a subtype of a BodyDeclaration.
These subtypes are: AnnotationTypeMemberDeclaration, EnumConstant-
Declaration, FieldDeclaration, Initializer and MethodDeclaration.

Of the body declarations, the MethodDeclaration is the most interesting
one. Its children include lists of modifiers, type parameters, parameters and
exceptions. It has a return type node and a body node. The body, if present,
is of type Block. A Block is itself a Statement, and its children is a list of
Statement nodes.

There are too many types of the abstract type Statement to list up, but
there exists a subtype of Statement for every statement type of Java, as one
would expect. This also applies to the abstract type Expression. However,
the expression Name is a little special, since it is both used as an operand in
compound expressions, as well as for names in type declarations and such.

There is an overview of some of the structure of an Eclipse AST in fig. 5.4
on the facing page.
Add more to the AST format tree? fig. 5.4 on the next page

1org.eclipse.jdt.core.dom.ASTNode

38

CompilationUnit

{ AbstractTypeDeclaration }+

SimpleName{ BodyDeclaration }*

{ ImportDeclaration }*

Name

[PackageDeclaration]

{ Annotation }*Name

MethodDeclaration

{ IExtendedModifier }*
(Of type Modifier or Annotation)

{ TypeParameter }*

{ SingleVariableDeclaration }*
(Parameters)

{ Name }*
(Exceptions)

Type
(Return type)

[Block]
(Body)

{ Statement }*

{ Statement }*

...

{ Expression }*

Figure 5.4: The format of the abstract syntax tree in Eclipse.

5.3 The ASTVisitor

So far, the only thing that has been addressed is how the data that is going
to be the basis for our analysis is structured. Another aspect of it is how
we are going to traverse the AST to gather the information we need, so we
can conclude about the properties we are analysing. It is of course possible
to start at the top of the tree, and manually search through its nodes for
the ones we are looking for, but that is a bit inconvenient. To be able
to efficiently utilize such an approach, we would need to make our own
framework for traversing the tree and visiting only the types of nodes we
are after. Luckily, this functionality is already provided in Eclipse, by its
ASTVisitor1.

The Eclipse AST, together with its ASTVisitor, follows the Visitor
pattern [Gam+95]. The intent of this design pattern is to facilitate extending

1org.eclipse.jdt.core.dom.ASTVisitor

39

the functionality of classes without touching the classes themselves.
Let us say that there is a class hierarchy of elements. These elements

all have a method accept(Visitor visitor). In its simplest form, the
accept method just calls the visit method of the visitor with itself
as an argument, like this: visitor.visit(this). For the visitors to
be able to extend the functionality of all the classes in the elements
hierarchy, each Visitor must have one visit method for each concrete
class in the hierarchy. Say the hierarchy consists of the concrete classes
ConcreteElementA and ConcreteElementB. Then each visitor must have
the (possibly empty) methods visit(ConcreteElementA element) and
visit(ConcreteElementB element). This scenario is depicted in fig. 5.5
on this page.

Element
+accept(visitor: Visitor)

ConcreteElementA
+accept(visitor: Visitor)

ConcreteElementB
+accept(visitor: Visitor)

visitor.visit(this) visitor.visit(this)

Visitor
+visit(ConcreteElementA)
+visit(ConcreteElementB)

ConcreteVisitor1
+visit(ConcreteElementA)
+visit(ConcreteElementB)

ConcreteVisitor2
+visit(ConcreteElementA)
+visit(ConcreteElementB)

Figure 5.5: The Visitor Pattern.

The use of the visitor pattern can be appropriate when the hierarchy
of elements is mostly stable, but the family of operations over its elements
is constantly growing. This is clearly the case for the Eclipse AST, since
the hierarchy of type ASTNode is very stable, but the functionality of its
elements is extended every time someone needs to operate on the AST.
Another aspect of the Eclipse implementation is that it is a public API, and
the visitor pattern is an easy way to provide access to the nodes in the tree.

The version of the visitor pattern implemented for the AST nodes in
Eclipse also provides an elegant way to traverse the tree. It does so by
following the convention that every node in the tree first let the visitor visit
itself, before it also makes all its children accept the visitor. The children are
only visited if the visit method of their parent returns true. This pattern

40

then makes for a prefix traversal of the AST. If postfix traversal is desired,
the visitors also has endVisit methods for each node type, that is called
after the visit method for a node. In addition to these visit methods,
there are also the methods preVisit(ASTNode), postVisit(ASTNode) and
preVisit2(ASTNode). The preVisit method is called before the type-
specific visit method. The postVisit method is called after the type-
specific endVisit. The type specific visit is only called if preVisit2
returns true. Overriding the preVisit2 is also altering the behavior of
preVisit, since the default implementation is responsible for calling it.

An example of a trivial ASTVisitor is shown in listing 9 on the current
page.

public class CollectNamesVisitor extends ASTVisitor {
Collection<Name> names = new LinkedList<Name>();

@Override
public boolean visit(QualifiedName node) {
names.add(node);
return false;

}

@Override
public boolean visit(SimpleName node) {

names.add(node);
return true;

}
}

Listing 9: An ASTVisitor that visits all the names in a subtree and
adds them to a collection, except those names that are children of any
QualifiedName.

5.4 Property collectors

The prefixes and unfixes are found by property collectors1. A property
collector is of the ASTVisitor type, and thus visits nodes of type ASTNode
of the abstract syntax tree (see section 5.3 on page 39).

5.4.1 The PrefixesCollector

The PrefixesCollector2 finds prefixes that makes up the basis for
calculating move targets for the Extract and Move Method refactoring. It
visits expression statements3 and creates prefixes from its expressions in the

1no.uio.ifi.refaktor.extractors.collectors.PropertyCollector
2no.uio.ifi.refaktor.extractors.collectors.PrefixesCollector
3org.eclipse.jdt.core.dom.ExpressionStatement

41

case of method invocations. The prefixes found is registered with a prefix
set, together with all its sub-prefixes.

5.4.2 The UnfixesCollector

The UnfixesCollector1 finds unfixes within a selection. That is prefixes
that cannot be used as a basis for finding a move target in a refactoring.

An unfix can be a name that is assigned to within a selection. The reason
that this cannot be allowed, is that the result would be an assignment to
the this keyword, which is not valid in Java (see section 9.1 on page 63).

Prefixes that originates from variable declarations within the same
selection are also considered unfixes. This is because when a method is
moved, it needs to be called through a variable. If this variable is also
within the method that is to be moved, this obviously cannot be done.

Also considered as unfixes are variable references that are of types that
is not suitable for moving a methods to. This can be either because it is not
physically possible to move the method to the desired class or that it will
cause compilation errors by doing so.

If the type binding for a name is not resolved it is considered and unfix.
The same applies to types that is only found in compiled code, so they have
no underlying source that is accessible to us. (E.g. the java.lang.String
class.)

Interfaces types are not suitable as targets. This is simply because
interfaces in Java cannot contain methods with bodies. (This thesis does not
deal with features of Java versions later than Java 7. Java 8 has interfaces
with default implementations of methods.) Neither are local types allowed.
This accounts for both local and anonymous classes. Anonymous classes are
effectively the same as interface types with respect to unfixes. Local classes
could in theory be used as targets, but this is not possible due to limitations
of the implementation of the Extract and Move Method refactoring. The
problem is that the refactoring is done in two steps, so the intermediate
state between the two refactorings would not be legal Java code. In the case
of local classes, the problem is that, in the intermediate step, a selection
referencing a local class would need to take the local class as a parameter if
it were to be extracted to a new method. This new method would need to
live in the scope of the declaring class of the originating method. The local
class would then not be in the scope of the extracted method, thus bringing
the source code into an illegal state. One could imagine that the method
was extracted and moved in one operation, without an intermediate state.
Then it would make sense to include variables with types of local classes in
the set of legal targets, since the local classes would then be in the scopes
of the method calls. If this makes any difference for software metrics that
measure coupling would be a different discussion.

The last class of names that are considered unfixes is names used in
null tests. These are tests that reads like this: if <name> equals null then
do something. If allowing variables used in those kinds of expressions as

1no.uio.ifi.refaktor.extractors.collectors.UnfixesCollector

42

// Before
void declaresLocalClass() {
class LocalClass {
void foo() {}
void bar() {}

}

LocalClass inst =
new LocalClass();

inst.foo();
inst.bar();

}

// After Extract Method
void declaresLocalClass() {
class LocalClass {

void foo() {}
void bar() {}

}

LocalClass inst =
new LocalClass();

fooBar(inst);
}

// Intermediate step
void fooBar(LocalClass inst) {
inst.foo();
inst.bar();

}

Listing 10: When Extract and Move Method tries to use a variable with
a local type as the move target, an intermediate step is taken that is not
allowed. Here: LocalClass is not in the scope of fooBar in its intermediate
location.

targets for moving methods, we would end up with code containing boolean
expressions like this == null, which would not be meaningful, since this
would never be null.

5.4.3 The ContainsReturnStatementCollector

The ContainsReturnStatementCollector1 is a very simple property
collector. It only visits the return statements within a selection, and can
report whether it encountered a return statement or not.

5.4.4 The LastStatementCollector

The LastStatementCollector2 collects the last statement of a selection.
It does so by only visiting the top level statements of the selection, and
compares the textual end offset of each encountered statement with the end
offset of the previous statement found.

5.5 Checkers
Check out ExtractMethodAnalyzer from ExtractMethodRefactoring

The checkers are a range of classes that checks that text selections
complies with certain criteria. All checkers operates under the assumption

1no.uio.ifi.refaktor.analyze.collectors.ContainsReturnStatementCollector
2no.uio.ifi.refaktor.analyze.collectors.LastStatementCollector

43

that the code they check is free from compilation errors. If a Checker1

fails, it throws a CheckerException. The checkers are managed by the
LegalStatementsChecker, which does not, in fact, implement the Checker
interface. It does, however, run all the checkers registered with it, and
reports that all statements are considered legal if no CheckerException is
thrown. Many of the checkers either extends the PropertyCollector or
utilizes one or more property collectors to verify some criteria. The checkers
registered with the LegalStatementsChecker are described next. They are
run in the order presented below.

5.5.1 The CallToProtectedOrPackagePrivateMethodChecker

This checker is designed to prevent an error that can occur in situations
where a method is declared in one class, but overridden in another. If a text
selection contains a call to a method like this, and the seletion is extracted
to a new method, the subsequent movement of this method could cause the
code to break.

The code breaks in situations where the method call in the selection is
to a method that has the protected modifier, or it does not have any access
modifiers, i.e. it is package-private. The method is not public, so the Move
Method refactoring must make it public, making the moved method able to
call it from its new location. The problem is that the, now public, method is
overridden in a subclass, where it has a protected or package-private status.
This makes the compiler complain that the subclass is trying to reduce the
visibility of a method declared in its superclass. This is not allowed in Java,
and for good reasons. It would make it possible to make a subclass that
could not be a substitute for its superclass.

The workings of the CallToProtectedOrPackagePrivateMethod-
Checker is therefore very simple. It looks for calls to methods that are
either protected or package-private within the selection, and throws an
IllegalExpressionFoundException if one is found.

The problem this checker helps to avoid, is a little subtle. The problem
does not arise in the class where the change is done, but in a class derived
from it. This shows that classes acting as superclasses are especially fragile
to introducing errors in the context of automated refactoring. This is also
shown in bug. . .
File Eclipse bug report

5.5.2 The InstantiationOfNonStaticInnerClassChecker

When a non-static inner class is instatiated, this must happen in the scope
of its declaring class. This is because it must have access to the members of
the declaring class. If the inner class is public, it is possible to instantiate
it through an instance of its declaring class, but this is not handled by
the MoveInstanceMethodProcessor in Eclipse when moving a method.
Therefore, performing a move on a method that instantiates a non-static

1no.uio.ifi.refaktor.analyze.analyzers.Checker

44

inner class, will break the code if the instantiation is not handled properly.
For this reason, the InstantiationOfNonStaticInnerClassChecker does
not validate selections that contains instantiations of non-static inner classes.
This problem is also related to bug. . .
File Eclipse bug report

5.5.3 The EnclosingInstanceReferenceChecker

The purpose of this checker is to verify that the names in a selection is
not referencing any enclosing instances. This is for making sure that all
references is legal in a method that is to be moved. Theoretically, some
situations could be easily solved my passing a reference to the referenced
class with the moved method (e.g. when calling public methods), but the
dependency on the MoveInstanceMethodProcessor prevents this.

The EnclosingInstanceReferenceChecker1 is a modified version of the
EnclosingInstanceReferenceFinder2 from the MoveInstanceMethodProcessor.
Wherever the EnclosingInstanceReferenceFinder would create a fatal er-
ror status, the checker throws a CheckerException.

It works by first finding all of the enclosing types of a selection.
Thereafter it visits all its simple names to check that they are not references
to variables or methods declared in any of the enclosing types. In addition
the checker visits this-expressions to verify that no such expressions is
qualified with any name.

5.5.4 The ReturnStatementsChecker

The checker for return statements is meant to verify that if a text selection
contains a return statement, then every possible execution path within the
selection ends in a return statement. This property is important regarding
the Extract Method refactoring. If it holds, it means that a method could
be extracted from the selection, and a call to it could be substituted for the
selection. If the method has a non-void return type, then a call to it would
also be a valid return point for the calling method. If its return value is
of the void type, then the ExtractMethodRefactoring of Eclipse appends
an empty return statement to the back of the method call. Therefore, the
analysis does not discriminate on either kinds of return statements, with or
without a return value.

The property description implies that if the selection is free from return
statements, then the checker validates. So this is the first thing the checker
investigates.

If the checker proceedes any further, it is because the selection contains
one or more return statements. The next test is therefore to check if the
last statement of the selection ends in either a return or a throw statement.
If the last statement of the selection ends in a return statement, then all
execution paths within the selection should end in either this, or another,

1no.uio.ifi.refaktor.analyze.analyzers.EnclosingInstanceReferenceChecker
2org.eclipse.jdt.internal.corext.refactoring.structure.MoveInstanceMethod-

Processor.EnclosingInstanceReferenceFinder

45

return statement. This is also true for a throw statement, since it causes an
immediate exit from the current block, together with all outer blocks in its
control flow that does not catch the thrown exception.

Return statements can be either explicit or implicit. An explicit return
statement is formed by using the return keyword, while an implicit return
statement is a statement that is not formed by the return keyword, but
must be the last statement of a method that can have any side effects. This
can happen in methods with a void return type. An example is a statement
that is inside one or more blocks. The last statement of a method could for
instance be an if-statement, but the last statement that is executed in the
method, and that can have any side effects, may be located inside the block
of the else part of the if-statement.

The responsibility for checking that the last statement of the se-
lection eventually ends in a return or throw statement, is put on
the LastStatementOfSelectionEndsInReturnOrThrowChecker. For every
node visited, if it is a statement, it does a test to see if the statement is a
return, a throw or if it is an implicit return statement. If this is the case, no
further checking is done. This checking is done in the preVisit2 method
(see section 5.3 on page 39). If the node is not of a type that is being han-
dled by its type specific visit method, the checker performs a simple test.
If the node being visited is not the last statement of its parent that is also
enclosed by the selection, an IllegalStatementFoundException is thrown.
This ensures that all statements are taken care of, one way or the other. It
also ensures that the checker is conservative in the way it checks for legality
of the selection.

To examine if a statement is an implicit return statement, the checker
first finds the last statement declared in its enclosing method. If this
statement is the same as the one under investigation, it is considered an
implicit return statement. If the statements are not the same, the checker
does a search to see if statement examined is also the last statement of
the method that can be reached. This includes the last statement of a block
statement, a labeled statement, a synchronized statement or a try statement,
that in turn is the last statement enclosed by the statement types listed.
This search goes through all the parents of a statement until a statement is
found that is not one of the mentioned acceptable parent statements. If the
search ends in a method declaration, then the statement is considered to be
the last reachable statement of the method, and thus also an implicit return
statement.

There are two kinds of statements that are handled explicitly. It is
if-statements and try-statements. Block, labeled and do-statements are
handled by fall-through to the other two. Do-statements are considered
equal to blocks in this context, since their bodies are always evaluated at
least one time. If- and try-statements are visited only if they are the last
node of their parent within the selection.

For if-statements, the rule is that if the then-part does not contain any
return or throw statements, it is considered illegal. If it does contain a
return or throw, its else-part is checked. If the else-part is non-existent, or
it does not contain any return or throw statements, it is considered illegal.

46

If the statement is not regarded illegal, its children are visited.
Try-statements are handled much the same way as if-statements. Its

body must contain a return or throw. The same applies to its catch clauses
and finally body.

If the checker does not complain at any point, the selection is considered
valid with respect to return statements.

5.5.5 The AmbiguousReturnValueChecker

This checker verifies that there are no ambiguous return statements in a
selection. The problem with ambiguous return statements arise when a
selection is chosen to be extracted into a new method, but it needs to
return more than one value from that method. This problem occurs in
two situations. The first situation arise when there is more than one local
variable that is both assigned to within a selection and also referenced
after the selection. The other situation occur when there is only one such
assignment, but there is also one or more return statements in the selection.

First the checker needs to collect some data. Those data are the binding
keys for all simple names that are assigned to within the selection, including
variable declarations, but excluding fields. The checker also collects whether
there exists a return statement in the selection or not. No further checks of
return statements are needed, since, at this point, the selection is already
checked for illegal return statements (see section 5.5.4 on page 45).

After the binding keys of the assignees are collected, the checker searches
the part of the enclosing method that is after the selection for references
whose binding keys are among the collected keys. If more than one unique
referral is found, or only one referral is found, but the selection also contains
a return statement, we have a situation with an ambiguous return value, and
an exception is thrown.

5.5.6 The IllegalStatementsChecker

This checker is designed to check for illegal statements.
Any use of the super keyword is prohibited, since its meaning is altered

when moving a method to another class.
For a break statement, there is two situations to consider: A break

statement with or without a label. If the break statement has a label, it is
checked that whole of the labeled statement is inside the selection. Since a
label does not have any binding information, we have to search upwards in
the AST to find the LabeledStatement that corresponds to the label from
the break statement, and check that it is contained in the selection. If the
break statement does not have a label attached to it, it is checked that its
innermost enclosing loop or switch statement also is inside the selection.

The situation for a continue statement is the same as for a break
statement, except that it is not allowed inside switch statements.

Regarding assignments, two types of assignments is allowed: Assignment
to a non-final variable and assignment to an array access. All other
assignments is regarded illegal.

47

Finish. . .

48

Chapter 6

Benchmarking

Better name than “benchmarking”?

This part of the master’s project is located in the Eclipse project
no.uio.ifi.refaktor.benchmark. The purpose of it is to run the equiv-
alent of the SearchBasedExtractAndMoveMethodChanger (see section 4.2.3
on page 29) over a larger software project, both to test its robustness but
also its effect on different software metrics.

6.1 The benchmark setup

The benchmark itself is set up as a JUnit test case. This is a convenient
setup, and utilizes the JUnit Plugin Test Launcher. This provides us a with
a fully functional Eclipse workbench. Most importantly, this gives us access
to the Java Model of Eclipse (see section 5.1 on page 35).

6.1.1 The ProjectImporter

The Java project that is going to be used as the data for the benchmark,
must be imported into the JUnit workspace. This is done by the
ProjectImporter1. The importer require the absolute path to the project
description file. It is named .project and is located at the root of the
project directory.

The project description is loaded to find the name of the project to be
imported. The project that shall be the destination for the import is created
in the workspace, on the base of the name from the description. Then
an import operation is created, based on both the source and destination
information. The import operation is run to perform the import.

I have found no simple API call to accomplish what the importer does,
which tells me that it may not be too many people performing this particular
action. The solution to the problem was found on Stack Overflow2. It
contains enough dirty details to be considered inconvenient to use, if not
wrapping it in a class like my ProjectImporter. One would probably have

1no.uio.ifi.refaktor.benchmark.ProjectImporter
2https://stackoverflow.com/questions/12401297

49

https://stackoverflow.com/questions/12401297

to delve into the source code for the import wizard to find out how the
import operation works, if no one had already done it.

6.2 Statistics

Statistics for the analysis and changes is captured by the StatisticsAspect1.
This an aspect written in AspectJ.

6.2.1 AspectJ

AspectJ2 is an extension to the Java language, and facilitates combining
aspect-oriented programming with the object-oriented programming in Java.

Aspect-oriented programming is a programming paradigm that is meant
to isolate so-called cross-cutting concerns into their own modules. These
cross-cutting concerns are functionalities that spans over multiple classes,
but may not belong naturally in any of them. It can be functionality that
does not concern the business logic of an application, and thus may be a
burden when entangled with parts of the source code it does not really
belong. Examples include logging, debugging, optimization and security.

Aspects are interacting with other modules by defining advices. The
concept of an advice is known from both aspect-oriented and functional
programming [14a]. It is a function that modifies another function when the
latter is run. An advice in AspectJ is somewhat similar to a method in Java.
It is meant to alter the behavior of other methods, and contains a body that
is executed when it is applied.

An advice can be applied at a defined pointcut. A pointcut picks out
one or more join points. A join point is a well-defined point in the execution
of a program. It can occur when calling a method defined for a particular
class, when calling all methods with the same name, accessing/assigning to
a particular field of a given class and so on. An advice can be declared to
run both before, after returning from a pointcut, when there is thrown an
exception in the pointcut or after the pointcut either returns or throws an
exception. In addition to picking out join points, a pointcut can also bind
variables from its context, so they can be accessed in the body of an advice.
An example of a pointcut and an advice is found in listing 11 on the facing
page.

6.2.2 The Statistics class

The statistics aspect stores statistical information in an object of type
Statistics. As of now, the aspect needs to be initialized at the point
in time where it is desired that it starts its data gathering. At any point
in time the statistics aspect can be queried for a snapshot of the current
statistics.

1no.uio.ifi.refaktor.aspects.StatisticsAspect
2http://eclipse.org/aspectj/

50

http://eclipse.org/aspectj/

pointcut methodAnalyze(
SearchBasedExtractAndMoveMethodAnalyzer analyzer) :

call(* SearchBasedExtractAndMoveMethodAnalyzer.analyze())
&& target(analyzer);

after(SearchBasedExtractAndMoveMethodAnalyzer analyzer) :
methodAnalyze(analyzer) {

statistics.methodCount++;
debugPrintMethodAnalysisProgress(analyzer.method);

}

Listing 11: An example of a pointcut named methodAnalyze, and an advice
defined to be applied after it has occurred.

The Statistics class also include functionality for generating a report
of its gathered statistics. The report can be given either as a string or it can
be written to a file.

6.2.3 Advices

The statistics aspect contains advices for gathering statistical data from
different parts of the benchmarking process. It captures statistics from both
the analysis part and the execution part of the composite Extract and Move
Method refactoring.

For the analysis part, there are advices to count the number of text
selections analyzed and the number of methods, types, compilation units
and packages analyzed. There are also advices that counts for how many of
the methods there is found a selection that is a candidate for the refactoring,
and for how many methods there is not.

There exists advices for counting both the successful and unsuccessful
executions of all the refactorings. Both for the Extract Method and Move
Method refactorings in isolation, as well as for the combination of them.

6.3 Optimizations

When looking for optimizations to make for the benchmarking process, I
used the VisualVM1 profiler for the Java Virtual Machine to both profile
the application and also to make memory dumps of its heap.

6.3.1 Caching

When profiling the benchmark process before making any optimizations, it
early became apparent that the parsing of source code was a place to direct
attention towards. This discovery was done when only analyzing source
code, before trying to do any manipulation of it. Caching of the parsed
ASTs seemed like the best way to save some time, as expected. With only a

1http://visualvm.java.net/

51

http://visualvm.java.net/

simple cache of the most recently used AST, the analysis time was speeded
up by a factor of around 20. This number depends a little upon which type
of system the analysis is run.

The caching is managed by a cache manager, that now, by default,
utilizes the not so well known feature of Java called a soft reference. Soft
references are best explained in the context of weak references. A weak
reference is a reference to an object instance that is only guaranteed to
persist as long as there is a strong reference or a soft reference referring
the same object. If no such reference is found, its referred object is garbage
collected. A strong reference is basically the same as a regular Java reference.
A soft reference has the same guarantees as a week reference when it comes
to its relation to strong references, but it is not necessarily garbage collected
whenever there exists no strong references to it. A soft reference may reside
in memory as long as the JVM has enough free memory in the heap. A
soft reference will therefore usually perform better than a weak reference
when used for simple caching and similar tasks. The way to use a soft/weak
reference is to as it for its referent. The return value then has to be tested to
check that it is not null. For the basic usage of soft references, see listing 12
on the current page. For a more thorough explanation of weak references in
general, see [Nic06].

// Strong reference
Object strongRef = new Object();

// Soft reference
SoftReference<Object> softRef =

new SoftReference<Object>(new Object());

// Using the soft reference
Object obj = softRef.get();
if (obj != null) {

// Use object here
}

Listing 12: Showing the basic usage of soft references. Weak references is
used the same way. (The references are part of the java.lang.ref package.)

The cache based on soft references has no limit for how many ASTs it
caches. It is generally not advisable to keep references to ASTs for prolonged
periods of time, since they are expensive structures to hold on to. For regular
plugin development, Eclipse recommends not creating more than one AST at
a time to limit memory consumption. Since the benchmarking has nothing
to do with user experience, and throughput is everything, these advices are
intentionally ignored. This means that during the benchmarking process,
the target Eclipse application may very well work close to its memory limit
for the heap space for long periods during the benchmark.

52

6.3.2 Memento
Write

53

54

Chapter 7

Technicalities

7.1 Source code organization

All the parts of this master’s project is under version control with Git1.
The software written is organized as some Eclipse plugins. Writing a

plugin is the natural way to utilize the API of Eclipse. This also makes it
possible to provide a user interface to manually run operations on selections
in program source code or whole projects/packages.

When writing a plugin in Eclipse, one has access to resources such as
the current workspace, the open editor and the current selection.

The thesis work is contained in the following Eclipse projects:

no.uio.ifi.refaktor
This is the main Eclipse plugin project, and contains all of the business
logic for the plugin.

no.uio.ifi.refaktor.tests
This project contains the tests for the main plugin.

no.uio.ifi.refaktor.examples
Contains example code used in testing. It also contains code for
managing this example code, such as creating an Eclipse project from
it before a test run.

no.uio.ifi.refaktor.benchmark
This project contains code for running search based versions of the
composite refactoring over selected Eclipse projects.

no.uio.ifi.refaktor.releng
Contains the rmap, queries and target definitions needed by by
Buckminster on the Jenkins continuous integration server.

1http://git-scm.com/

55

http://git-scm.com/

7.1.1 The no.uio.ifi.refaktor project

no.uio.ifi.refaktor.analyze

This package, and its subpackages, contains code that is used for analyzing
Java source code. The most important subpackages are presented below.

no.uio.ifi.refaktor.analyze.analyzers
This package contains source code analyzers. These are usually
responsible for analyzing text selections or running specialized
analyzers for different kinds of entities. Their structure are often
hierarchical. This means that you have an analyzer for text selections,
that in turn is utilized by an analyzer that analyzes all the selections
of a method. Then there are analyzers for analyzing all the methods
of a type, all the types of a compilation unit, all the compilation units
of a package, and, at last, all of the packages in a project.

no.uio.ifi.refaktor.analyze.checkers
A package containing checkers. The checkers are classes used to
validate that a selection can be further analyzed and chosen as a
candidate for a refactoring. Invalidating properties can be such as
usage of inner classes or the need for multiple return values.

no.uio.ifi.refaktor.analyze.collectors
This package contains the property collectors. Collectors are used
to gather properties from a text selection. This is mostly properties
regarding referenced names and their occurrences. It is these
properties that makes up the basis for finding the best candidates
for a refactoring.

no.uio.ifi.refaktor.change

This package, and its subpackages, contains functionality for manipulate
source code.

no.uio.ifi.refaktor.change.changers
This package contains source code changers. They are used to glue
together the analysis of source code and the actual execution of the
changes.

no.uio.ifi.refaktor.change.executors
The executors that are responsible for making concrete changes are
found in this package. They are mostly used to create and execute
one or more Eclipse refactorings.

no.uio.ifi.refaktor.change.processors
Contains a refactoring processor for theMove Method refactoring. The
code is stolen and modified to fix a bug. The related bug is described
in section 9.2 on page 63.

56

no.uio.ifi.refaktor.handlers

This package contains handlers for the commands defined in the plugin
manifest.

no.uio.ifi.refaktor.prefix

This package contains the Prefix type that is the data representation of
the prefixes found by the PrefixesCollector. It also contains the prefix
set for storing and working with prefixes.

no.uio.ifi.refaktor.statistics

The package contains statistics functionality. Its heart is the statistics aspect
that is responsible for gathering statistics during the execution of the Extract
and Move Method refactoring.

no.uio.ifi.refaktor.statistics.reports
This package contains a simple framework for generating reports from
the statistics data generated by the aspect. Currently, the only
available report type is a simple text report.

no.uio.ifi.refaktor.textselection

This package contains the two custom text selections that are used
extensively throughout the project. One of them is just a subclass of the
other, to support the use of the memento pattern to optimize the memory
usage during benchmarking.

no.uio.ifi.refaktor.debugging

The package contains a debug utility class. I addition to this, the package
no.uio.ifi.refaktor.utils.aspects contains a couple of aspects used
for debugging purposes.

no.uio.ifi.refaktor.utils

Utility package that contains all the functionality that has to do with parsing
of source code. It also has utility classes for looking up handles to methods
and types et cetera.

no.uio.ifi.refaktor.utils.caching
This package contains the caching manager for compilation units,
along with classes for different caching strategies.

no.uio.ifi.refaktor.utils.nullobjects
Contains classes for creating different null objects. Most of the classes
is used to represent null objects of different handle types. These null
objects are returned from various utility classes instead of returning a
null value when other values are not available.

57

7.2 Continuous integration

The continuous integration server Jenkins1 has been set up for the project2.
It is used as a way to run tests and perform code coverage analysis.

To be able to build the Eclipse plugins and run tests for them with
Jenkins, the component assembly project Buckminster3 is used, through its
plugin for Jenkins. Buckminster provides for a way to specify the resources
needed for building a project and where and how to find them. Buckminster
also handles the setup of a target environment to run the tests in. All this
is needed because the code to build depends on an Eclipse installation with
various plugins.

7.2.1 Problems with AspectJ

The Buckminster build worked fine until introducing AspectJ into the
project. When building projects using AspectJ, there are some additional
steps that needs to be performed. First of all, the aspects themselves must
be compiled. Then the aspects needs to be woven with the classes they
affect. This demands a process that does multiple passes over the source
code.

When using AspectJ with Eclipse, the specialized compilation and the
weaving can be handled by the AspectJ Development Tools4. This works
all fine, but it complicates things when trying to build a project depending
on Eclipse plugins outside of Eclipse. There is supposed to be a way to
specify a compiler adapter for javac, together with the file extensions for
the file types it shall operate. The AspectJ compiler adapter is called
Ajc11CompilerAdapter5, and it works with files that has the extensions
*.java and *.aj. I tried to setup this in the build properties file for the
project containing the aspects, but to no avail. The project containing the
aspects does not seem to be built at all, and the projects that depends on
it complains that they cannot find certain classes.

I then managed to write an Ant6 build file that utilizes the AspectJ
compiler adapter, for the no.uio.ifi.refaktor plugin. The problem was
then that it could no longer take advantage of the environment set up by
Buckminster. The solution to this particular problem was of a “hacky”
nature. It involves exporting the plugin dependencies for the project to an
Ant build file, and copy the exported path into the existing build script.
But then the Ant script needs to know where the local Eclipse installation
is located. This is no problem when building on a local machine, but to
utilize the setup done by Buckminster is a problem still unsolved. To
get the classpath for the build setup correctly, and here comes the most
“hacky” part of the solution, the Ant script has a target for copying the

1http://jenkins-ci.org/
2A work mostly done by the supervisor.
3http://www.eclipse.org/buckminster/
4https://www.eclipse.org/ajdt/
5org.aspectj.tools.ant.taskdefs.Ajc11CompilerAdapter
6https://ant.apache.org/

58

http://jenkins-ci.org/
http://www.eclipse.org/buckminster/
https://www.eclipse.org/ajdt/
https://ant.apache.org/

classpath elements into a directory relative to the project directory and
checking it into Git. When no ECLIPSE_HOME property is set while running
Ant, the script uses the copied plugins instead of the ones provided by the
Eclipse installation when building the project. This obviously creates some
problems with maintaining the list of dependencies in the Ant file, as well as
remembering to copy the plugins every time the list of dependencies change.

The Ant script described above is run by Jenkins before the Buckminster
setup and build. When setup like this, the Buckminster build succeeds for
the projects not using AspectJ, and the tests are run as normal. This is all
good, but it feels a little scary, since the reason for Buckminster not working
with AspectJ is still unknown.

The problems with building with AspectJ on the Jenkins server lasted
for a while, before they were solved. This is reflected in the “Test Result
Trend” and “Code Coverage Trend” reported by Jenkins.

59

60

Chapter 8

Methodology

8.1 Evolutionary design

In the programming work for this project, it have tried to use a design
strategy called evolutionary design, also known as continuous or incremental
design [14b]. It is a software design strategy advocated by the Extreme
Programming community. The essence of the strategy is that you should let
the design of your program evolve naturally as your requirements change.
This is seen in contrast with up-front design, where design decisions are
made early in the process.

The motivation behind evolutionary design is to keep the design of
software as simple as possible. This means not introducing unneeded
functionality into a program. You should defer introducing flexibility into
your software, until it is needed to be able to add functionality in a clean
way.

Holding up design decisions, implies that the time will eventually come
when decisions have to be made. The flexibility of the design then relies
on the programmer’s abilities to perform the necessary refactoring, and her
confidence in those abilities. From my experience working on this project, I
can say that this confidence is greatly enhanced by having automated tests
to rely on (see section 8.2 on the current page).

The choice of going for evolutionary design developed naturally. As
Fowler points out in his article Is Design Dead?, evolutionary design much
resembles the “code and fix” development strategy [Fow04]. A strategy that
most of us have practiced in school. This was also the case when I first
started this work. I had to learn the inner workings of Eclipse and its
refactoring-related plugins. That meant a lot of fumbling around with code
I did not know, in a trial and error fashion. Eventually I started writing
tests for my code, and my design began to evolve.

8.2 Test-driven development

As mentioned before, the project started out as a classic code and fix
developmen process. My focus was aimed at getting something to work,
rather than doing so according to best practice. This resulted in a project

61

that got out of its starting blocks, but it was not accompanied by any tests.
Hence it was soon difficult to make any code changes with the confidence
that the program was still correct afterwards (assuming it was so before
changing it). I always knew that I had to introduce some tests at one point,
but this experience accelerated the process of leading me onto the path of
testing.

I then wrote tests for the core functionality of the plugin, and thus gained
more confidence in the correctness of my code. I could now perform quite
drastic changes without “wetting my pants“. After this, nearly all of the
semantic changes done to the business logic of the project, or the addition of
new functionality, was made in a test-driven manner. This means that before
performing any changes, I would define the desired functionality through a
set of tests. I would then run the tests to check that they were run and that
they did not pass. Then I would do any code changes necessary to make
the tests pass. The definition of how the program is supposed to operate is
then captured by the tests. However, this does not prove the correctness of
the analysis leading to the test definitions.

8.3 Continuous integration

???

62

Chapter 9

Eclipse Bugs Found

9.1 Eclipse bug 420726: Code is broken when
moving a method that is assigning to the
parameter that is also the move destination

This bug was found when analyzing what kinds of names that was to be
considered as unfixes (see section 5.4.2 on page 42).

9.1.1 The bug

The bug emerges when trying to move a method from one class to another,
and when the target for the move (must be a variable, local or field) is both a
parameter variable and also is assigned to within the method body. Eclipse
allows this to happen, although it is the sure path to a compilation error.
This is because we would then have an assignment to a this expression,
which is not allowed in Java. The submitted bug report can be found on
https://bugs.eclipse.org/bugs/show_bug.cgi?id=420726.

9.1.2 The solution

The solution to this problem is to add all simple names that are assigned to
in a method body to the set of unfixes.

9.2 Eclipse bug 429416: IAE when moving
method from anonymous class

I discovered this bug during a batch change on the org.eclipse.jdt.ui
project.

9.2.1 The bug

This bug surfaces when trying to use the Move Method refactoring
to move a method from an anonymous class to another class. This
happens both for my simulation as well as in Eclipse, through the
user interface. It only occurs when Eclipse analyzes the program

63

https://bugs.eclipse.org/bugs/show_bug.cgi?id=420726

and finds it necessary to pass an instance of the originating class as
a parameter to the moved method. I.e. it want to pass a this
expression. The execution ends in an IllegalArgumentException1 in
SimpleName2 and its setIdentifier(String) method. The simple name
is attempted created in the method createInlinedMethodInvocation3 so
the MoveInstanceMethodProcessor was early a clear suspect.

The createInlinedMethodInvocation is the method that creates a
method invocation where the previous invocation to the method that was
moved was. From its code it can be read that when a this expression is
going to be passed in to the invocation, it shall be qualified with the name
of the original method’s declaring class, if the declaring class is either an
anonymous class or a member class. The problem with this, is that an
anonymous class does not have a name, hence the term anonymous class!
Therefore, when its name, an empty string, is passed into newSimpleName4

it all ends in an IllegalArgumentException. The submitted bug report
can be found on https://bugs.eclipse.org/bugs/show_bug.cgi?id=429416.

9.2.2 How I solved the problem

Since the MoveInstanceMethodProcessor is instantiated in the MoveMethod-
RefactoringExecutor5, and only need to be a MoveProcessor6, I
was able to copy the code for the original move processor and
modify it so that it works better for me. It is now called
ModifiedMoveInstanceMethodProcessor7. The only modification done
(in addition to some imports and suppression of warnings), is in the
createInlinedMethodInvocation. When the declaring class of the method
to move is anonymous, the this expression in the parameter list is not qual-
ified with the declaring class’ (empty) name.

9.3 Eclipse bug 429954: Extracting statement
with reference to local type breaks code

The bug was discovered when doing some changes to the way unfixes is
computed.

9.3.1 The bug

The problem is that Eclipse is allowing selections that references variables
of local types to be extracted. When this happens the code is broken, since
the extracted method must take a parameter of a local type that is not

1java.lang.IllegalArgumentException
2org.eclipse.jdt.core.dom.SimpleName
3org.eclipse.jdt.internal.corext.refactoring.structure.

MoveInstanceMethodProcessor#createInlinedMethodInvocation()
4org.eclipse.jdt.core.dom.AST#newSimpleName()
5no.uio.ifi.refaktor.change.executors.MoveMethodRefactoringExecutor
6org.eclipse.ltk.core.refactoring.participants.MoveProcessor
7no.uio.ifi.refaktor.change.processors.ModifiedMoveInstanceMethodProcessor

64

https://bugs.eclipse.org/bugs/show_bug.cgi?id=429416

in the methods scope. The problem is illustrated in listing 10 on page 43,
but there in another setting. The submitted bug report can be found on
https://bugs.eclipse.org/bugs/show_bug.cgi?id=429954.

9.3.2 Actions taken

There are no actions directly springing out of this bug, since the Extract
Method refactoring cannot be meant to be this way. This is handled on
the analysis stage of our Extract and Move Method refactoring. So names
representing variables of local types is considered unfixes (see section 5.4.2
on page 42).
write more when fixing this in legal statements checker

65

https://bugs.eclipse.org/bugs/show_bug.cgi?id=429954

66

Chapter 10

Conclusions and Future
Work

Write

10.1 Future work
Copied from introduction:

For the metrics, I will at least measure the Coupling between object
classes (CBO) metric that is described by Chidamber and Kemerer in their
article A Metrics Suite for Object Oriented Design [CK94].

. . .
Then the effect of the change must be measured by calculating the chosen

software metrics both before and after the execution.
Metrics, . . .

67

68

Chapter 11

Related Work

11.1 The compositional paradigm of refactoring
This paradigm builds upon the observation of Vakilian et al. [Vak+12], that
of the many automated refactorings existing in modern IDEs, the simplest
ones are dominating the usage statistics. The report mainly focuses on
Eclipse as the tool under investigation.

The paradigm is described almost as the opposite of automated
composition of refactorings (see section 1.9 on page 10). It works by
providing the programmer with easily accessible primitive refactorings.
These refactorings shall be accessed via keyboard shortcuts or quick-assist
menus1 and be promptly executed, opposed to in the currently dominating
wizard-based refactoring paradigm. They are meant to stimulate composing
smaller refactorings into more complex changes, rather than doing a large
upfront configuration of a wizard-based refactoring, before previewing and
executing it. The compositional paradigm of refactoring is supposed to
give control back to the programmer, by supporting him with an option of
performing small rapid changes instead of large changes with a lesser degree
of control. The report authors hope this will lead to fewer unsuccessful
refactorings. It also could lower the bar for understanding the steps of a
larger composite refactoring and thus also help in figuring out what goes
wrong if one should choose to op in on a wizard-based refactoring.

Vakilian and his associates have performed a survey of the effectiveness
of the compositional paradigm versus the wizard-based one. They claim
to have found evidence of that the compositional paradigm outperforms
the wizard-based. It does so by reducing automation, which seem
counterintuitive. Therefore they ask the question “What is an appropriate
level of automation?”, and thus questions what they feel is a rush toward
more automation in the software engineering community.

1Think quick-assist with Ctrl+1 in Eclipse

69

70

Glossary

design pattern A design pattern is a named abstraction, that is meant
to solve a general design problem. It describes the key aspects
of a common problem and identifies its participators and how they
collaborate. 2

Extract Class The Extract Class refactoring works by creating a class, for
then to move members from another class to that class and access
them from the old class via a reference to the new class. 7

profiler A profiler is a program for analyzing performance within an
application. It is used to analyze memory consumption, processing
time and frequency of procedure calls and such. 51

profiling is to run a computer program through a profiler/with a profiler
attached. 10, 51

software obfuscation makes source code harder to read and analyze,
while preserving its semantics. 2

xUnit framework An xUnit framework is a framework for writing unit
tests for a computer program. It follows the patterns known from the
JUnit framework for Java [Fow]. 13

71

72

Bibliography

[11] JAVA EE Productivity Report 2011. Survey. 2011. url: http:
//zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_
Productivity_Report_2011_finalv2.pdf.

[14a] Advice (programming). In: Wikipedia, the free encyclopedia.
Page Version ID: 462233199. Mar. 14, 2014. url: https://en.
wikipedia.org/w/index.php?title=Advice_(programming)&oldid=
462233199 (visited on 03/21/2014).

[14b] Continuous design. In: Wikipedia, the free encyclopedia. Page
Version ID: 544105069. Apr. 8, 2014. url: https://en.wikipedia.
org/w/index.php?title=Continuous_design&oldid=544105069
(visited on 04/09/2014).

[Bro04] Leo Brodie. Thinking Forth. 3rd ed. 2004. url: http://thinking-
forth.sourceforge.net/.

[CK94] S.R. Chidamber and C.F. Kemerer. “A Metrics Suite for
Object Oriented Design.” In: IEEE Transactions on Software
Engineering 20.6 (June 1994), pp. 476–493. issn: 0098-5589.
doi: 10.1109/32.295895.

[Dem02] Serge Demeyer. “Maintainability Versus Performance: What’s
the Effect of Introducing Polymorphism?” In: ICSE’2003
(2002).

[Fow] Martin Fowler. Xunit. url: http://www.martinfowler.com/bliki/
Xunit.html (visited on 03/27/2014).

[Fow01] Martin Fowler. Crossing Refactoring’s Rubicon. 2001. url: http:
//martinfowler.com/articles/refactoringRubicon.html (visited on
02/09/2014).

[Fow03] Martin Fowler. EtymologyOfRefactoring. Sept. 10, 2003. url:
http : / /martinfowler . com / bliki / EtymologyOfRefactoring . html
(visited on 03/20/2014).

[Fow04] Martin Fowler. Is Design Dead? 2004. url: http://martinfowler.
com/articles/designDead.html (visited on 04/09/2014).

[Fow99] Martin Fowler. Refactoring: improving the design of existing
code. Reading, MA: Addison-Wesley, 1999. isbn: 0201485672.

[Gam+95] Erich Gamma et al. Design patterns: elements of reusable
object-oriented software. Reading, MA: Addison-Wesley, 1995.
isbn: 0201633612.

73

http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
https://en.wikipedia.org/w/index.php?title=Advice_(programming)&oldid=462233199
https://en.wikipedia.org/w/index.php?title=Advice_(programming)&oldid=462233199
https://en.wikipedia.org/w/index.php?title=Advice_(programming)&oldid=462233199
https://en.wikipedia.org/w/index.php?title=Continuous_design&oldid=544105069
https://en.wikipedia.org/w/index.php?title=Continuous_design&oldid=544105069
http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/
http://dx.doi.org/10.1109/32.295895
http://www.martinfowler.com/bliki/Xunit.html
http://www.martinfowler.com/bliki/Xunit.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
http://martinfowler.com/articles/designDead.html
http://martinfowler.com/articles/designDead.html

[Ker05] Joshua Kerievsky. Refactoring to patterns. Boston: Addison-
Wesley, 2005. isbn: 0321213351.

[Lou97] Kenneth C Louden. Compiler construction: principles and
practice. Boston: PWS Pub. Co., 1997. isbn: 0534939724
9780534939724.

[MC09] Robert C Martin and James O Coplien. Clean code: a handbook
of agile software craftsmanship. Upper Saddle River, NJ [etc.]:
Prentice Hall, 2009. isbn: 9780132350884 0132350882.

[Mey88] Bertrand Meyer.Object-oriented software construction. Prentice-
Hall, 1988. isbn: 0136290493 9780136290490 0136290310
9780136290315.

[Mil56] George A. Miller. “The magical number seven, plus or minus
two: some limits on our capacity for processing information.”
In: Psychological Review 63.2 (1956), pp. 81–97. issn: 1939-
1471(Electronic);0033-295X(Print). doi: 10.1037/h0043158.

[Nic06] Ethan Nicholas. Understanding Weak References. Java.net.
May 4, 2006. url: https ://weblogs . java .net/blog/2006/05/
04/understanding-weak-references (visited on 03/20/2014).

[Opd92] William F. Opdyke. “Refactoring Object-oriented Frameworks.”
UMI Order No. GAX93-05645. Champaign, IL, USA: Univer-
sity of Illinois at Urbana-Champaign, 1992.

[RBJ97] Don Roberts, John Brant, and Ralph Johnson. “A Refactoring
Tool for Smalltalk.” In: Theor. Pract. Object Syst. 3.4 (Oct.
1997), 253–263. issn: 1074-3227.

[Vak+12] Mohsen Vakilian et al. A Compositional Paradigm of Au-
tomating Refactorings. May 2012. url: https : / / www .
ideals . illinois . edu / bitstream / handle / 2142 / 30851 /
VakilianETAL2012Compositional.pdf?sequence=4.

[VJ12] Mohsen Vakilian and Ralph Johnson. Composite Refactorings:
The Next Refactoring Rubicons. University of Illinois at
Urbana-Champaign, 2012. url: https://www.ideals.illinois.edu/
bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2.

74

http://dx.doi.org/10.1037/h0043158
https://weblogs.java.net/blog/2006/05/04/understanding-weak-references
https://weblogs.java.net/blog/2006/05/04/understanding-weak-references
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2

Todo list

Remove all todos (including list) before delivery/printing!!!
Can be done by removing “draft” from documentclass. . i

Write abstract . i
Proof? . 3
Thinking Forth? . 5
motivation, examples, manual vs automated?, what about refactoring

in a very large code base? . 10
What about the language specific part? 21
refine . 23
??? . 24
Clean up sections/subsections. 27
Elaborate? . 28
make clearer . 29
fix listing 8 on page 30? Text only? All sub-sequences. 30
Write about the ExtractAndMoveMethodCandidateComparator/Fa-

vorNoUnfixesCandidateComparator 31
Where to put this section? . 33
Add more to the AST format tree? fig. 5.4 on page 39 38
Check out ExtractMethodAnalyzer from ExtractMethodRefactoring . 43
File Eclipse bug report . 44
File Eclipse bug report . 45
Finish. 47
Better name than “benchmarking”? 49
Write . 53
??? . 62
write more when fixing this in legal statements checker 65
Write . 67
Copied from introduction: . 67
Metrics, . 67

75

	What is Refactoring?
	Defining refactoring
	The etymology of 'refactoring'
	Motivation – Why people refactor
	The magical number seven
	Notable contributions to the refactoring literature
	Tool support (for Java)
	The relation to design patterns
	The impact on software quality
	What is software quality?
	The impact on performance

	Composite refactorings
	Manual vs. automated refactorings
	Correctness of refactorings
	Refactoring and the importance of testing
	Testing the code from correctness section

	The Project
	Project description
	The primitive refactorings
	The Extract Method refactoring
	The Move Method refactoring

	The Extract and Move Method refactoring
	Research questions
	Choosing the target language
	Choosing the tools

	Refactorings in Eclipse JDT: Design, Shortcomings and Wishful Thinking
	Design
	The Language Toolkit

	Shortcomings
	Absence of Generics in Eclipse Source Code
	Composite Refactorings Will Not Appear as Atomic Actions

	Wishful Thinking

	Composite Refactorings in Eclipse
	A Simple Ad Hoc Model
	A typical RefaktorChanger

	The Extract and Move Method Refactoring
	The Building Blocks
	The ExtractAndMoveMethodChanger
	The SearchBasedExtractAndMoveMethodChanger
	The Prefix Class
	The PrefixSet Class
	Hacking the Refactoring Undo History

	Analyzing Source Code in Eclipse
	The Java model
	The Abstract Syntax Tree
	The AST in Eclipse

	The ASTVisitor
	Property collectors
	The PrefixesCollector
	The UnfixesCollector
	The ContainsReturnStatementCollector
	The LastStatementCollector

	Checkers
	The CallToProtectedOrPackagePrivateMethodChecker
	The InstantiationOfNonStaticInnerClassChecker
	The EnclosingInstanceReferenceChecker
	The ReturnStatementsChecker
	The AmbiguousReturnValueChecker
	The IllegalStatementsChecker

	Benchmarking
	The benchmark setup
	The ProjectImporter

	Statistics
	AspectJ
	The Statistics class
	Advices

	Optimizations
	Caching
	Memento

	Technicalities
	Source code organization
	The no.uio.ifi.refaktor project

	Continuous integration
	Problems with AspectJ

	Methodology
	Evolutionary design
	Test-driven development
	Continuous integration

	Eclipse Bugs Found
	Eclipse bug 420726: Code is broken when moving a method that is assigning to the parameter that is also the move destination
	The bug
	The solution

	Eclipse bug 429416: IAE when moving method from anonymous class
	The bug
	How I solved the problem

	Eclipse bug 429954: Extracting statement with reference to local type breaks code
	The bug
	Actions taken

	Conclusions and Future Work
	Future work

	Related Work
	The compositional paradigm of refactoring

