
Refactoring
An unfinished essay

Erlend Kristiansen
Master’s Thesis Spring 2014

Abstract

Remove all todos (including list) before delivery/printing!!!

Write abstract

i

ii

Contents

1 What is Refactoring? 1
1.1 Defining refactoring . 1
1.2 The etymology of ’refactoring’ 2
1.3 Motivation – Why people refactor 3
1.4 The magical number seven . 4
1.5 Notable contributions to the refactoring literature 5
1.6 Tool support . 6

1.6.1 Tool support for Java 6
1.7 Relation to design patterns 7
1.8 The impact on software quality 7

1.8.1 What is meant by quality? 7
1.8.2 The impact on performance 8

1.9 Composite refactorings . 8
1.10 Manual vs. automated refactorings 9
1.11 Correctness of refactorings . 10
1.12 Refactoring and testing . 11
1.13 Software metrics . 11

2 . . . 13
2.1 The problem statement . 13
2.2 Choosing the target language 13
2.3 Choosing the tools . 13

3 Refactorings in Eclipse JDT: Design, Shortcomings and
Wishful Thinking 15
3.1 Design . 15

3.1.1 The Language Toolkit 15
3.2 Shortcomings . 16

3.2.1 Absence of Generics in Eclipse Source Code 17
3.2.2 Composite Refactorings Will Not Appear as Atomic

Actions . 17
3.3 Wishful Thinking . 17

4 Composite Refactorings in Eclipse 19
4.1 A Simple Ad Hoc Model . 19
4.2 The Extract and Move Method Refactoring 19

4.2.1 The Building Blocks 19

iii

4.2.2 The ExtractAndMoveMethodChanger Class 20
4.2.3 The ExtractAndMoveMethodPrefixesExtractor Class . 20
4.2.4 The Prefix Class . 21
4.2.5 The PrefixSet Class 21
4.2.6 Hacking the Refactoring Undo History 21

iv

List of Figures

1.1 The Extract Superclass refactoring 9

v

vi

List of Tables

vii

viii

Preface

To make it clear already from the beginning: The discussions in this report
must be seen in the context of object oriented programming languages, and
Java in particular, since that is the language in which most of the examples
will be given. All though the techniques discussed may be applicable to
languages from other paradigms, they will not be the subject of this report.

ix

x

Chapter 1

What is Refactoring?

This question is best answered by first defining the concept of a refactoring,
what it is to refactor, and then discuss what aspects of programming that
make people want to refactor their code.

1.1 Defining refactoring
Martin Fowler, in his masterpiece on refactoring [5], defines a refactoring
like this:

Refactoring (noun): a change made to the internal structure of what does he mean
by internal?
what does he mean
by internal?software to make it easier to understand and cheaper to modify

without changing its observable behavior. [5]

This definition assign additional meaning to the word refactoring, beyond
the composition of the prefix re-, usually meaning something like “again” or
“anew”, and the word factoring, that can mean to determine the factors of
something. Where a factor would be close to the mathematical definition of
something that divides a quantity, without leaving a remainder. Fowler is
mixing the motivation behind refactoring into his definition. Instead it could
be made clean, only considering the mechanical and behavioral aspects of
refactoring. That is to factor the program again, putting it together in a
different way than before, while preserving the behavior of the program. An
alternative definition could then be:

Definition. A refactoring is a transformation done to a program without
altering its external behavior.

From this we can conclude that a refactoring primarily changes how the
code of a program is perceived by the programmer, and not the behavior
experienced by any user of the program. Although the logical meaning is
preserved, such changes could potentially alter the program’s behavior when
it comes to performance gain or -penalties. So any logic depending on the
performance of a program could make the program behave differently after
a refactoring.

In the extreme case one could argue that such a thing as software
obfuscation is to refactor. If we where to define it as a refactoring, it

1

could be defined as a composite refactoring (see section 1.9), consisting
of, for instance, a series of rename refactorings. (But it could of course
be much more complex, and the mechanics of it would not exactly be
carved in stone.) To perform some serious obfuscation one would also take
advantage of techniques not found among established refactorings, such as
removing whitespace. This might not even generate a different syntax tree
for languages not sensitive to whitespace, placing it in the gray area of what
kind of transformations is to be considered refactorings.

Finally, to refactor is (quoting Martin Fowler)

. . . to restructure software by applying a series of refactorings
without changing its observable behavior. [5]

1.2 The etymology of ’refactoring’

It is a little difficult to pinpoint the exact origin of the word “refactoring”,
as it seems to have evolved as part of a colloquial terminology, more than a
scientific term. There is no authoritative source for a formal definition of it.

According to Martin Fowler [4], there may also be more than one origin
of the word. The most well-known source, when it comes to the origin
of refactoring, is the Smalltalk1community and their infamous Refactoringfind reference to

Smalltalk website
or similar?

find reference to
Smalltalk website
or similar?

Browser2 described in the article A Refactoring Tool for Smalltalk [10],
published in 1997. Allegedly [4], the metaphor of factoring programs was also
present in the Forth3 community, and the word “refactoring” is mentioned in
a book by Leo Brodie, called Thinking Forth [1], first published in 19844. The
exact word is only printed one place5, but the term factoring is prominent
in the book, that also contains a whole chapter dedicated to (re)factoring,
and how to keep the (Forth) code clean and maintainable.

. . . good factoring technique is perhaps the most important skill
for a Forth programmer. [1]

Brodie also express what factoring means to him:

Factoring means organizing code into useful fragments. To make
a fragment useful, you often must separate reusable parts from
non-reusable parts. The reusable parts become new definitions.
The non-reusable parts become arguments or parameters to the
definitions. [1]

1Smalltalk, object-oriented, dynamically typed, reflective programming language.
2http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html
3Forth – stack-based, extensible programming language, without type-checking. See

http://www.forth.org
4Thinking Forth was first published in 1984 by the Forth Interest Group. Then it was

reprinted in 1994 with minor typographical corrections, before it was transcribed into an
electronic edition typeset in LATEX and published under a Creative Commons licence in
2004. The edition cited here is the 2004 edition, but the content should essentially be as
in 1984.

5p. 232

2

http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html
http://www.forth.org

Fowler claims that the usage of the word refactoring did not pass between
the Forth and Smalltalk communities, but that it emerged independently in
each of the communities.
more history?

1.3 Motivation – Why people refactor

To get a grasp of what refactoring is all about, we can try to answer this
question: Why do people refactor? Possible answers could include: “To
remove duplication” or “to break up long methods”. Practitioners of the
art of Design Patterns [6] could say that they do it to introduce a long-
needed pattern into their program’s design. So it is safe to say that peoples’
intentions are to make their programs better in some sense. But what aspects
of the programs are becoming improved?

As already mentioned, people often refactor to get rid of duplication.
Moving identical or similar code into methods, and maybe pushing those up
or down in their class hierarchies. Making template methods for overlapping
algorithms/functionality and so on. It’s all about gathering what belongs
together and putting it all in one place. And the result? The code is easier to
maintain. When removing the implicit coupling between the code snippets,
the location of a bug is limited to only one place, and new functionality need
only to be added this one place, instead of a number of places people might
not even remember.

The same people find out that their program contains a lot of long and
hard-to-grasp methods. Then what do they do? They begin dividing their
methods into smaller ones, using the Extract Method refactoring [5]. Then
they may discover something about their program that they weren’t aware
of before; revealing bugs they didn’t know about or couldn’t find due to
the complex structure of their program. Making the methods smaller and Proof?Proof?
giving good names to the new ones clarifies the algorithms and enhances
the understandability of the program (see section 1.4). This makes simple
refactoring an excellent method for exploring unknown program code, or
code that you had forgotten that you wrote!

The word simple came up in the last section. In fact, most primitive
refactorings are simple. The true power of them are revealed first when
they are combined into larger — higher level — refactorings, called composite
refactorings (see section 1.9). Often the goal of such a series of refactorings
is a design pattern. Thus the design can be evolved throughout the lifetime
of a program, opposed to designing up-front. It’s all about being structured
and taking small steps to improve a program’s design.

Many refactorings are aimed at lowering the coupling between different
classes and different layers of logic. Say for instance that the coupling which refactorings?which refactorings?
between the user interface and the business logic of a program is lowered.
Then the business logic of the program could much easier be the target of
automated tests, increasing the productivity in the software development
process. It is also easier to distribute (e.g. between computers) the different
components of a program if they are sufficiently decoupled.

3

Another effect of refactoring is that with the increased separation of
concerns coming out of many refactorings, the performance is improved.
When profiling programs, the problem parts are narrowed down to smaller
parts of the code, which are easier to tune, and optimization can be
performed only where needed and in a more effective way.

Last, but not least, and this should probably be the best reason to
refactor, is to refactor to facilitate a program change. If one has managed
to keep one’s code clean and tidy, and the code is not bloated with design
patterns that is not ever going to be needed, then some refactoring might
be needed to introduce a design pattern that is appropriate for the change
that is going to happen.

Refactoring program code — with a goal in mind — can give the
code itself more value. That is in the form of robustness to bugs,
understandability and maintainability. With the first as an obvious
advantage, but with the following two being also very important for software
development. By incorporating refactoring in the development process, bugs
are found faster, new functionality is added more easily and code is easier
to understand by the next person exposed to it, which might as well be
the person who wrote it. The consequence of this, is that refactoring can
increase the average productivity of the development process, and thus also
add to the monetary value of a business in the long run. Where this last
point also should open the eyes of some nearsighted managers who seldom
see beyond the next milestone.

1.4 The magical number seven
The magical number seven, plus or minus two: some limits on our capacity
for processing information [8] is an article by George A. Miller that was
published in the journal Psychological Review in 1956. It presents evidence
that support that the capacity of the number of objects a human being can
hold in its working memory is roughly seven, plus or minus two objects.
This number varies a bit depending on the nature and complexity of the
objects, but is according to Miller “. . . never changing so much as to be
unrecognizable.”

Miller’s article culminates in the section called Recoding, a term he
borrows from communication theory. The central result in this section is
that by recoding information, the capacity of the amount of information
that a human can process at a time is increased. By recoding, Miller means
to group objects together in chunks and give each chunk a new name that it
can be remembered by. By organizing objects into patterns of ever growing
depth, one can memorize and process a much larger amount of data than if
it were to be represented as its basic pieces. This grouping and renaming
is analogous to how many refactorings work, by grouping pieces of code
and give them a new name. Examples are the central Extract Method and
Extract Class refactorings [5].

. . . recoding is an extremely powerful weapon for increasing the
amount of information that we can deal with. [8]

4

An example from the article address the problem of memorizing a
sequence of binary digits. Let us say we have the following sequence1 of
16 binary digits: “1010001001110011”. Most of us will have a hard time
memorizing this sequence by only reading it once or twice. Imagine if we
instead translate it to this sequence: “A273”. If you have a background
from computer science, it will be obvious that the latest sequence is the first
sequence recoded to be represented by digits with base 16. Most people
should be able to memorize this last sequence by only looking at it once.

Another result from the Miller article is that when the amount of
information a human must interpret increases, it is crucial that the
translation from one code to another must be almost automatic for the
subject to be able to remember the translation, before he or she is presented
with new information to recode. Thus learning and understanding how to
best organize certain kinds of data is essential to efficiently handle that kind
of data in the future. This is much like when children learn to read. First
they must learn how to recognize letters. Then they can learn distinct words,
and later read sequences of words that form whole sentences. Eventually,
most of them will be able to read whole books and briefly retell the important
parts of its content. This suggest that the use of design patterns [6] is a
good idea when reasoning about computer programs. With extensive use
of design patterns when creating complex program structures, one does not
always have to read whole classes of code to comprehend how they function,
it may be sufficient to only see the name of a class to almost fully understand
its responsibilities.

Our language is tremendously useful for repackaging material
into a few chunks rich in information. [8]

Without further evidence, these results at least indicates that refactoring
source code into smaller units with higher cohesion and, when needed,
introducing appropriate design patterns, should aid in the cause of creating
computer programs that are easier to maintain and has code that is easier
(and better) understood.

1.5 Notable contributions to the refactoring liter-
ature

Update with more contributions

1992 William F. Opdyke submits his doctoral dissertation called Refactor-
ing Object-Oriented Frameworks [9]. This work defines a set of refac-
torings, that are behavior preserving given that their preconditions are
met. The dissertation is focused on the automation of refactorings.

1999 Martin Fowler et al.: Refactoring: Improving the Design of Existing
Code [5]. This is maybe the most influential text on refactoring. It

1The example presented here is slightly modified (and shortened) from what is
presented in the original article [8], but it is essentially the same.

5

bares similarities with Opdykes thesis [9] in the way that it provides a
catalog of refactorings. But Fowler’s book is more about the craft of
refactoring, as he focuses on establishing a vocabulary for refactoring,
together with the mechanics of different refactorings and when to
perform them. His methodology is also founded on the principles of
test-driven development.

todo Refactoring to Patternsincludeinclude

1.6 Tool support

1.6.1 Tool support for Java

This section will briefly compare the refatoring support of the three IDEs
Eclipse1, IntelliJ IDEA2 and NetBeans3. These are the most popular Java
IDEs [7].

All three IDEs provide support for the most useful refactorings, like the
different extract, move and rename refactorings. In fact, Java-targeted IDEs
are known for their good refactoring support, so this did not appear as a
big surprise.

The IDEs seem to have excellent support for the Extract Method
refactoring, so at least they have all passed the first refactoring rubicon [3,
11].

Regarding the Move Method refactoring, the Eclipse and IntelliJ IDEs
do the job in very similar manners. In most situations they both do a
satisfying job by producing the expected outcome. But they do nothing
to check that the result does not break the semantics of the program. (See
section 1.11.) The NetBeans IDE implements this refactoring in a somewhat
clumsy way. For starters, its default destination for the move is itself,
although it refuses to perform the refactoring if chosen. But the worst
part is, that if moving the method f of the below code to X, it will break
the code. Given

public class C {
private X x;
...
public void f() {

x.m();
x.n();

}
}

the move refactoring will produce the following in class X:

1http://www.eclipse.org/
2The IDE under comparison is the Community Edition, http://www.jetbrains.com/idea/
3https://netbeans.org/

6

http://www.eclipse.org/
http://www.jetbrains.com/idea/
https://netbeans.org/

public class X {
...
public void f(C c) {

c.x.m();
c.x.n();

}
}

NetBeans will try to make code that call the methods m and n of X by
accessing them through c.x, where c is a parameter of type C that is added
the method f when it is moved. If c.x for some reason is inaccessible to X,
as in this case, the refactoring breaks the code, and it will not compile. It
has a preview of the refactoring outcome, but that does not catch that it is
about to do something stupid. Ironically, this “feature” of NetBeans keeps
it from breaking the code in the example from section 1.11.

The IDEs under investigation seems to have fairly good support for
primitive refactorings, but what about more complex ones, such as the
Extract Class [5]? The Extract Class refactoring works by creating a class,
for then to move members to that class and access them from the old class
via a reference to the new class. IntelliJ seems to handle this in a fairly
good manner, although, in the case of private methods, it leaves unused
methods behind. These are methods that delegate to a field of the new
class, but are not used anywhere. Eclipse has added (or withdrawn) its own
fun twist to the refactoring, and only allows for fields to be moved to a
new class. This makes it effectively only extracting a data structure, and
calling it Extract Class is a little misleading. One would often be better off
with textual extract and paste than using the Extract Class refactoring in
Eclipse. When it comes to NetBeans, it does not even seem to have made
an attempt on providing this refactoring. (Well, probably has, but it does
not show in the IDE.)
Visual Studio (C++/C#), Smalltalk refactoring browser?, second refac-
toring rubicon?

1.7 Relation to design patterns

refactoring to patterns?

1.8 The impact on software quality

1.8.1 What is meant by quality?

The term software quality has many meanings. It all depends on the context
we put it in. If we look at it with the eyes of a software developer, it usually
mean that the software is easily maintainable and testable, or in other words,
that it is well designed. This often correlates with the management scale,
where keeping the schedule and customer satisfaction is at the center. From

7

the customers point of view, in addition to good usability, performance and
lack of bugs is always appreciated, measurements that are also shared by the
software developer. (In addition, such things as good documentation could
be measured, but this is out of the scope of this document.)

1.8.2 The impact on performance

Refactoring certainly will make software go more slowly, but
it also makes the software more amenable to performance
tuning. [5]

There is a common belief that refactoring compromises performance, due
to increased degree of indirection and that polymorphism is slower than
conditionals.

In a survey, Demeyer [2] disproves this view in the case of polymorphism.
He is doing an experiment on, what he calls, “Transform Self Type
Checks” where you introduce a new polymorphic method and a new class
hierarchy to get rid of a class’ type checking of a “type attribute“. He
uses this kind of transformation to represent other ways of replacing
conditionals with polymorphism as well. The experiment is performed on
the C++ programming language and with three different compilers and
platforms. Demeyer concludes that, with compiler optimization turned on,But is the result

better?
But is the result
better? polymorphism beats middle to large sized if-statements and does as well

as case-statements. (In accordance with his hypothesis, due to similarities
between the way C++ handles polymorphism and case-statements.)

The interesting thing about performance is that if you analyze
most programs, you find that they waste most of their time in a
small fraction of the code. [5]

So, although an increased amount of method calls could potentially slow
down programs, one should avoid premature optimization and sacrificing
good design, leaving the performance tuning until after profiling1 the
software and having isolated the actual problem areas.

1.9 Composite refactorings
Generally, when thinking about refactoring, at the mechanical level, theremotivation,

examples, manual
vs automated?,
what about
refactoring in a
very large code
base?

motivation,
examples, manual
vs automated?,
what about
refactoring in a
very large code
base?

are essentially two kinds of refactorings. There are the primitive refactorings,
and the composite refactorings. A primitive refactoring can be defined like
this:

Definition. A primitive refactoring is a refactoring that cannot be expressed
in terms of other refactorings.

Examples are the Pull Up Field and Pull Up Method refactorings [5], that
moves members up in their class hierarchies.

A composite refactoring is more complex, and can be defined like this:
1For and example of a Java profiler, check out VisualVM: http://visualvm.java.net/

8

http://visualvm.java.net/

Definition. A composite refactoring is a refactoring that can be expressed
in terms of two or more primitive refactorings.

An example of a composite refactoring is the Extract Superclass refactor-
ing [5]. In its simplest form, it is composed of the previously described
primitive refactorings, in addition to the Pull Up Constructor Body refactor-
ing [5]. It works by creating an abstract superclass that the target class(es)
inherits from, then by applying Pull Up Field, Pull Up Method and Pull
Up Constructor Body on the members that are to be members of the new
superclass. For an overview of the Extract Superclass refactoring, see figure
1.1.

Department

getTotalAnnualCost
getName
getHeadCount

Employee

getAnnualCost
getName
getId

Department

getAnnualCost
getHeadCount

Employee

getAnnualCost
getId

Party

getAnnualCost
getName

Figure 1.1: The Extract Superclass refactoring

1.10 Manual vs. automated refactorings

Refactoring is something every programmer does, even if he or she does not
known the term refactoring. Every refinement of source code that does not
alter the program’s behavior is a refactoring. For small refactorings, such
as Extract Method , executing it manually is a manageable task, but is still
prone to errors. Getting it right the first time is not easy, considering the
signature and all the other aspects of the refactoring that has to be in place.

Take for instance the renaming of classes, methods and fields. For
complex programs these refactorings are almost impossible to get right.
Attacking them with textual search and replace, or even regular expressions,
will fall short on these tasks. Then it is crucial to have proper tool support
that can perform them automatically. Tools that can parse source code and
thus has semantic knowledge about which occurrences of which names that
belongs to what construct in the program. For even trying to perform one
of these complex task manually, one would have to be very confident on the
existing test suite (see section 1.12).

9

1.11 Correctness of refactorings

For automated refactorings to be truly useful, they must show a high degree
of behavior preservation. This last sentence might seem obvious, but there
are examples of refactorings in existing tools that break programs. I will
now present an example of an Extract Method refactoring followed by aMove
Method refactoring that breaks a program in both the Eclipse and IntelliJ
IDEs1. The following piece of code shows the target for the composed
refactoring:

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.m(this);
6 x.n();
7 }
8 }

The next piece of code shows the destination of the refactoring. Note that
the method m(C c) of class C assigns to the field x of the argument c that
has type C:

public class X {
public void m(C c) {

c.x = new X();
}
public void n() {}

}

The refactoring sequence works by extracting line 5 and 6 from the
original class C into a method f with the statements from those lines as
its method body. The method is then moved to the class X. The result is
shown in the following two pieces of code:

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.f(this);
6 }
7 }

1The NetBeans IDE handles this particular situation, mainly because its Move Method
refactoring implementation is crippled in other ways (see section 1.6).

10

1 public class X {
2 public void m(C c) {
3 c.x = new X();
4 }
5 public void n() {}
6 public void f(C c) {
7 m(c);
8 n();
9 }

10 }

After the refactoring, the method f of class C calls the method f of class
X, and the program breaks. (See line 5 of the version of class C after the
refactoring.) Before the refactoring, the methods m and n of class X are called
on different object instances (see line 5 and 6 of the original class C). After,
they are called on the same object, and the statement on line 3 of class X
(the version after the refactoring) no longer have any effect in our example.

The bug introduced in the previous example is of such a nature that it
is very difficult to spot if the refactored code is not covered by tests. It does
not generate compilation errors, and will thus only result in a runtime error
or corrupted data, which might be hard to detect.

1.12 Refactoring and testing
If you want to refactor, the essential precondition is having solid
tests. [5]

When refactoring, there are roughly two kinds of errors that can be
made. There are errors that make the code unable to compile, and there
are the silent errors, only popping up at runtime. Compile-time errors are
the nice ones. They flash up at the moment they are made (at least when
using an IDE), and are usually easy to fix. The other kind of error is the
dangerous one. It is the kind of error introduced in the example of section
1.11. It is an error sneaking into your code without you noticing, maybe.
For discovering those kind of errors when refactoring, it is essential to have
good test coverage. It is not a way to prove that the code is correct, but it
is a way to make you confindent that it probably works as desired. In the
context of test driven development, the tests are even a way to define how
the program is supposed to work. It is then, by definition, working if the
tests are passing.

If the test coverage for a code base is perfect, then it should, theoretically,
be risk-free to perform refactorings on it. This is why tests and refactoring
is such a great match.

1.13 Software metrics

11

12

Chapter 2

. . .

write

2.1 The problem statement

2.2 Choosing the target language

Choosing which programming language to use as the target for manipulation
is not a very difficult task. The language have to be an object-
oriented programming language, and it must have existing tool support for
refactoring. The Java programming language1 is the dominating language
when it comes to examples in the literature of refactoring, and is thus a
natural choice. Java is perhaps, currently the most influential programming
language in the world, with its Java Virtual Machine that runs on all of the
most popular architectures and also supports2 dozens of other programming
languages, with Scala, Clojure and Groovy as the most prominent ones.
Java is currently the language that every other programming language is
compared against. It is also the primary language of the author of this
thesis.

2.3 Choosing the tools

When choosing a tool for manipulating Java, there are certain criterias that
have to be met. First of all, the tool should have some existing refactoring
support that this thesis can build upon. Secondly it should provide some
kind of framework for parsing and analyzing Java source code. Third,
it should itself be open source. This is both because of the need to be
able to browse the code for the existing refactorings that is contained in
the tool, and also because open source projects hold value in them selves.
Another important aspect to consider is that open source projects of a
certain size, usually has large communities of people connected to them,

1https://www.java.com/
2They compile to java bytecode.

13

https://www.java.com/

that are commited to answering questions regarding the use and misuse of
the products, that to a large degree is made by the cummunity itself.

There is a certain class of tools that meet these criterias, namely the
class of IDEs1. These are proagrams that is ment to support the whole
production cycle of a cumputer program, and the most popular IDEs that
support Java, generally have quite good refactoring support.

The main contenders for this thesis is the Eclipse IDE, with the Java
development tools (JDT), the IntelliJ IDEA Community Edition and the
NetBeans IDE. (See section 1.6.) Eclipse and NetBeans are both free, open
source and community driven, while the IntelliJ IDEA has an open sourced
community edition that is free of charge, but also offer an Ultimate Edition
with an extended set of features, at additional cost. All three IDEs supports
adding plugins to extend their functionality and tools that can be used to
parse and analyze Java source code. But one of the IDEs stand out as ainvestigate if this is

true
investigate if this is
true favorite, and that is the Eclipse IDE. This is the most popular [7] among

them and seems to be de facto standard IDE for Java development regardless
of platform.

1Integrated Development Environment

14

Chapter 3

Refactorings in Eclipse JDT:
Design, Shortcomings and
Wishful Thinking

This chapter will deal with some of the design behind refactoring support in
Eclipse, and the JDT in specific. After which it will follow a section about
shortcomings of the refactoring API in terms of composition of refactorings.
The chapter will be concluded with a section telling some of the ways the
implementation of refactorings in the JDT could have worked to facilitate
composition of refactorings.

3.1 Design

The refactoring world of Eclipse can in general be separated into two
parts: The language independent part and the part written for a specific
programming language – the language that is the target of the supported
refactorings. What about the

language specific
part?

What about the
language specific
part?3.1.1 The Language Toolkit

The Language Toolkit, or LTK for short, is the framework that is used to
implement refactorings in Eclipse. It is language independent and provides
the abstractions of a refactoring and the change it generates, in the form
of the classes Refactoring1 and Change2. (There is also parts of the LTK
that is concerned with user interaction, but they will not be discussed here,
since they are of little value to us and our use of the framework.)

The Refactoring Class

The abstract class Refactoring is the core of the LTK framework. Every
refactoring that is going to be supported by the LTK have to end up creating
an instance of one of its subclasses. The main responsibilities of subclasses

1org.eclipse.ltk.core.refactoring.Refactoring
2org.eclipse.ltk.core.refactoring.Change

15

of Refactoring is to implement template methods for condition checking
(checkInitialConditions1 and checkFinalConditions2), in addition to
the createChange3 method that creates and returns an instance of the
Change class.

If the refactoring shall support that others participate in it when it is
executed, the refactoring has to be a processor-based refactoring4. It then
delegates to its given RefactoringProcessor5 for condition checking and
change creation.

The Change Class

This class is the base class for objects that is responsible for performing the
actual workspace transformations in a refactoring. The main responsibilities
for its subclasses is to implement the perform6 and isValid7 methods. The
isValid method verifies that the change object is valid and thus can be
executed by calling its perform method. The perform method performs the
desired change and returns an undo change that can be executed to reverse
the effect of the transformation done by its originating change object.

Executing a Refactoring

The life cycle of a refactoring generally follows two steps after creation:
condition checking and change creation. By letting the refactoring object
be handled by a CheckConditionsOperation8 that in turn is handled by a
CreateChangeOperation9, it is assured that the change creation process is
managed in a proper manner.

The actual execution of a change object has to follow a detailed life
cycle. This life cycle is honored if the CreateChangeOperation is handled
by a PerformChangeOperation10. If also an undo manager11 is set for the
PerformChangeOperation, the undo change is added into the undo history.

3.2 Shortcomings

This section is introduced naturally with a conclusion: The JDT refactoring
implementation does not facilitate composition of refactorings. This sectionrefinerefine
will try to explain why, and also identify other shortcomings of both the
usability and the readability of the JDT refactoring source code.

1org.eclipse.ltk.core.refactoring.Refactoring#checkInitialConditions()
2org.eclipse.ltk.core.refactoring.Refactoring#checkFinalConditions()
3org.eclipse.ltk.core.refactoring.Refactoring#createChange()
4org.eclipse.ltk.core.refactoring.participants.ProcessorBasedRefactoring
5org.eclipse.ltk.core.refactoring.participants.RefactoringProcessor
6org.eclipse.ltk.core.refactoring.Change#perform()
7org.eclipse.ltk.core.refactoring.Change#isValid()
8org.eclipse.ltk.core.refactoring.CheckConditionsOperation
9org.eclipse.ltk.core.refactoring.CreateChangeOperation

10org.eclipse.ltk.core.refactoring.PerformChangeOperation
11org.eclipse.ltk.core.refactoring.IUndoManager

16

I will begin at the end and work my way toward the composition part of
this section.

3.2.1 Absence of Generics in Eclipse Source Code

This section is not only concerning the JDT refactoring API, but also large
quantities of the Eclipse source code. The code shows a striking absence of
the Java language feature of generics. It is hard to read a class’ interface
when methods return objects or takes parameters of raw types such as List
or Map. This sometimes results in having to read a lot of source code to
understand what is going on, instead of relying on the available interfaces.
In addition, it results in a lot of ugly code, making the use of typecasting
more of a rule than an exception.

3.2.2 Composite Refactorings Will Not Appear as Atomic
Actions

Missing Flexibility from JDT Refactorings

The JDT refactorings are not made with composition of refactorings in mind.
When a JDT refactoring is executed, it assumes that all conditions for it to
be applied successfully can be found by reading source files that has been
persisted to disk. They can only operate on the actual source material, and
not (in-memory) copies thereof. This constitutes a major disadvantage when
trying to compose refactorings, since if an exception occur in the middle of
a sequence of refactorings, it can leave the project in a state where the
composite refactoring was executed only partly. It makes it hard to discard
the changes done without monitoring and consulting the undo manager, an
approach that is not bullet proof.

Broken Undo History

When designing a composed refactoring that is to be performed as a sequence
of refactorings, you would like it to appear as a single change to the
workspace. This implies that you would also like to be able to undo all
the changes done by the refactoring in a single step. This is not the way it
appears when a sequence of JDT refactorings is executed. It leaves the undo
history filled up with individual undo actions corresponding to every single
JDT refactoring in the sequence. This problem is not trivial to handle in
Eclipse. (See section 4.2.6.)

3.3 Wishful Thinking

17

18

Chapter 4

Composite Refactorings in
Eclipse

4.1 A Simple Ad Hoc Model

As pointed out in chapter 3, the Eclipse JDT refactoring model is not very
well suited for making composite refactorings. Therefore a simple model
using changer objects (of type RefaktorChanger) is used as an abstraction
layer on top of the existing Eclipse refactorings.

4.2 The Extract and Move Method Refactoring

4.2.1 The Building Blocks

This is a composite refactoring, and hence is built up using several primitive
refactorings. These basic building blocks are, as its name implies, the
Extract Method refactoring [5] and the Move Method refactoring [5]. In
Eclipse, the implementations of these refactorings are found in the classes
ExtractMethodRefactoring1 and MoveInstanceMethodProcessor2, where
the last class is designed to be used together with the processor-based
MoveRefactoring3.

The ExtractMethodRefactoring Class

This class is quite simple in its use. The only parameters it requires for
construction is a compilation unit4, the offset into the source code where the
extraction shall start, and the length of the source to be extracted. Then
you have to set the method name for the new method together with which
access modifier that shall be used and some not so interesting parameters.

1org.eclipse.jdt.internal.corext.refactoring.code.ExtractMethodRefactoring
2org.eclipse.jdt.internal.corext.refactoring.structure.MoveInstanceMethodProcessor
3org.eclipse.ltk.core.refactoring.participants.MoveRefactoring
4org.eclipse.jdt.core.ICompilationUnit

19

The MoveInstanceMethodProcessor Class

For the Move Method the processor requires a little more advanced input
than the class for the Extract Method. For construction it requires a method
handle1 from the Java Model for the method that is to be moved. Then the
target for the move have to be supplied as the variable binding from a chosen
variable declaration. In addition to this, one have to set some parameters
regarding setters/getters and delegation.

To make a whole refactoring from the processor, one have to construct
a MoveRefactoring from it.

4.2.2 The ExtractAndMoveMethodChanger Class

The ExtractAndMoveMethodChanger2 class, that is a subclass of the
class RefaktorChanger3, is the class responsible for composing the
ExtractMethodRefactoring and the MoveRefactoring. Its constructor
takes a project handle4, the method name for the new method and a
SmartTextSelection5.

A SmartTextSelection is basically a text selection6 object that enforces
the providing of the underlying document during creation. I.e. its
getDocument7 method will never return null.

Before extracting the new method, the possible targets for the move oper-
ation is found with the help of an ExtractAndMoveMethodPrefixesExtractor8.
The possible targets is computed from the prefixes that the extractor re-
turns from its getSafePrefixes9 method. The changer then choose the
most suitable target by finding the most frequent occurring prefix among
the safe ones. The target is the type of the first part of the prefix.

After finding a suitable target, the ExtractAndMoveMethodChanger first
creates an ExtractMethodRefactoring and performs it as explained in
section 3.1.1 about the execution of refactorings. Then it creates and
performs the MoveRefactoring in the same way, based on the changes done
by the Extract Method refactoring.

4.2.3 The ExtractAndMoveMethodPrefixesExtractor Class

This extractor extracts properties needed for building the Extract and Move
Method refactoring. It searches through the given selection to find safe
prefixes, and those prefixes form a base that can be used to compute possible
targets for the move part of the refactoring. It finds both the candidates,
in the form of prefixes, and the non-candidates, called unfixes. All prefixes

1org.eclipse.jdt.core.IMethod
2no.uio.ifi.refaktor.changers.ExtractAndMoveMethodChanger
3no.uio.ifi.refaktor.changers.RefaktorChanger
4org.eclipse.core.resources.IProject
5no.uio.ifi.refaktor.utils.SmartTextSelection
6org.eclipse.jface.text.ITextSelection
7no.uio.ifi.refaktor.utils.SmartTextSelection#getDocument()
8no.uio.ifi.refaktor.extractors.ExtractAndMoveMethodPrefixesExtractor
9no.uio.ifi.refaktor.extractors.ExtractAndMoveMethodPrefixesExtractor#getSafePrefixes()

20

(and unfixes) are represented by a Prefix1, and they are collected into prefix
sets.2.

The prefixes and unfixes are found by property collectors3. A property
collector follows the visitor pattern [6] and is of the ASTVisitor4 type. An
ASTVisitor visits nodes in an abstract syntax tree that forms the Java
document object model. The tree consists of nodes of type ASTNode5.

The PrefixesCollector

The PrefixesCollector6 is of type PropertyCollector. It visits
expression statements7 and creates prefixes from its expressions in the case
of method invocations. The prefixes found is registered with a prefix set,
together with all its sub-prefixes. Rewrite in the case

of changes to the
way prefixes are
found

Rewrite in the case
of changes to the
way prefixes are
found

The UnfixesCollector

The UnfixesCollector8 finds unfixes within the selection. An unfix is a
name that is assigned to within the selection. The reason that this cannot
be allowed, is that the result would be an assignment to the this keyword,
which is not valid in Java.

Computing Safe Prefixes

A safe prefix is a prefix that does not enclose an unfix. A prefix is
enclosing an unfix if the unfix is in the set of its sub-prefixes. As an
example, “a.b” is enclosing “a”, as is “a”. The safe prefixes is unified
in a PrefixSet and can be fetched calling the getSafePrefixes method of
the ExtractAndMoveMethodPrefixesExtractor.

4.2.4 The Prefix Class

??

4.2.5 The PrefixSet Class

4.2.6 Hacking the Refactoring Undo History

Where to put this
section?
Where to put this
section?As an attempt to make multiple subsequent changes to the workspace

appear as a single action (i.e. make the undo changes appear as such), I
tried to alter the undo changes9 in the history of the refactorings.

1no.uio.ifi.refaktor.extractors.Prefix
2no.uio.ifi.refaktor.extractors.PrefixSet
3no.uio.ifi.refaktor.extractors.collectors.PropertyCollector
4org.eclipse.jdt.core.dom.ASTVisitor
5org.eclipse.jdt.core.do.ASTNode
6no.uio.ifi.refaktor.extractors.collectors.PrefixesCollector
7org.eclipse.jdt.core.dom.ExpressionStatement
8no.uio.ifi.refaktor.extractors.collectors.UnfixesCollector
9org.eclipse.ltk.core.refactoring.Change

21

My first impulse was to remove the, in this case, last two undo changes
from the undo manager1 for the Eclipse refactorings, and then add them
to a composite change2 that could be added back to the manager. The
interface of the undo manager does not offer a way to remove/pop the last
added undo change, so a possible solution could be to decorate [6] the undo
manager, to intercept and collect the undo changes before delegating to the
addUndo method3 of the manager. Instead of giving it the intended undo
change, a null change could be given to prevent it from making any changes
if run. Then one could let the collected undo changes form a composite
change to be added to the manager.

There is a technical challenge with this approach, and it relates to the
undo manager, and the concrete implementation UndoManager24. This
implementation is designed in a way that it is not possible to just add an
undo change, you have to do it in the context of an active operation5. One
could imagine that it might be possible to trick the undo manager into
believing that you are doing a real change, by executing a refactoring that
is returning a kind of null change that is returning our composite change of
undo refactorings when it is performed.

Apart from the technical problems with this solution, there is a
functional problem: If it all had worked out as planned, this would leave
the undo history in a dirty state, with multiple empty undo operations
corresponding to each of the sequentially executed refactoring operations,
followed by a composite undo change corresponding to an empty change of
the workspace for rounding of our composite refactoring. The solution to this
particular problem could be to intercept the registration of the intermediate
changes in the undo manager, and only register the last empty change.

Unfortunately, not everything works as desired with this solution. The
grouping of the undo changes into the composite change does not make the
undo operation appear as an atomic operation. The undo operation is still
split up into separate undo actions, corresponding to the change done by
its originating refactoring. And in addition, the undo actions has to be
performed separate in all the editors involved. This makes it no solution at
all, but a step toward something worse.

There might be a solution to this problem, but it remains to be found.
The design of the refactoring undo management is partly to be blamed for
this, as it it is to complex to be easily manipulated.

1org.eclipse.ltk.core.refactoring.IUndoManager
2org.eclipse.ltk.core.refactoring.CompositeChange
3org.eclipse.ltk.core.refactoring.IUndoManager#addUndo()
4org.eclipse.ltk.internal.core.refactoring.UndoManager2
5org.eclipse.core.commands.operations.TriggeredOperations

22

Bibliography

[1] Leo Brodie. Thinking Forth. 1984, 1994, 2004. url: http://thinking-
forth.sourceforge.net/.

[2] Serge Demeyer. “Maintainability Versus Performance: What’s the
Effect of Introducing Polymorphism?” In: ICSE’2003 (2002).

[3] Martin Fowler. Crossing Refactoring’s Rubicon. 2001. url: http ://
martinfowler.com/articles/refactoringRubicon.html.

[4] Martin Fowler. Etymology Of Refactoring. 2003. url: http : / /
martinfowler.com/bliki/EtymologyOfRefactoring.html.

[5] Martin Fowler. Refactoring: improving the design of existing code.
Reading, MA: Addison-Wesley, 1999. isbn: 0201485672.

[6] Erich Gamma et al. Design patterns : elements of reusable
object-oriented software. Reading, MA: Addison-Wesley, 1995. isbn:
0201633612.

[7] JAVA EE Productivity Report 2011. Survey. 2011. url: http : / /
zeroturnaround . com / wp - content / uploads / 2010 / 11 / Java _ EE _
Productivity_Report_2011_finalv2.pdf.

[8] George A. Miller. “The magical number seven, plus or minus two: some
limits on our capacity for processing information.” In: Psychological
Review 63.2 (1956), pp. 81–97. issn: 1939-1471(Electronic);0033-
295X(Print). doi: 10.1037/h0043158.

[9] William F. Opdyke. “Refactoring Object-oriented Frameworks.” UMI
Order No. GAX93-05645. Champaign, IL, USA: University of Illinois
at Urbana-Champaign, 1992.

[10] Don Roberts, John Brant, and Ralph Johnson. “A Refactoring Tool
for Smalltalk.” In: Theor. Pract. Object Syst. 3.4 (Oct. 1997), 253–263.
issn: 1074-3227.

[11] Mohsen Vakilian and Ralph Johnson. Composite Refactorings:
The Next Refactoring Rubicons. University of Illinois at Urbana-
Champaign, 2012. url: https : //www. ideals . illinois . edu/bitstream/
handle/2142/35678/2012-WRT.pdf?sequence=2.

23

http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://dx.doi.org/10.1037/h0043158
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2

24

Todo list

2do . i
2do . i
what does he mean by internal? . 1
find reference to Smalltalk website or similar? 2
2do . 3
Proof? . 3
which refactorings? . 3
2do . 5
include . 6
2do . 7
2do . 7
But is the result better? . 8
motivation, examples, manual vs automated?, what about refactoring

in a very large code base? . 8
2do . 13
investigate if this is true . 14
What about the language specific part? 15
refine . 16
Rewrite in the case of changes to the way prefixes are found 21
? . 21
Where to put this section? . 21

25

	What is Refactoring?
	Defining refactoring
	The etymology of 'refactoring'
	Motivation – Why people refactor
	The magical number seven
	Notable contributions to the refactoring literature
	Tool support
	Tool support for Java

	Relation to design patterns
	The impact on software quality
	What is meant by quality?
	The impact on performance

	Composite refactorings
	Manual vs. automated refactorings
	Correctness of refactorings
	Refactoring and testing
	Software metrics

	…
	The problem statement
	Choosing the target language
	Choosing the tools

	Refactorings in Eclipse JDT: Design, Shortcomings and Wishful Thinking
	Design
	The Language Toolkit

	Shortcomings
	Absence of Generics in Eclipse Source Code
	Composite Refactorings Will Not Appear as Atomic Actions

	Wishful Thinking

	Composite Refactorings in Eclipse
	A Simple Ad Hoc Model
	The Extract and Move Method Refactoring
	The Building Blocks
	The ExtractAndMoveMethodChanger Class
	The ExtractAndMoveMethodPrefixesExtractor Class
	The Prefix Class
	The PrefixSet Class
	Hacking the Refactoring Undo History

