
Refactoring
An essay

Erlend Kristiansen
Master’s Thesis Spring 2014

Abstract

Remove all todos (including list) before delivery/printing!!!
Can be done by removing “draft” from documentclass.
Write abstract

i

ii

Contents

1 What is Refactoring? 1
1.1 Defining refactoring . 1
1.2 The etymology of ’refactoring’ 2
1.3 Motivation – Why people refactor 3
1.4 The magical number seven . 4
1.5 Notable contributions to the refactoring literature 6
1.6 Tool support (for Java) . 6
1.7 The relation to design patterns 8
1.8 The impact on software quality 9

1.8.1 What is software quality? 9
1.8.2 The impact on performance 9

1.9 Composite refactorings . 10
1.10 Manual vs. automated refactorings 10
1.11 Correctness of refactorings . 11
1.12 Refactoring and the importance of testing 13

1.12.1 Testing the code from correctness section 13
1.13 The project . 14
1.14 Software metrics . 14

2 . . . 15
2.1 The problem statement . 15
2.2 Choosing the target language 15
2.3 Choosing the tools . 15

3 Refactorings in Eclipse JDT: Design, Shortcomings and
Wishful Thinking 17
3.1 Design . 17

3.1.1 The Language Toolkit 17
3.2 Shortcomings . 18

3.2.1 Absence of Generics in Eclipse Source Code 19
3.2.2 Composite Refactorings Will Not Appear as Atomic

Actions . 19
3.3 Wishful Thinking . 19

4 Composite Refactorings in Eclipse 21
4.1 A Simple Ad Hoc Model . 21

4.1.1 A typical RefaktorChanger 21

iii

4.2 The Extract and Move Method Refactoring 21
4.2.1 The Building Blocks 21
4.2.2 The ExtractAndMoveMethodChanger Class 22
4.2.3 Finding the IMethod 24
4.2.4 The ExtractAndMoveMethodPrefixesExtractor Class . 24
4.2.5 The Prefix Class . 26
4.2.6 The PrefixSet Class 26
4.2.7 Hacking the Refactoring Undo History 26

5 Analyzing Code 29
5.1 AST . 29
5.2 Illegal selections . 29

5.2.1 Not all branches end in return 29
5.2.2 Ambiguous return statement 29

6 Eclipse Bugs 31
6.1 Eclipse bug 420726: Code is broken when moving a method

that is assigning to the parameter that is also the move
destination . 31
6.1.1 The bug . 31
6.1.2 The solution . 31

6.2 Eclipse bug 429416: IAE when moving method from
anonymous class . 31
6.2.1 The bug . 32
6.2.2 How I solved the problem 32

7 Related Work 33
7.1 The compositional paradigm of refactoring 33

iv

List of Figures

1.1 The Extract Superclass refactoring 11

v

vi

List of Tables

vii

viii

Preface

The discussions in this report must be seen in the context of object oriented
programming languages, and Java in particular, since that is the language
in which most of the examples will be given. All though the techniques
discussed may be applicable to languages from other paradigms, they will
not be the subject of this report.

ix

x

Chapter 1

What is Refactoring?

This question is best answered by first defining the concept of a refactoring,
what it is to refactor, and then discuss what aspects of programming make
people want to refactor their code.

1.1 Defining refactoring
Martin Fowler, in his classic book on refactoring [6], defines a refactoring
like this:

Refactoring (noun): a change made to the internal structure1 of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [6, p. 53]

This definition assigns additional meaning to the word refactoring, beyond
the composition of the prefix re-, usually meaning something like “again”
or “anew”, and the word factoring, that can mean to isolate the factors
of something. Here a factor would be close to the mathematical definition
of something that divides a quantity, without leaving a remainder. Fowler
is mixing the motivation behind refactoring into his definition. Instead it
could be more refined, formed to only consider themechanical and behavioral
aspects of refactoring. That is to factor the program again, putting it
together in a different way than before, while preserving the behavior of
the program. An alternative definition could then be:

Definition. A refactoring is a transformation done to a program without
altering its external behavior.

From this we can conclude that a refactoring primarily changes how the
code of a program is perceived by the programmer, and not the behavior
experienced by any user of the program. Although the logical meaning is
preserved, such changes could potentially alter the program’s behavior when
it comes to performance gain or -penalties. So any logic depending on the
performance of a program could make the program behave differently after
a refactoring.

1The structure observable by the programmer.

1

In the extreme case one could argue that such a thing as software
obfuscation is refactoring. Software obfuscation is to make source code
harder to read and analyze, while preserving its semantics. It could be
done composing many, more or less randomly chosen, refactorings. Then
the question arise whether it can be called a composite refactoring (see
section 1.9 on page 10) or not? The answer is not obvious. First, there is no
way to describe the mechanics of software obfuscation, beacause there are
infinitely many ways to do that. Second, obfuscation can be thought of as
one operation: Either the code is obfuscated, or it is not. Third, it makes
no sense to call software obfuscation a refactoring, since it holds different
meaning to different people. The last point is important, since one of the
motivations behind defining different refactorings is to build up a vocabulary
for software professionals to reason and discuss about programs, similar
to the motivation behind design patterns [7]. So for describing software
obfuscation, it might be more appropriate to define what you do when
performing it rather than precisely defining its mechanics in terms of other
refactorings.

1.2 The etymology of ’refactoring’

It is a little difficult to pinpoint the exact origin of the word “refactoring”,
as it seems to have evolved as part of a colloquial terminology, more than a
scientific term. There is no authoritative source for a formal definition of it.

According to Martin Fowler [5], there may also be more than one origin
of the word. The most well-known source, when it comes to the origin of
refactoring, is the Smalltalk1 community and their infamous Refactoring
Browser2 described in the article A Refactoring Tool for Smalltalk [14],
published in 1997. Allegedly [5], the metaphor of factoring programs was also
present in the Forth3 community, and the word “refactoring” is mentioned
in a book by Leo Brodie, called Thinking Forth [1], first published in 19844.
The exact word is only printed one place [1, p. 232], but the term factoring
is prominent in the book, that also contains a whole chapter dedicated to
(re)factoring, and how to keep the (Forth) code clean and maintainable.

. . . good factoring technique is perhaps the most important skill
for a Forth programmer. [1, p. 172]

Brodie also express what factoring means to him:

1Smalltalk, object-oriented, dynamically typed, reflective programming language. See
http://www.smalltalk.org

2http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html
3Forth – stack-based, extensible programming language, without type-checking. See

http://www.forth.org
4Thinking Forth was first published in 1984 by the Forth Interest Group. Then it was

reprinted in 1994 with minor typographical corrections, before it was transcribed into an
electronic edition typeset in LATEX and published under a Creative Commons licence in
2004. The edition cited here is the 2004 edition, but the content should essentially be as
in 1984.

2

http://www.smalltalk.org
http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html
http://www.forth.org

Factoring means organizing code into useful fragments. To make
a fragment useful, you often must separate reusable parts from
non-reusable parts. The reusable parts become new definitions.
The non-reusable parts become arguments or parameters to the
definitions. [1, p. 172]

Fowler claims that the usage of the word refactoring did not pass between
the Forth and Smalltalk communities, but that it emerged independently in
each of the communities.

1.3 Motivation – Why people refactor

There are many reasons why people want to refactor their programs. They
can for instance do it to remove duplication, break up long methods or to
introduce design patterns [7] into their software systems. The shared trait
for all these are that peoples intentions are to make their programs better,
in some sense. But what aspects of their programs are becoming improved?

As already mentioned, people often refactor to get rid of duplication.
Moving identical or similar code into methods, and maybe pushing methods
up or down in their class hierarchies. Making template methods for
overlapping algorithms/functionality and so on. It is all about gathering
what belongs together and putting it all in one place. The resulting code
is then easier to maintain. When removing the implicit coupling1 between
code snippets, the location of a bug is limited to only one place, and new
functionality need only to be added to this one place, instead of a number
of places people might not even remember.

A problem you often encounter when programming, is that a program
contains a lot of long and hard-to-grasp methods. It can then help to break
the methods into smaller ones, using the Extract Method refactoring [6].
Then you may discover something about a program that you were not aware
of before; revealing bugs you did not know about or could not find due to
the complex structure of your program. Making the methods smaller and Proof?Proof?
giving good names to the new ones clarifies the algorithms and enhances the
understandability of the program (see section 1.4 on page 4). This makes
refactoring an excellent method for exploring unknown program code, or
code that you had forgotten that you wrote.

Most primitive refactorings are simple. Their true power is first revealed
when they are combined into larger — higher level — refactorings, called
composite refactorings (see section 1.9 on page 10). Often the goal of such
a series of refactorings is a design pattern. Thus the design can be evolved
throughout the lifetime of a program, as opposed to designing up-front. It
is all about being structured and taking small steps to improve a program’s
design.

1When duplicating code, the code might not be coupled in other ways than that it is
supposed to represent the same functionality. So if this functionality is going to change, it
might need to change in more than one place, thus creating an implicit coupling between
the multiple pieces of code.

3

Many software design pattern are aimed at lowering the coupling between
different classes and different layers of logic. One of the most famous is
perhaps the Model-View-Controller [7] pattern. It is aimed at lowering
the coupling between the user interface and the business logic and data
representation of a program. This also has the added benefit that the
business logic could much easier be the target of automated tests, increasing
the productivity in the software development process. Refactoring is an
important tool on the way to something greater.

Another effect of refactoring is that with the increased separation of
concerns coming out of many refactorings, the performance can be improved.
When profiling programs, the problematic parts are narrowed down to
smaller parts of the code, which are easier to tune, and optimization can be
performed only where needed and in a more effective way.

Last, but not least, and this should probably be the best reason to
refactor, is to refactor to facilitate a program change. If one has managed
to keep one’s code clean and tidy, and the code is not bloated with design
patterns that are not ever going to be needed, then some refactoring might
be needed to introduce a design pattern that is appropriate for the change
that is going to happen.

Refactoring program code — with a goal in mind — can give
the code itself more value. That is in the form of robustness to
bugs, understandability and maintainability. Having robust code is an
obvious advantage, but understandability and maintainability are both very
important aspects of software development. By incorporating refactoring in
the development process, bugs are found faster, new functionality is added
more easily and code is easier to understand by the next person exposed to
it, which might as well be the person who wrote it. The consequence of this,
is that refactoring can increase the average productivity of the development
process, and thus also add to the monetary value of a business in the long
run. The perspective on productivity and money should also be able to open
the eyes of the many nearsighted managers that seldom see beyond the next
milestone.

1.4 The magical number seven

The article The magical number seven, plus or minus two: some limits
on our capacity for processing information [12] by George A. Miller, was
published in the journal Psychological Review in 1956. It presents evidence
that support that the capacity of the number of objects a human being can
hold in its working memory is roughly seven, plus or minus two objects.
This number varies a bit depending on the nature and complexity of the
objects, but is according to Miller “. . . never changing so much as to be
unrecognizable.”

Miller’s article culminates in the section called Recoding, a term he
borrows from communication theory. The central result in this section is
that by recoding information, the capacity of the amount of information
that a human can process at a time is increased. By recoding, Miller means

4

to group objects together in chunks and give each chunk a new name that it
can be remembered by. By organizing objects into patterns of ever growing
depth, one can memorize and process a much larger amount of data than if
it were to be represented as its basic pieces. This grouping and renaming is
analogous to how many refactorings work, by grouping pieces of code and
give them a new name. Examples are the fundamental Extract Method and
Extract Class refactorings [6].

. . . recoding is an extremely powerful weapon for increasing the
amount of information that we can deal with. [12, p. 95]

An example from the article addresses the problem of memorizing a
sequence of binary digits. Let us say we have the following sequence1 of
16 binary digits: “1010001001110011”. Most of us will have a hard time
memorizing this sequence by only reading it once or twice. Imagine if we
instead translate it to this sequence: “A273”. If you have a background
from computer science, it will be obvious that the latest sequence is the first
sequence recoded to be represented by digits with base 16. Most people
should be able to memorize this last sequence by only looking at it once.

Another result from the Miller article is that when the amount of
information a human must interpret increases, it is crucial that the
translation from one code to another must be almost automatic for the
subject to be able to remember the translation, before he is presented with
new information to recode. Thus learning and understanding how to best
organize certain kinds of data is essential to efficiently handle that kind of
data in the future. This is much like when humans learn to read. First they
must learn how to recognize letters. Then they can learn distinct words, and
later read sequences of words that form whole sentences. Eventually, most
of them will be able to read whole books and briefly retell the important
parts of its content. This suggest that the use of design patterns [7] is a
good idea when reasoning about computer programs. With extensive use
of design patterns when creating complex program structures, one does not
always have to read whole classes of code to comprehend how they function,
it may be sufficient to only see the name of a class to almost fully understand
its responsibilities.

Our language is tremendously useful for repackaging material
into a few chunks rich in information. [12, p. 95]

Without further evidence, these results at least indicate that refactoring
source code into smaller units with higher cohesion and, when needed,
introducing appropriate design patterns, should aid in the cause of creating
computer programs that are easier to maintain and has code that is easier
(and better) understood.

1The example presented here is slightly modified (and shortened) from what is
presented in the original article [12], but it is essentially the same.

5

1.5 Notable contributions to the refactoring liter-
ature

Update with more contributions

1992 William F. Opdyke submits his doctoral dissertation called Refactor-
ing Object-Oriented Frameworks [13]. This work defines a set of refac-
torings, that are behavior preserving given that their preconditions are
met. The dissertation is focused on the automation of refactorings.

1999 Martin Fowler et al.: Refactoring: Improving the Design of Existing
Code [6]. This is maybe the most influential text on refactoring. It
bares similarities with Opdykes thesis [13] in the way that it provides
a catalog of refactorings. But Fowler’s book is more about the craft of
refactoring, as he focuses on establishing a vocabulary for refactoring,
together with the mechanics of different refactorings and when to
perform them. His methodology is also founded on the principles of
test-driven development.

2005 Joshua Kerievsky: Refactoring to Patterns [9]. This book is heavily
influenced by Fowler’s Refactoring [6] and the “Gang of Four” Design
Patterns [7]. It is building on the refactoring catalogue from Fowler’s
book, but is trying to bridge the gap between refactoring and design
patterns by providing a series of higher-level composite refactorings,
that makes code evolve toward or away from certain design patterns.
The book is trying to build up the readers intuition around why one
would want to use a particular design pattern, and not just how. The
book is encouraging evolutionary design. (See section 1.7 on page 8.)

1.6 Tool support (for Java)

This section will briefly compare the refatoring support of the three IDEs
Eclipse1, IntelliJ IDEA2 and NetBeans3. These are the most popular Java
IDEs [8].

All three IDEs provide support for the most useful refactorings, like the
different extract, move and rename refactorings. In fact, Java-targeted IDEs
are known for their good refactoring support, so this did not appear as a
big surprise.

The IDEs seem to have excellent support for the Extract Method
refactoring, so at least they have all passed the first refactoring rubicon [4,
15].

Regarding the Move Method refactoring, the Eclipse and IntelliJ IDEs
do the job in very similar manners. In most situations they both do a
satisfying job by producing the expected outcome. But they do nothing

1http://www.eclipse.org/
2The IDE under comparison is the Community Edition, http://www.jetbrains.com/idea/
3https://netbeans.org/

6

http://www.eclipse.org/
http://www.jetbrains.com/idea/
https://netbeans.org/

to check that the result does not break the semantics of the program (see
section 1.11 on page 11). The NetBeans IDE implements this refactoring
in a somewhat unsophisticated way. For starters, its default destination for
the move is itself, although it refuses to perform the refactoring if chosen.
But the worst part is, that if moving the method f of the class C to the class
X, it will break the code. The result is shown in listing 1 on page 7.

public class C {
private X x;
...
public void f() {

x.m();
x.n();

}
}

public class X {
...
public void f(C c) {

c.x.m();
c.x.n();

}
}

Listing 1: Moving method f from C to X.

NetBeans will try to make code that call the methods m and n of X by
accessing them through c.x, where c is a parameter of type C that is added
the method f when it is moved. (This is seldom the desired outcome of this
refactoring, but ironically, this “feature” keeps NetBeans from breaking the
code in the example from section 1.11 on page 11.) If c.x for some reason
is inaccessible to X, as in this case, the refactoring breaks the code, and it
will not compile. NetBeans presents a preview of the refactoring outcome,
but the preview does not catch it if the IDE is about break the program.

The IDEs under investigation seems to have fairly good support for
primitive refactorings, but what about more complex ones, such as the
Extract Class [6]? The Extract Class refactoring works by creating a class, for
then to move members to that class and access them from the old class via
a reference to the new class. IntelliJ handles this in a fairly good manner,
although, in the case of private methods, it leaves unused methods behind.
These are methods that delegate to a field with the type of the new class,
but are not used anywhere. Eclipse has added (or withdrawn) its own quirk
to the Extract Class refactoring, and only allows for fields to be moved to
a new class, not methods. This makes it effectively only extracting a data
structure, and calling it Extract Class is a little misleading. One would often
be better off with textual extract and paste than using the Extract Class
refactoring in Eclipse. When it comes to NetBeans, it does not even seem
to have made an attempt on providing this refactoring. (Well, it probably
has, but it does not show in the IDE.)

Visual Studio (C++/C#), Smalltalk refactoring browser?, second refac-
toring rubicon?

7

1.7 The relation to design patterns

Refactoring and design patterns have at least one thing in common, they
are both promoted by advocates of clean code [10] as fundamental tools on
the road to more maintanable and extendable source code.

Design patterns help you determine how to reorganize a design,
and they can reduce the amount of refactoring you need to do
later. [7, p. 353]

Although sometimes associated with over-engineering [6, 9], design
patterns are in general assumed to be good for maintainability of source
code. That may be because many of them are designed to support the
open/closed principle of object-oriented programming. The principle was
first formulated by Bertrand Meyer, the creator of the Eiffel programming
language, like this: “Modules should be both open and closed.” [11] It has
been popularized, with this as a common version:

Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification.1

Maintainability is often thought of as the ability to be able to introduce
new functionality without having to change too much of the old code. When
refactoring, the motivation is often to facilitate adding new functionality. It
is about factoring the old code in a way that makes the new functionality
being able to benefit from the functionality already residing in a software
system, without having to copy old code into new. Then, next time someone
shall add new functionality, it is less likely that the old code has to change.
Assuming that a design pattern is the best way to get rid of duplication
and assist in implementing new functionality, it is reasonable to conclude
that a design pattern often is the target of a series of refactorings. Having
a repertoire of design patterns can also help in knowing when and how to
refactor a program to make it reflect certain desired characteristics.

There is a natural relation between patterns and refactorings.
Patterns are where you want to be; refactorings are ways to get
there from somewhere else. [6, p. 107]

This quote is wise in many contexts, but it is not always appropriate
to say “Patterns are where you want to be. . . ”. Sometimes, patterns are
where you want to be, but only because it will benefit your design. It is not
true that one should always try to incorporate as many design patterns as
possible into a program. It is not like they have intrinsic value. They only
add value to a system when they support its design. Otherwise, the use
of design patterns may only lead to a program that is more complex than
necessary.

1See http://c2.com/cgi/wiki?OpenClosedPrinciple or https://en.wikipedia.org/wiki/
Open/closed_principle

8

http://c2.com/cgi/wiki?OpenClosedPrinciple
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Open/closed_principle

The overuse of patterns tends to result from being patterns
happy. We are patterns happy when we become so enamored
of patterns that we simply must use them in our code. [9, p. 24]

This can easily happen when relying largely on up-front design. Then
it is natural, in the very beginning, to try to build in all the flexibility
that one believes will be necessary throughout the lifetime of a software
system. According to Joshua Kerievsky “That sounds reasonable — if you
happen to be psychic.” [9, p. 1] He is advocating what he believes is a better
approach: To let software continually evolve. To start with a simple design
that meets today’s needs, and tackle future needs by refactoring to satisfy
them. He believes that this is a more economic approach than investing time
and money into a design that inevitably is going to change. By relying on
continuously refactoring a system, its design can be made simpler without
sacrificing flexibility. To be able to fully rely on this approach, it is of utter
importance to have a reliable suit of tests to lean on. (See section 1.12 on
page 13.) This makes the design process more natural and less characterized
by difficult decisions that has to be made before proceeding in the process,
and that is going to define a project for all of its unforeseeable future.

1.8 The impact on software quality

1.8.1 What is software quality?

The term software quality has many meanings. It all depends on the context
we put it in. If we look at it with the eyes of a software developer, it usually
means that the software is easily maintainable and testable, or in other
words, that it is well designed. This often correlates with the management
scale, where keeping the schedule and customer satisfaction is at the center.
From the customers point of view, in addition to good usability, performance
and lack of bugs is always appreciated, measurements that are also shared
by the software developer. (In addition, such things as good documentation
could be measured, but this is out of the scope of this document.)

1.8.2 The impact on performance

Refactoring certainly will make software go more slowly1, but
it also makes the software more amenable to performance
tuning. [6, p. 69]

There is a common belief that refactoring compromises performance, due
to increased degree of indirection and that polymorphism is slower than
conditionals.

In a survey, Demeyer [3] disproves this view in the case of polymorphism.
He did an experiment on, what he calls, “Transform Self Type Checks”
where you introduce a new polymorphic method and a new class hierarchy

1With todays compiler optimization techniques and performance tuning of e.g. the
Java virtual machine, the penalties of object creation and method calls are debatable.

9

to get rid of a class’ type checking of a “type attribute“. He uses this
kind of transformation to represent other ways of replacing conditionals
with polymorphism as well. The experiment is performed on the
C++ programming language and with three different compilers and
platforms. Demeyer concludes that, with compiler optimization turned on,
polymorphism beats middle to large sized if-statements and does as well
as case-statements. (In accordance with his hypothesis, due to similarities
between the way C++ handles polymorphism and case-statements.)

The interesting thing about performance is that if you analyze
most programs, you find that they waste most of their time in a
small fraction of the code. [6, p. 70]

So, although an increased amount of method calls could potentially slow
down programs, one should avoid premature optimization and sacrificing
good design, leaving the performance tuning until after profiling1 the
software and having isolated the actual problem areas.

1.9 Composite refactorings

Generally, when thinking about refactoring, at the mechanical level, theremotivation,
examples, manual
vs automated?,
what about
refactoring in a
very large code
base?

motivation,
examples, manual
vs automated?,
what about
refactoring in a
very large code
base?

are essentially two kinds of refactorings. There are the primitive refactorings,
and the composite refactorings.

Definition. A primitive refactoring is a refactoring that cannot be
expressed in terms of other refactorings.

Examples are the Pull Up Field and Pull Up Method refactorings [6], that
move members up in their class hierarchies.

Definition. A composite refactoring is a refactoring that can be expressed
in terms of two or more other refactorings.

An example of a composite refactoring is the Extract Superclass refactor-
ing [6]. In its simplest form, it is composed of the previously described
primitive refactorings, in addition to the Pull Up Constructor Body refactor-
ing [6]. It works by creating an abstract superclass that the target class(es)
inherits from, then by applying Pull Up Field, Pull Up Method and Pull
Up Constructor Body on the members that are to be members of the new
superclass. For an overview of the Extract Superclass refactoring, see fig. 1.1
on page 11.

1.10 Manual vs. automated refactorings

Refactoring is something every programmer does, even if she does not known
the term refactoring. Every refinement of source code that does not alter the
program’s behavior is a refactoring. For small refactorings, such as Extract

1For and example of a Java profiler, check out VisualVM: http://visualvm.java.net/

10

http://visualvm.java.net/

Department

getTotalAnnualCost
getName
getHeadCount

Employee

getAnnualCost
getName
getId

Department

getAnnualCost
getHeadCount

Employee

getAnnualCost
getId

Party

getAnnualCost
getName

Figure 1.1: The Extract Superclass refactoring

Method, executing it manually is a manageable task, but is still prone to
errors. Getting it right the first time is not easy, considering the method
signature and all the other aspects of the refactoring that has to be in place.

Take for instance the renaming of classes, methods and fields. For
complex programs these refactorings are almost impossible to get right.
Attacking them with textual search and replace, or even regular expressions,
will fall short on these tasks. Then it is crucial to have proper tool support
that can perform them automatically. Tools that can parse source code
and thus have semantic knowledge about which occurrences of which names
belong to what construct in the program. For even trying to perform one
of these complex task manually, one would have to be very confident on the
existing test suite (see section 1.12 on page 13).

1.11 Correctness of refactorings

For automated refactorings to be truly useful, they must show a high degree
of behavior preservation. This last sentence might seem obvious, but there
are examples of refactorings in existing tools that break programs. I will
now present an example of an Extract Method refactoring followed by aMove
Method refactoring that breaks a program in both the Eclipse and IntelliJ
IDEs1. The following piece of code shows the target for the composed
refactoring:

1The NetBeans IDE handles this particular situation without altering ther program’s
beavior, mainly because its Move Method refactoring implementation is a bit rancid in
other ways (see section 1.6 on page 6).

11

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.m(this);
6 x.n();
7 }
8 }

The next piece of code shows the destination of the refactoring. Note that
the method m(C c) of class C assigns to the field x of the argument c that
has type C:

public class X {
public void m(C c) {

c.x = new X();
}
public void n() {}

}

The refactoring sequence works by extracting line 5 and 6 from the
original class C into a method f with the statements from those lines as
its method body. The method is then moved to the class X. The result is
shown in the following two pieces of code:

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.f(this);
6 }
7 }

1 public class X {
2 public void m(C c) {
3 c.x = new X();
4 }
5 public void n() {}
6 public void f(C c) {
7 m(c);
8 n();
9 }

10 }

After the refactoring, the method f of class C is calling the method f
of class X, and the program now behaves different than before. (See line 5
of the version of class C after the refactoring.) Before the refactoring, the
methods m and n of class X are called on different object instances (see line
5 and 6 of the original class C). After, they are called on the same object,

12

and the statement on line 3 of class X (the version after the refactoring) no
longer have any effect in our example.

The bug introduced in the previous example is of such a nature1 that it
is very difficult to spot if the refactored code is not covered by tests. It does
not generate compilation errors, and will thus only result in a runtime error
or corrupted data, which might be hard to detect.

1.12 Refactoring and the importance of testing
If you want to refactor, the essential precondition is having solid
tests. [6]

When refactoring, there are roughly three classes of errors that can be
made. The first class of errors are the ones that make the code unable to
compile. These compile-time errors are of the nicer kind. They flash up at
the moment they are made (at least when using an IDE), and are usually
easy to fix. The second class are the runtime errors. Although they take
a bit longer to surface, they usually manifest after some time in an illegal
argument exception, null pointer exception or similar during the program
execution. These kind of errors are a bit harder to handle, but at least they
will show, eventually. Then there are the behavior-changing errors. These
errors are of the worst kind. They do not show up during compilation and
they do not turn on a blinking red light during runtime either. The program
can seem to work perfectly fine with them in play, but the business logic
can be damaged in ways that will only show up over time.

For discovering runtime errors and behavior changes when refactoring, it
is essential to have good test coverage. Testing in this context means writing
automated tests. Manual testing may have its uses, but when refactoring, it
is automated unit testing that dominate. For discovering behavior changes
it is especially important to have tests that cover potential problems, since
these kind of errors does not reveal themselves.

Unit testing is not a way to prove that a program is correct, but it is a
way to make you confindent that it probably works as desired. In the context
of test driven development (commonly known as TDD), the tests are even a
way to define how the program is supposed to work. It is then, by definition,
working if the tests are passing.

If the test coverage for a code base is perfect, then it should, theoretically,
be risk-free to perform refactorings on it. This is why automated tests and
refactoring are such a great match.

1.12.1 Testing the code from correctness section

The worst thing that can happen when refactoring is to introduce changes
to the behavior of a program, as in the example on section 1.11 on page 11.
This example may be trivial, but the essence is clear. The only problem
with the example is that it is not clear how to create automated tests for it,
without changing it in intrusive ways.

1Caused by aliasing. See https://en.wikipedia.org/wiki/Aliasing_(computing)

13

https://en.wikipedia.org/wiki/Aliasing_(computing)

Unit tests, as they are known from the different xUnit frameworks
around, are only suitable to test the result of isolated operations. They
can not easily (if at all) observe the history of a program.
Write . . .
Assuming a sequential (non-concurrent) program:

tracematch (C c, X x) {
sym m before:
call(* X.m(C)) && args(c) && cflow(within(C));

sym n before:
call(* X.n()) && target(x) && cflow(within(C));

sym setCx after:
set(C.x) && target(c) && !cflow(m);

m n

{ assert x == c.x; }
}

1.13 The project
The aim of this project will be to investigate the relationship between a
composite refactoring composed of the Extract Method and Move Method
refactorings, and its impact on one or more software metrics.

The composition of Extract Method and Move Method springs naturally
out of the need to move procedures closer to the data they manipulate.
This composed refactoring is not well described in the literature, but it is
implemented in at least one tool called CodeRush1, that is an extension
for MS Visual Studio2. In CodeRush it is called Extract Method to Type3,
but I choose to call it Extract and Move Method, since I feel it better
communicates which primitive refactorings it is composed of.

For the metrics, I will at least measure the Coupling between object
classes (CBO) metric that is described by Chidamber and Kemerer in their
article A Metrics Suite for Object Oriented Design [2].

The project will then consist in implementing the Extract and Move
Method refactoring, as well as executing it over a larger code base. Then the
effect of the change must be measured by calculating the chosen software
metrics both before and after the execution. To be able to execute the
refactoring automatically I have to make it analyze code to determine the
best selections to extract into new methods.

1.14 Software metrics
Is this the appropriate place to have this section?

1https://help.devexpress.com/#CodeRush/CustomDocument3519
2http://www.visualstudio.com/
3https://help.devexpress.com/#CodeRush/CustomDocument6710

14

https://help.devexpress.com/#CodeRush/CustomDocument3519
http://www.visualstudio.com/
https://help.devexpress.com/#CodeRush/CustomDocument6710

Chapter 2

. . .

write

2.1 The problem statement

2.2 Choosing the target language

Choosing which programming language to use as the target for manipulation
is not a very difficult task. The language has to be an object-
oriented programming language, and it must have existing tool support for
refactoring. The Java programming language1 is the dominating language
when it comes to examples in the literature of refactoring, and is thus a
natural choice. Java is perhaps, currently the most influential programming
language in the world, with its Java Virtual Machine that runs on all of the
most popular architectures and also supports2 dozens of other programming
languages, with Scala, Clojure and Groovy as the most prominent ones.
Java is currently the language that every other programming language is
compared against. It is also the primary language of the author of this
thesis.

2.3 Choosing the tools

When choosing a tool for manipulating Java, there are certain criterias that
have to be met. First of all, the tool should have some existing refactoring
support that this thesis can build upon. Secondly it should provide some
kind of framework for parsing and analyzing Java source code. Third,
it should itself be open source. This is both because of the need to be
able to browse the code for the existing refactorings that is contained in
the tool, and also because open source projects hold value in them selves.
Another important aspect to consider is that open source projects of a
certain size, usually has large communities of people connected to them,

1https://www.java.com/
2They compile to java bytecode.

15

https://www.java.com/

that are commited to answering questions regarding the use and misuse of
the products, that to a large degree is made by the cummunity itself.

There is a certain class of tools that meet these criterias, namely the
class of IDEs1. These are proagrams that is ment to support the whole
production cycle of a cumputer program, and the most popular IDEs that
support Java, generally have quite good refactoring support.

The main contenders for this thesis is the Eclipse IDE, with the Java
development tools (JDT), the IntelliJ IDEA Community Edition and the
NetBeans IDE. (See section 1.6 on page 6.) Eclipse and NetBeans are both
free, open source and community driven, while the IntelliJ IDEA has an
open sourced community edition that is free of charge, but also offer an
Ultimate Edition with an extended set of features, at additional cost. All
three IDEs supports adding plugins to extend their functionality and tools
that can be used to parse and analyze Java source code. But one of the
IDEs stand out as a favorite, and that is the Eclipse IDE. This is the most
popular [8] among them and seems to be de facto standard IDE for Java
development regardless of platform.

1Integrated Development Environment

16

Chapter 3

Refactorings in Eclipse JDT:
Design, Shortcomings and
Wishful Thinking

This chapter will deal with some of the design behind refactoring support in
Eclipse, and the JDT in specific. After which it will follow a section about
shortcomings of the refactoring API in terms of composition of refactorings.
The chapter will be concluded with a section telling some of the ways the
implementation of refactorings in the JDT could have worked to facilitate
composition of refactorings.

3.1 Design

The refactoring world of Eclipse can in general be separated into two
parts: The language independent part and the part written for a specific
programming language – the language that is the target of the supported
refactorings. What about the

language specific
part?

What about the
language specific
part?3.1.1 The Language Toolkit

The Language Toolkit, or LTK for short, is the framework that is used to
implement refactorings in Eclipse. It is language independent and provides
the abstractions of a refactoring and the change it generates, in the form
of the classes Refactoring1 and Change2. (There is also parts of the LTK
that is concerned with user interaction, but they will not be discussed here,
since they are of little value to us and our use of the framework.)

The Refactoring Class

The abstract class Refactoring is the core of the LTK framework. Every
refactoring that is going to be supported by the LTK have to end up creating
an instance of one of its subclasses. The main responsibilities of subclasses

1org.eclipse.ltk.core.refactoring.Refactoring
2org.eclipse.ltk.core.refactoring.Change

17

of Refactoring is to implement template methods for condition checking
(checkInitialConditions1 and checkFinalConditions2), in addition to
the createChange3 method that creates and returns an instance of the
Change class.

If the refactoring shall support that others participate in it when it is
executed, the refactoring has to be a processor-based refactoring4. It then
delegates to its given RefactoringProcessor5 for condition checking and
change creation.

The Change Class

This class is the base class for objects that is responsible for performing the
actual workspace transformations in a refactoring. The main responsibilities
for its subclasses is to implement the perform6 and isValid7 methods. The
isValid method verifies that the change object is valid and thus can be
executed by calling its perform method. The perform method performs the
desired change and returns an undo change that can be executed to reverse
the effect of the transformation done by its originating change object.

Executing a Refactoring

The life cycle of a refactoring generally follows two steps after creation:
condition checking and change creation. By letting the refactoring object
be handled by a CheckConditionsOperation8 that in turn is handled by a
CreateChangeOperation9, it is assured that the change creation process is
managed in a proper manner.

The actual execution of a change object has to follow a detailed life
cycle. This life cycle is honored if the CreateChangeOperation is handled
by a PerformChangeOperation10. If also an undo manager11 is set for the
PerformChangeOperation, the undo change is added into the undo history.

3.2 Shortcomings

This section is introduced naturally with a conclusion: The JDT refactoring
implementation does not facilitate composition of refactorings. This sectionrefinerefine
will try to explain why, and also identify other shortcomings of both the
usability and the readability of the JDT refactoring source code.

1org.eclipse.ltk.core.refactoring.Refactoring#checkInitialConditions()
2org.eclipse.ltk.core.refactoring.Refactoring#checkFinalConditions()
3org.eclipse.ltk.core.refactoring.Refactoring#createChange()
4org.eclipse.ltk.core.refactoring.participants.ProcessorBasedRefactoring
5org.eclipse.ltk.core.refactoring.participants.RefactoringProcessor
6org.eclipse.ltk.core.refactoring.Change#perform()
7org.eclipse.ltk.core.refactoring.Change#isValid()
8org.eclipse.ltk.core.refactoring.CheckConditionsOperation
9org.eclipse.ltk.core.refactoring.CreateChangeOperation

10org.eclipse.ltk.core.refactoring.PerformChangeOperation
11org.eclipse.ltk.core.refactoring.IUndoManager

18

I will begin at the end and work my way toward the composition part of
this section.

3.2.1 Absence of Generics in Eclipse Source Code

This section is not only concerning the JDT refactoring API, but also large
quantities of the Eclipse source code. The code shows a striking absence of
the Java language feature of generics. It is hard to read a class’ interface
when methods return objects or takes parameters of raw types such as List
or Map. This sometimes results in having to read a lot of source code to
understand what is going on, instead of relying on the available interfaces.
In addition, it results in a lot of ugly code, making the use of typecasting
more of a rule than an exception.

3.2.2 Composite Refactorings Will Not Appear as Atomic
Actions

Missing Flexibility from JDT Refactorings

The JDT refactorings are not made with composition of refactorings in mind.
When a JDT refactoring is executed, it assumes that all conditions for it to
be applied successfully can be found by reading source files that has been
persisted to disk. They can only operate on the actual source material, and
not (in-memory) copies thereof. This constitutes a major disadvantage when
trying to compose refactorings, since if an exception occur in the middle of
a sequence of refactorings, it can leave the project in a state where the
composite refactoring was executed only partly. It makes it hard to discard
the changes done without monitoring and consulting the undo manager, an
approach that is not bullet proof.

Broken Undo History

When designing a composed refactoring that is to be performed as a sequence
of refactorings, you would like it to appear as a single change to the
workspace. This implies that you would also like to be able to undo all
the changes done by the refactoring in a single step. This is not the way it
appears when a sequence of JDT refactorings is executed. It leaves the undo
history filled up with individual undo actions corresponding to every single
JDT refactoring in the sequence. This problem is not trivial to handle in
Eclipse. (See section 4.2.7 on page 26.)

3.3 Wishful Thinking

19

20

Chapter 4

Composite Refactorings in
Eclipse

4.1 A Simple Ad Hoc Model
As pointed out in chapter 3 on page 17, the Eclipse JDT refactoring model
is not very well suited for making composite refactorings. Therefore a
simple model using changer objects (of type RefaktorChanger) is used as
an abstraction layer on top of the existing Eclipse refactorings, instead of
extending the Refactoring1 class.

The use of an additional abstraction layer is a deliberate choice. It is
due to the problem of creating a composite Change2 that can handle text
changes that interfere with each other. Thus, a RefaktorChanger may, or
may not, take advantage of one or more existing refactorings, but it is always
intended to make a change to the workspace.

4.1.1 A typical RefaktorChanger

The typical refaktor changer class has two responsibilities, checking
preconditions and executing the requested changes. This is not too different
from the responsibilities of an LTK refactoring, with the distinction that a
refaktor changer also executes the change, while an LTK refactoring is only
responsible for creating the object that can later be used to do the job.

Checking of preconditions is typically done by an Analyzer3. If the
preconditions validate, the upcoming changes are executed by an Executor4.

4.2 The Extract and Move Method Refactoring

4.2.1 The Building Blocks

This is a composite refactoring, and hence is built up using several primitive
refactorings. These basic building blocks are, as its name implies, the

1org.eclipse.ltk.core.refactoring.Refactoring
2org.eclipse.ltk.core.refactoring.Change
3no.uio.ifi.refaktor.analyze.analyzers.Analyzer
4no.uio.ifi.refaktor.change.executors.Executor

21

Extract Method refactoring [6] and the Move Method refactoring [6]. In
Eclipse, the implementations of these refactorings are found in the classes
ExtractMethodRefactoring1 and MoveInstanceMethodProcessor2, where
the last class is designed to be used together with the processor-based
MoveRefactoring3.

The ExtractMethodRefactoring Class

This class is quite simple in its use. The only parameters it requires for
construction is a compilation unit4, the offset into the source code where
the extraction shall start, and the length of the source to be extracted.
Then you have to set the method name for the new method together with
its visibility and some not so interesting parameters.

The MoveInstanceMethodProcessor Class

For the Move Method, the processor requires a little more advanced input
than the class for the Extract Method. For construction it requires a method
handle5 for the method that is to be moved. Then the target for the
move have to be supplied as the variable binding from a chosen variable
declaration. In addition to this, one have to set some parameters regarding
setters/getters, as well as delegation.

To make a working refactoring from the processor, one have to create a
MoveRefactoring with it.

4.2.2 The ExtractAndMoveMethodChanger Class

The ExtractAndMoveMethodChanger6 class is a subclass of the class
RefaktorChanger7. It is responsible for analyzing and finding the best
target for, and also executing, a composition of the Extract Method and
Move Method refactorings. This particular changer is the one of my
changers that is closest to being a true LTK refactoring. It can be reworked
to be one if the problems with overlapping changes are resolved. The
changer requires a text selection and the name of the new method, or
else a method name will be generated. The selection has to be of the
type CompilationUnitTextSelection8. This class is a custom extension
to TextSelection9, that in addition to the basic offset, length and similar
methods, also carry an instance of the underlying compilation unit handle
for the selection.

1org.eclipse.jdt.internal.corext.refactoring.code.ExtractMethodRefactoring
2org.eclipse.jdt.internal.corext.refactoring.structure.MoveInstanceMethodProcessor
3org.eclipse.ltk.core.refactoring.participants.MoveRefactoring
4org.eclipse.jdt.core.ICompilationUnit
5org.eclipse.jdt.core.IMethod
6no.uio.ifi.refaktor.changers.ExtractAndMoveMethodChanger
7no.uio.ifi.refaktor.changers.RefaktorChanger
8no.uio.ifi.refaktor.utils.CompilationUnitTextSelection
9org.eclipse.jface.text.TextSelection

22

The ExtractAndMoveMethodAnalyzer

The analysis and precondition checking is done by the ExtractAnd-
MoveMethodAnalyzer1. First is check whether the selection is a valid
selection or not, with respect to statement boundaries and that it actually
contains any selections. Then it checks the legality of both extracting the
selection and also moving it to another class. If the selection is approved as
legal, it is analyzed to find the presumably best target to move the extracted
method to.

For finding the best suitable target the analyzer is using a
PrefixesCollector2 that collects all the possible candidates for the refac-
toring. All the non-candidates is found by an UnfixesCollector3 that
collects all the targets that will give some kind of error if used. The safe
prefixes is found by subtracting from the set of candidate prefixes the pre-
fixes that is enclosing any of the unfixes. A prefix is enclosing an unfix if
the unfix is in the set of its sub-prefixes. As an example, “a.b” is enclosing
“a”, as is “a”. The safe prefixes is unified in a PrefixSet. If a prefix has
only one occurrence, and is a simple expression, it is considered unsuitable
as a move target. This occurs in statements such as “a.foo()”. For such
statements it bares no meaning to extract and move them. It only generates
an extra method and the calling of it.
Clean up sections/subsections.

The ExtractAndMoveMethodExecutor

If the analysis finds a possible target for the composite refactoring, it
is executed by an ExtractAndMoveMethodExecutor4. It is composed of
the two executors known as ExtractMethodRefactoringExecutor5 and
MoveMethodRefactoringExecutor6. The ExtractAndMoveMethodExecutor
is responsible for gluing the two together by feeding the MoveMethodRefactoringExecutor
with the resources needed after executing the extract method refactoring.
(See section 4.2.3 on page 24.)

The ExtractMethodRefactoringExecutor

This executor is responsible for creating and executing an instance of the
ExtractMethodRefactoring class. It is also responsible for collecting some
post execution resources that can be used to find the method handle for the
extracted method, as well as information about its parameters, including
the variable they originated from.

1no.uio.ifi.refaktor.analyze.analyzers.ExtractAndMoveMethodAnalyzer
2no.uio.ifi.refaktor.analyze.collectors.PrefixesCollector
3no.uio.ifi.refaktor.analyze.collectors.UnfixesCollector
4no.uio.ifi.refaktor.change.executors.ExtractAndMoveMethodExecutor
5no.uio.ifi.refaktor.change.executors.ExtractMethodRefactoringExecutor
6no.uio.ifi.refaktor.change.executors.MoveMethodRefactoringExecutor

23

The MoveMethodRefactoringExecutor

This executor is responsible for creating and executing an instance
of the MoveRefactoring. The move refactoring is a processor-
based refactoring, and for the Move Method refactoring it is the
MoveInstanceMethodProcessor that is used.

The handle for the method to be moved is found on the basis of the
information gathered after the execution of the Extract Method refactoring.
The only information the ExtractMethodRefactoring is sharing after its
execution, regarding find the method handle, is the textual representation
of the new method signature. Therefore it must be parsed, the strings for
types of the parameters must be found and translated to a form that can
be used to look up the method handle from its type handle. They have to
be on the unresolved form.The name for the type is found from the originalElaborate?Elaborate?
selection, since an extracted method must end up in the same type as the
originating method.

When analyzing a selection prior to performing the Extract Method
refactoring, a target is chosen. It has to be a variable binding, so it is
either a field or a local variable/parameter. If the target is a field, it can be
used with the MoveInstanceMethodProcessor as it is, since the extracted
method still is in its scope. But if the target is local to the originating
method, the target that is to be used for the processor must be among its
parameters. Thus the target must be found among the extracted method’s
parameters. This is done by finding the parameter information object that
corresponds to the parameter that was declared on basis of the original
target’s variable when the method was extracted. (The extracted method
must take one such parameter for each local variable that is declared outside
the selection that is extracted.) To match the original target with the correct
parameter information object, the key for the information object is compared
to the key from the original target’s binding. The source code must then be
parsed to find the method declaration for the extracted method. The new
target must be found by searching through the parameters of the declaration
and choose the one that has the same type as the old binding from the
parameter information object, as well as the same name that is provided by
the parameter information object.

4.2.3 Finding the IMethod

Rename section. Write.

4.2.4 The ExtractAndMoveMethodPrefixesExtractor Class

This extractor extracts properties needed for building the Extract and Move
Method refactoring. It searches through the given selection to find safe
prefixes, and those prefixes form a base that can be used to compute possible
targets for the move part of the refactoring. It finds both the candidates,
in the form of prefixes, and the non-candidates, called unfixes. All prefixes

24

(and unfixes) are represented by a Prefix1, and they are collected into prefix
sets.2.

The prefixes and unfixes are found by property collectors3. A property
collector follows the visitor pattern [7] and is of the ASTVisitor4 type. An
ASTVisitor visits nodes in an abstract syntax tree that forms the Java
document object model. The tree consists of nodes of type ASTNode5.

The PrefixesCollector

The PrefixesCollector6 is of type PropertyCollector. It visits
expression statements7 and creates prefixes from its expressions in the case
of method invocations. The prefixes found is registered with a prefix set,
together with all its sub-prefixes. Rewrite in the case

of changes to the
way prefixes are
found

Rewrite in the case
of changes to the
way prefixes are
found

The UnfixesCollector

The UnfixesCollector8 finds unfixes within a selection. That is prefixes
that cannot be used as a basis for finding a move target in a refactoring.

An unfix can be a name that is assigned to within a selection. The reason
that this cannot be allowed, is that the result would be an assignment to
the this keyword, which is not valid in Java (see section 6.1 on page 31).

Prefixes that originates from variable declarations within the same
selection are also considered unfixes. This is because when a method is
moved, it needs to be called through a variable. If this variable is also
within the method that is to be moved, this obviously cannot be done.

Also considered as unfixes are variable references that are of types that
is not suitable for moving a methods to. This can be either because it is not
physically possible to move the method to the desired class or that it will
cause compilation errors by doing so.

If the type binding for a name is not resolved it is considered and unfix.
The same applies to types that is only found in compiled code, so they have
no underlying source that is accessible to us. (E.g. the java.lang.String
class.)

Interfaces types are not suitable as targets. This is simply because
interfaces in java cannot contain methods with bodies. (This thesis does not
deal with features of Java versions later than Java 7. Java 8 has interfaces
with default implementations of methods.) Neither are local types allowed.
This accounts for both local and anonymous classes. Anonymous classes are
effectively the same as interface types with respect to unfixes. Local classes
could in theory be used as targets, but this is not possible due to limitations
of the implementation of the Extract and Move Method refactoring. The

1no.uio.ifi.refaktor.extractors.Prefix
2no.uio.ifi.refaktor.extractors.PrefixSet
3no.uio.ifi.refaktor.extractors.collectors.PropertyCollector
4org.eclipse.jdt.core.dom.ASTVisitor
5org.eclipse.jdt.core.do.ASTNode
6no.uio.ifi.refaktor.extractors.collectors.PrefixesCollector
7org.eclipse.jdt.core.dom.ExpressionStatement
8no.uio.ifi.refaktor.extractors.collectors.UnfixesCollector

25

problem is that the refactoring is done in two steps, so the intermediate
state between the two refactorings would not be legal Java code. In the case
of local classes, the problem is that, in the intermediate step, a selection
referencing a local class would need to take the local class as a parameter if
it were to be extracted to a new method. This new method would need to
live in the scope of the declaring class of the originating method. The local
class would then not be in the scope of the extracted method, thus bringing
the source code into an illegal state. One could imagine that the method
was extracted and moved in one operation, without an intermediate state.
Then it would make sense to include variables with types of local classes in
the set of legal targets, since the local classes would then be in the scopes
of the method calls. If this makes any difference for software metrics that
measure coupling would be a different discussion.
Example?

The last class of names that are considered unfixes is names used in
null-tests. These are tests that reads like this: if <name> equals null then
do something. If allowing variables used in those kinds of expressions as
targets for moving methods, we would end up with code containing boolean
expressions like this == null, which would not be meaningful.

4.2.5 The Prefix Class

??

4.2.6 The PrefixSet Class

4.2.7 Hacking the Refactoring Undo History

Where to put this
section?
Where to put this
section? As an attempt to make multiple subsequent changes to the workspace

appear as a single action (i.e. make the undo changes appear as such), I
tried to alter the undo changes1 in the history of the refactorings.

My first impulse was to remove the, in this case, last two undo changes
from the undo manager2 for the Eclipse refactorings, and then add them
to a composite change3 that could be added back to the manager. The
interface of the undo manager does not offer a way to remove/pop the last
added undo change, so a possible solution could be to decorate [7] the undo
manager, to intercept and collect the undo changes before delegating to the
addUndo method4 of the manager. Instead of giving it the intended undo
change, a null change could be given to prevent it from making any changes
if run. Then one could let the collected undo changes form a composite
change to be added to the manager.

There is a technical challenge with this approach, and it relates to the

1org.eclipse.ltk.core.refactoring.Change
2org.eclipse.ltk.core.refactoring.IUndoManager
3org.eclipse.ltk.core.refactoring.CompositeChange
4org.eclipse.ltk.core.refactoring.IUndoManager#addUndo()

26

undo manager, and the concrete implementation UndoManager21. This
implementation is designed in a way that it is not possible to just add an
undo change, you have to do it in the context of an active operation2. One
could imagine that it might be possible to trick the undo manager into
believing that you are doing a real change, by executing a refactoring that
is returning a kind of null change that is returning our composite change of
undo refactorings when it is performed.

Apart from the technical problems with this solution, there is a
functional problem: If it all had worked out as planned, this would leave
the undo history in a dirty state, with multiple empty undo operations
corresponding to each of the sequentially executed refactoring operations,
followed by a composite undo change corresponding to an empty change of
the workspace for rounding of our composite refactoring. The solution to this
particular problem could be to intercept the registration of the intermediate
changes in the undo manager, and only register the last empty change.

Unfortunately, not everything works as desired with this solution. The
grouping of the undo changes into the composite change does not make the
undo operation appear as an atomic operation. The undo operation is still
split up into separate undo actions, corresponding to the change done by
its originating refactoring. And in addition, the undo actions has to be
performed separate in all the editors involved. This makes it no solution at
all, but a step toward something worse.

There might be a solution to this problem, but it remains to be found.
The design of the refactoring undo management is partly to be blamed for
this, as it it is to complex to be easily manipulated.

1org.eclipse.ltk.internal.core.refactoring.UndoManager2
2org.eclipse.core.commands.operations.TriggeredOperations

27

28

Chapter 5

Analyzing Code

5.1 AST
Explain what it is, or just how it is structured in Eclipse and how to
analyze it?

5.2 Illegal selections

5.2.1 Not all branches end in return

5.2.2 Ambiguous return statement

This problem occurs when there is either more than one assignment to a
local variable that is used outside of the selection, or there is only one, but
there are also return statements in the selection.
Explain why we do not need to consider variables assigned inside lo-
cal/anonymous classes. (The referenced variables need to be final and
so on. . .)

29

30

Chapter 6

Eclipse Bugs

Add other things and change headline?

6.1 Eclipse bug 420726: Code is broken when
moving a method that is assigning to the
parameter that is also the move destination

This bug1 was found when analyzing what kinds of names that was to be
considered as unfixes. refer to unfixesrefer to unfixes

6.1.1 The bug

The bug emerges when trying to move a method from one class to another,
and when the target for the move (must be a variable, local or field) is both a
parameter variable and also is assigned to within the method body. Eclipse
allows this to happen, although it is the sure path to a compilation error.
This is because we would then have an assignment to a this expression,
which is not allowed in Java.

6.1.2 The solution

The solution to this problem is to add all simple names that are assigned to
in a method body to the set of unfixes.

6.2 Eclipse bug 429416: IAE when moving
method from anonymous class

I discovered2 this bug during a batch change on the org.eclipse.jdt.ui
project.

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=420726
2https://bugs.eclipse.org/bugs/show_bug.cgi?id=429416

31

https://bugs.eclipse.org/bugs/show_bug.cgi?id=420726
https://bugs.eclipse.org/bugs/show_bug.cgi?id=429416

6.2.1 The bug

This bug surfaces when trying to use the Move Method refactoring
to move a method from an anonymous class to another class. This
happens both for my simulation as well as in Eclipse, through the
user interface. It only occurs when Eclipse analyses the program
and finds it necessary to pass an instance of the originating class as
a parameter to the moved method. I.e. it want to pass a this
expression. The execution ends in an IllegalArgumentException1 in
SimpleName2 and its setIdentifier(String) method. The simple name
is attempted created in the method createInlinedMethodInvocation3 so
the MoveInstanceMethodProcessor was early a clear suspect.

The createInlinedMethodInvocation is the method that creates a
method invocation where the previous invocation to the method that was
moved was. From its code it can be read that when a this expression
is going to be passed in to the invocation, it shall be qualified with the
name of the original method’s declaring class, if the declaring class is either
an anonymous clas or a member class. The problem with this, is that an
anonymous class does not have a name, hence the term anonymous class!
Therefore, when its name, an empty string, is passed into newSimpleName4

it all ends in an IllegalArgumentException.

6.2.2 How I solved the problem

Since the MoveInstanceMethodProcessor is instantiated in the MoveMethod-
RefactoringExecutor5, and only need to be a MoveProcessor6, I
was able to copy the code for the original move processor and
modify it so that it works better for me. It is now called
ModifiedMoveInstanceMethodProcessor7. The only modification done
(in addition to some imports and suppression of warnings), is in the
createInlinedMethodInvocation. When the declaring class of the method
to move is anonymous, the this expression in the parameter list is not qual-
ified with the declaring class’ (empty) name.

1java.lang.IllegalArgumentException
2org.eclipse.jdt.core.dom.SimpleName
3org.eclipse.jdt.internal.corext.refactoring.structure.

MoveInstanceMethodProcessor#createInlinedMethodInvocation()
4org.eclipse.jdt.core.dom.AST#newSimpleName()
5no.uio.ifi.refaktor.change.executors.MoveMethodRefactoringExecutor
6org.eclipse.ltk.core.refactoring.participants.MoveProcessor
7no.uio.ifi.refaktor.refactorings.processors.ModifiedMoveInstanceMethodProcessor

32

Chapter 7

Related Work

7.1 The compositional paradigm of refactoring
This paradigm builds upon the observation of Vakilian et al. [16], that of
the many automated refactorings existing in modern IDEs, the simplest ones
are dominating the usage statistics. The report mainly focuses on Eclipse
as the tool under investigation.

The paradigm is described almost as the opposite of automated
composition of refactorings (see section 1.9 on page 10). It works by
providing the programmer with easily accessible primitive refactorings.
These refactorings shall be accessed via keyboard shortcuts or quick-assist
menus1 and be promptly executed, opposed to in the currently dominating
wizard-based refactoring paradigm. They are ment to stimulate composing
smaller refactorings into more complex changes, rather than doing a large
upfront configuration of a wizard-based refactoring, before previewing and
executing it. The compositional paradigm of refactoring is supposed to
give control back to the programmer, by supporting him with an option of
performing small rapid changes instead of large changes with a lesser degree
of control. The report authors hope this will lead to fewer unsuccessful
refactorings. It also could lower the bar for understanding the steps of a
larger composite refactoring and thus also help in figuring out what goes
wrong if one should choose to op in on a wizard-based refactoring.

Vakilian and his associates have performed a survey of the effectiveness
of the compositional paradigm versus the wizard-based one. They claim
to have found evidence of that the compositional paradigm outperforms
the wizard-based. It does so by reducing automation, which seem
counterintuitive. Therefore they ask the question “What is an appropriate
level of automation?”, and thus questions what they feel is a rush toward
more automation in the software engineering community.

1Think quick-assist with Ctrl+1 in Eclipse

33

34

Bibliography

[1] Leo Brodie. Thinking Forth. 1984, 1994, 2004. url: http://thinking-
forth.sourceforge.net/.

[2] S.R. Chidamber and C.F. Kemerer. “A Metrics Suite for Object
Oriented Design.” In: IEEE Transactions on Software Engineering 20.6
(June 1994), pp. 476–493. issn: 0098-5589. doi: 10.1109/32.295895.

[3] Serge Demeyer. “Maintainability Versus Performance: What’s the
Effect of Introducing Polymorphism?” In: ICSE’2003 (2002).

[4] Martin Fowler. Crossing Refactoring’s Rubicon. 2001. url: http ://
martinfowler.com/articles/refactoringRubicon.html.

[5] Martin Fowler. Etymology Of Refactoring. 2003. url: http : / /
martinfowler.com/bliki/EtymologyOfRefactoring.html.

[6] Martin Fowler. Refactoring: improving the design of existing code.
Reading, MA: Addison-Wesley, 1999. isbn: 0201485672.

[7] Erich Gamma et al. Design patterns : elements of reusable
object-oriented software. Reading, MA: Addison-Wesley, 1995. isbn:
0201633612.

[8] JAVA EE Productivity Report 2011. Survey. 2011. url: http : / /
zeroturnaround . com / wp - content / uploads / 2010 / 11 / Java _ EE _
Productivity_Report_2011_finalv2.pdf.

[9] Joshua Kerievsky. Refactoring to patterns. Boston: Addison-Wesley,
2005. isbn: 0321213351.

[10] Robert C Martin and James O Coplien. Clean code: a handbook of
agile software craftsmanship. Upper Saddle River, NJ [etc.]: Prentice
Hall, 2009. isbn: 9780132350884 0132350882.

[11] Bertrand Meyer. Object-oriented software construction. Prentice-Hall,
1988. isbn: 0136290493 9780136290490 0136290310 9780136290315.

[12] George A. Miller. “The magical number seven, plus or minus two: some
limits on our capacity for processing information.” In: Psychological
Review 63.2 (1956), pp. 81–97. issn: 1939-1471(Electronic);0033-
295X(Print). doi: 10.1037/h0043158.

[13] William F. Opdyke. “Refactoring Object-oriented Frameworks.” UMI
Order No. GAX93-05645. Champaign, IL, USA: University of Illinois
at Urbana-Champaign, 1992.

35

http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/
http://dx.doi.org/10.1109/32.295895
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://dx.doi.org/10.1037/h0043158

[14] Don Roberts, John Brant, and Ralph Johnson. “A Refactoring Tool
for Smalltalk.” In: Theor. Pract. Object Syst. 3.4 (Oct. 1997), 253–263.
issn: 1074-3227.

[15] Mohsen Vakilian and Ralph Johnson. Composite Refactorings:
The Next Refactoring Rubicons. University of Illinois at Urbana-
Champaign, 2012. url: https : //www. ideals . illinois . edu/bitstream/
handle/2142/35678/2012-WRT.pdf?sequence=2.

[16] Mohsen Vakilian et al. A Compositional Paradigm of Automating
Refactorings. May 2012. url: https : / / www . ideals . illinois . edu /
bitstream/handle/2142/30851/VakilianETAL2012Compositional .pdf ?
sequence=4.

36

https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4

Todo list

2do . i
2do . i
Proof? . 3
2do . 6
2do . 7
motivation, examples, manual vs automated?, what about refactoring

in a very large code base? . 10
2do . 14
2do . 14
2do . 15
What about the language specific part? 17
refine . 18
2do . 23
Elaborate? . 24
2do . 24
Rewrite in the case of changes to the way prefixes are found 25
2do . 26
? . 26
Where to put this section? . 26
2do . 29
2do . 29
2do . 31
refer to unfixes . 31

37

	What is Refactoring?
	Defining refactoring
	The etymology of 'refactoring'
	Motivation – Why people refactor
	The magical number seven
	Notable contributions to the refactoring literature
	Tool support (for Java)
	The relation to design patterns
	The impact on software quality
	What is software quality?
	The impact on performance

	Composite refactorings
	Manual vs. automated refactorings
	Correctness of refactorings
	Refactoring and the importance of testing
	Testing the code from correctness section

	The project
	Software metrics

	…
	The problem statement
	Choosing the target language
	Choosing the tools

	Refactorings in Eclipse JDT: Design, Shortcomings and Wishful Thinking
	Design
	The Language Toolkit

	Shortcomings
	Absence of Generics in Eclipse Source Code
	Composite Refactorings Will Not Appear as Atomic Actions

	Wishful Thinking

	Composite Refactorings in Eclipse
	A Simple Ad Hoc Model
	A typical RefaktorChanger

	The Extract and Move Method Refactoring
	The Building Blocks
	The ExtractAndMoveMethodChanger Class
	Finding the IMethod
	The ExtractAndMoveMethodPrefixesExtractor Class
	The Prefix Class
	The PrefixSet Class
	Hacking the Refactoring Undo History

	Analyzing Code
	AST
	Illegal selections
	Not all branches end in return
	Ambiguous return statement

	Eclipse Bugs
	Eclipse bug 420726: Code is broken when moving a method that is assigning to the parameter that is also the move destination
	The bug
	The solution

	Eclipse bug 429416: IAE when moving method from anonymous class
	The bug
	How I solved the problem

	Related Work
	The compositional paradigm of refactoring

