/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Implementation version v1 of EMCAL Manager class // An object of this class does not produce digits // It is the one to use if you do want to produce outputs in TREEH // //*-- Author: Sahal Yacoob (LBL /UCT) //*-- : Jennifer Klay (LBL) // This Class not stores information on all particles prior to EMCAL entry - in order to facilitate analysis. // This is done by setting fIShunt =2, and flagging all parents of particles entering the EMCAL. // 15/02/2002 .... Yves Schutz // 1. fSamplingFraction and fLayerToPreshowerRatio have been removed // 2. Timing signal is collected and added to hit // --- ROOT system --- #include "TPGON.h" #include "TTUBS.h" #include "TNode.h" #include "TRandom.h" #include "TTree.h" #include "TGeometry.h" #include "TParticle.h" // --- Standard library --- #include #include #include #include #include #include // --- AliRoot header files --- #include "AliEMCALv1.h" #include "AliEMCALHit.h" #include "AliEMCALGeometry.h" #include "AliConst.h" #include "AliRun.h" #include "AliMC.h" ClassImp(AliEMCALv1) //______________________________________________________________________ AliEMCALv1::AliEMCALv1():AliEMCALv0(){ // ctor fLightYieldMean = 0 ; fIntrinsicAPDEfficiency = fLightFactor = fLightYieldAttenuation = fAPDFactor = fAPDGain = fRecalibrationFactor = fAPDFactor = 0. ; } //______________________________________________________________________ AliEMCALv1::AliEMCALv1(const char *name, const char *title): AliEMCALv0(name,title){ // Standard Creator. fHits= new TClonesArray("AliEMCALHit",1000); gAlice->AddHitList(fHits); fNhits = 0; fIshunt = 2; // All hits are associated with particles entering the calorimeter //Photoelectron statistics: // The light yield is a poissonian distribution of the number of // photons created in a plastic layer, calculated using following formula // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency * // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit) // LightYieldMean is parameter calculated to be over 100000 photons per GeV (a guess) // APDEfficiency is 0.02655 // fLightYieldAttenuation is 0.0045 a guess // TO BE FIXED //***** Need a method in geometry to retrieve the fiber length corresponding to each layer //***** See the step manager for the light attenuation calculation // The number of electrons created in the APD is // NumberOfElectrons = APDGain * LightYield // The APD Gain is 300 fLightYieldMean = 10000000.; // This is a guess fIntrinsicAPDEfficiency = 0.02655 ; fLightFactor = fLightYieldMean * fIntrinsicAPDEfficiency ; fLightYieldAttenuation = 0.0045 ; // an other guess fAPDGain = 300. ; fRecalibrationFactor = 13.418/ fLightYieldMean ; fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ; } //______________________________________________________________________ AliEMCALv1::~AliEMCALv1(){ // dtor if ( fHits) { fHits->Delete(); delete fHits; fHits = 0; } } //______________________________________________________________________ void AliEMCALv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t iparent, Float_t ienergy, Int_t id, Float_t * hits,Float_t * p){ // Add a hit to the hit list. // An EMCAL hit is the sum of all hits in a single segment // originating from the same enterring particle Int_t hitCounter; AliEMCALHit *newHit; AliEMCALHit *curHit; Bool_t deja = kFALSE; newHit = new AliEMCALHit(shunt, primary, tracknumber, iparent, ienergy, id, hits, p); for ( hitCounter = fNhits-1; hitCounter >= 0 && !deja; hitCounter-- ) { curHit = (AliEMCALHit*) (*fHits)[hitCounter]; // We add hits with the same tracknumber, while GEANT treats // primaries succesively if(curHit->GetPrimary() != primary) break; if( *curHit == *newHit ) { *curHit = *curHit + *newHit; deja = kTRUE; } // end if } // end for hitCounter if ( !deja ) { new((*fHits)[fNhits]) AliEMCALHit(*newHit); fNhits++; } // end if delete newHit; } //______________________________________________________________________ void AliEMCALv1::StepManager(void){ // Accumulates hits as long as the track stays in a single // crystal or PPSD gas Cell Int_t id[2]; // (layer, phi, Eta) indices Int_t absid; // position wrt MRS and energy deposited Float_t xyzte[5]={0.,0.,0.,0.,0.};// position wrt MRS, time and energy deposited Float_t pmom[4]={0.,0.,0.,0.}; TLorentzVector pos; // Lorentz vector of the track current position. TLorentzVector mom; // Lorentz vector of the track current momentum. Int_t tracknumber = gAlice->CurrentTrack(); Int_t primary = 0; static Int_t iparent = 0; static Float_t ienergy = 0; Int_t copy = 0; AliEMCALGeometry * geom = GetGeometry() ; if(gMC->IsTrackEntering() && (strcmp(gMC->CurrentVolName(),"XALU") == 0)){ // This Particle in enterring the Calorimeter gMC->TrackPosition(pos) ; xyzte[0] = pos[0] ; xyzte[1] = pos[1] ; xyzte[2] = pos[2] ; if ( (xyzte[0]*xyzte[0] + xyzte[1]*xyzte[1]) < (geom->GetEnvelop(0)+geom->GetGap2Active()+1.5 )*(geom->GetEnvelop(0)+geom->GetGap2Active()+1.5 ) ) { iparent = tracknumber; gMC->TrackMomentum(mom); ienergy = mom[3]; TParticle * part = 0 ; Int_t parent = iparent ; while ( parent != -1 ) { // <------------- flags this particle to be kept and //all the ancestors of this particle part = gAlice->Particle(parent) ; part->SetBit(kKeepBit); parent = part->GetFirstMother() ; } } } if(gMC->CurrentVolID(copy) == gMC->VolId("XPHI") ) { // We are in a Scintillator Layer Float_t depositedEnergy ; if( (depositedEnergy = gMC->Edep()) > 0.){// Track is inside a scintillator and deposits some energy gMC->TrackPosition(pos); xyzte[0] = pos[0]; xyzte[1] = pos[1]; xyzte[2] = pos[2]; xyzte[3] = gMC->TrackTime() ; gMC->TrackMomentum(mom); pmom[0] = mom[0]; pmom[1] = mom[1]; pmom[2] = mom[2]; pmom[3] = mom[3]; gMC->CurrentVolOffID(1, id[0]); // get the POLY copy number; gMC->CurrentVolID(id[1]); // get the phi number inside the layer absid = (id[0]-1)*(geom->GetNPhi()) + id[1]; //Calculates the light yield, the number of photons produced in the //plastic layer // Here we need to know the fiber lebgth to calculate the attenuation Float_t lengthOfFiber = 0. ;// should be retrieved from the geometry Float_t lightYield = gRandom->Poisson(fLightFactor * depositedEnergy * exp(-fLightYieldAttenuation * lengthOfFiber)) ; xyzte[4] = fAPDFactor * lightYield ; primary = gAlice->GetPrimary(tracknumber); AddHit(fIshunt, primary,tracknumber, iparent, ienergy, absid, xyzte, pmom); } // there is deposited energy } }