/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ ///////////////////////////////////////////////////////////////////// // // // Forward Multiplicity detector based on Silicon version 0 // // //Begin Html /* */ //End Html // // // // ////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include "AliFMDdigit.h" #include "AliFMDhit.h" #include "AliFMDv0.h" #include "AliFMDv1.h" #include "AliMagF.h" #include "AliRun.h" ClassImp(AliFMDv1) //-------------------------------------------------------------------- AliFMDv1::AliFMDv1(const char *name, const char *title): AliFMD(name,title) { // // Standart constructor for Forward Multiplicity Detector version 0 // fIdSens1=0; fIdSens2=0; fIdSens3=0; fIdSens4=0; fIdSens5=0; // setBufferSize(128000); } //------------------------------------------------------------------------- void AliFMDv1::CreateGeometry() { // // Create the geometry of Forward Multiplicity Detector version 0 // //Detector consists of 6 volumes: // 1st covered pseudorapidity interval from 3.3 to 2.0 // and placed on 65cm in Z-direction; // 2nd - from 2.0 to 1.6 and Z=85 cm; // 3d - the same pseudorapidity interval as the 1st // but on the other side from the interaction point z=-65cm; // 4th - simmetricaly with the 2nd : // pseudorapidity from 2.0 to 1.6, Z=-85cm // 5th - from 3.6 to 4.7, Z=-270cm // 6th - from 4.5 to 5.5 , Z=-630cm. // Each part has 400mkm Si (sensetive area, detector itself), // 0.75cm of plastic simulated electronics material, // Al support ring 2cm thickness and 1cm width placed on // the outer radius of each Si disk; // // begin Html /* */ // Int_t *idtmed = fIdtmed->GetArray(); Int_t ifmd; Int_t idrotm[999]; Float_t zFMD,par[3],ppcon[15]; Float_t z[5]={62.8, 75.2, -83.4, -75.2, -340.}; Float_t NylonTube[3]={0.2,0.6,0.45}; Float_t zPCB=0.12; Float_t zHoneyComb=0.5; Float_t zSi=0.03; char nameFMD[5], nameSi[5], nameSector[5], nameRing[5]; Char_t nameHoney[5], nameHoneyIn[5], nameHoneyOut[5]; Char_t namePCB[5], nameCopper[5], nameChips[5], nameG10[5]; Char_t nameLPCB[5], nameLCopper[5], nameLChips[5], nameGL10[5];; Float_t rin[5]={4.2,15.4,4.2,15.4,4.2}; Float_t rout[5]={17.4,28.4,17.4,28.4,17.4}; Float_t RinHoneyComb[5] ={ 5.15,16.4, 5.15,16.4, 5.15}; Float_t RoutHoneyComb[5]={20.63,34.92,22.3, 32.02,20.63}; Float_t zInside; Float_t zCooper=0.01; Float_t zChips=0.01; Float_t yNylonTube[5]={10,20,10,20,10}; AliMatrix(idrotm[901], 90, 0, 90, 90, 180, 0); // Nylon tubes gMC->Gsvolu("GNYL","TUBE", idtmed[1], NylonTube, 3); //support nylon tube Float_t wideSupport=zSi+3*zPCB+2*NylonTube[2]+zHoneyComb; cout<<" wideSupport "<Gsvolu(nameFMD,"PCON",idtmed[0],ppcon,15); if (z[ifmd] >0){ zFMD=z[ifmd]+wideSupport; gMC->Gspos(nameFMD,1,"ALIC",0,0,zFMD,0, "ONLY");} else { zFMD=z[ifmd]-wideSupport; gMC->Gspos(nameFMD,1,"ALIC",0,0,zFMD,idrotm[901], "ONLY");} //silicon sprintf(nameSi,"GSI%d",ifmd+1); sprintf(nameSector,"GSC%d",ifmd+1); sprintf(nameRing,"GRN%d",ifmd+1); //honeycomb support sprintf(nameHoney,"GSU%d",ifmd+1); gMC->Gsvolu(nameHoney,"TUBE", idtmed[0], par, 0); //honeycomb sprintf(nameHoneyIn,"GHI%d",ifmd+1); gMC->Gsvolu(nameHoneyIn,"TUBE", idtmed[7], par, 0); //honey comb inside sprintf(nameHoneyOut,"GHO%d",ifmd+1); gMC->Gsvolu(nameHoneyOut,"TUBE", idtmed[6], par, 0); //honey comb skin //PCB sprintf(namePCB,"GPC%d",ifmd+1); gMC->Gsvolu(namePCB,"TUBE", idtmed[0], par, 0); //PCB sprintf(nameCopper,"GCO%d",ifmd+1); gMC->Gsvolu(nameCopper,"TUBE", idtmed[3], par, 0); // Cooper sprintf(nameChips,"GCH%d",ifmd+1); gMC->Gsvolu(nameChips,"TUBE", idtmed[5], par, 0); // Si chips sprintf(nameG10,"G10%d",ifmd+1); gMC->Gsvolu(nameG10,"TUBE", idtmed[2], par, 0); //G10 plate //last PCB sprintf(nameLPCB,"GPL%d",ifmd+1); gMC->Gsvolu(nameLPCB,"TUBE", idtmed[0], par, 0); //PCB sprintf(nameLCopper,"GCL%d",ifmd+1); gMC->Gsvolu(nameLCopper,"TUBE", idtmed[3], par, 0); // Cooper sprintf(nameLChips,"GHL%d",ifmd+1); gMC->Gsvolu(nameLChips,"TUBE", idtmed[5], par, 0); // Si chips sprintf(nameGL10,"G1L%d",ifmd+1); gMC->Gsvolu(nameGL10,"TUBE", idtmed[2], par, 0); // Last G10 par[0]=rin[ifmd]; // pipe size par[1]=rout[ifmd]; par[2]=zSi/2; gMC->Gsvolu(nameSi,"TUBE", idtmed[4], par, 3); zInside=ppcon[3]+par[2]; gMC->Gspos(nameSi,ifmd+1,nameFMD,0,0,zInside,0, "ONLY"); //PCB 1 zInside += par[2]+zPCB/2; par[2]=zPCB/2; gMC->Gsposp(namePCB,1,nameFMD,0,0,zInside,0, "ONLY",par,3); zInside += zPCB; gMC->Gsposp(namePCB,2,nameFMD,0,0,zInside,0, "ONLY",par,3); Float_t NulonTubeBegin=zInside+2.5*zPCB; par[2]=zPCB/2-0.02; Float_t zInPCB = -zPCB/2+par[2]; gMC->Gsposp(nameG10,1,namePCB,0,0,zInPCB,0, "ONLY",par,3); zInPCB+=par[2]+zCooper/2 ; par[2]=zCooper/2; gMC->Gsposp(nameCopper,1,namePCB,0,0,zInPCB,0, "ONLY",par,3); zInPCB += zCooper/2 + zChips/2; par[2]=zChips/2; gMC->Gsposp(nameChips,1,namePCB,0,0,zInPCB,0, "ONLY",par,3); //HoneyComb zHoneyComb=0.8; par[0] = RinHoneyComb[ifmd]; par[1] = RoutHoneyComb[ifmd]; par[2] = zHoneyComb/2; zInside += 2*NylonTube[2]+par[2]; gMC->Gsposp(nameHoney,1,nameFMD,0,0,zInside,0, "ONLY",par,3); par[2]=0.1/2; Float_t zHoney=-zHoneyComb/2+par[2]; gMC->Gsposp(nameHoneyOut,1,nameHoney,0,0,zHoney,0, "ONLY",par,3); //shkurki zHoney=zHoneyComb/2-par[2]; gMC->Gsposp(nameHoneyOut,2,nameHoney,0,0,zHoney,0, "ONLY",par,3); par[2]=(zHoneyComb-2.*0.1)/2; //soty vnutri gMC->Gsposp(nameHoneyIn,1,nameHoney,0,0,0,0, "ONLY",par,3); gMC->Gspos("GNYL",1,nameFMD,0,yNylonTube[ifmd], NulonTubeBegin+NylonTube[2]/2.,0, "ONLY"); gMC->Gspos("GNYL",2,nameFMD,0,-yNylonTube[ifmd], NulonTubeBegin+NylonTube[2]/2.,0, "ONLY"); //last PCB par[0]=RoutHoneyComb[ifmd]-9; par[1]=RoutHoneyComb[ifmd]; par[2]=zPCB/2; zInside += zHoneyComb/2+par[2]; gMC->Gsposp(nameLPCB,1,nameFMD,0,0,zInside,0, "ONLY",par,3); par[2]=zPCB/2-0.02; zInPCB = -zPCB/2+par[2]; gMC->Gsposp(nameGL10,1,nameLPCB,0,0,zInPCB,0, "ONLY",par,3); zInPCB+=par[2]+zCooper/2 ; par[2]=zCooper/2; gMC->Gsposp(nameLCopper,1,nameLPCB,0,0,zInPCB,0, "ONLY",par,3); zInPCB += zCooper/2 + zChips/2; par[2]=zChips/2; gMC->Gsposp(nameLChips,1,nameLPCB,0,0,zInPCB,0, "ONLY",par,3); //Granularity fSectorsSi1=20; fRingsSi1=256*2; // fRingsSi1=3; // for drawing only fSectorsSi2=40; fRingsSi2=128*2; // fRingsSi2=3; //for drawing onl if(ifmd==1||ifmd==3) { gMC->Gsdvn(nameSector, nameSi , fSectorsSi2, 2); gMC->Gsdvn(nameRing, nameSector, fRingsSi2, 1); } else { gMC->Gsdvn(nameSector, nameSi , fSectorsSi1, 2); gMC->Gsdvn(nameRing, nameSector , fRingsSi1, 1); } } } //------------------------------------------------------------------------ void AliFMDv1::CreateMaterials() { Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); // Plastic CH Float_t aPlastic[2]={1.01,12.01}; Float_t zPlastic[2]={1,6}; Float_t wPlastic[2]={1,1}; Float_t denPlastic=1.03; // // 60% SiO2 , 40% G10FR4 // PC board Float_t apcb[3] = { 28.0855,15.9994,17.749 }; Float_t zpcb[3] = { 14.,8.,8.875 }; Float_t wpcb[3] = { .28,.32,.4 }; Float_t denspcb = 1.8; // //*** Definition Of avaible FMD materials *** AliMaterial(0, "FMD Air$", 14.61, 7.3, .001205, 30423.,999); AliMixture(1, "Plastic$",aPlastic,zPlastic,denPlastic,-2,wPlastic); AliMixture(2, "SSD PCB$", apcb, zpcb, denspcb, 3, wpcb); AliMaterial(3, "SSD Copper$", 63.546, 29., 8.96, 1.43, 999.); AliMaterial(4, "SSD Si$", 28.0855, 14., 2.33, 9.36, 999.); AliMaterial(5, "SSD Si chip$", 28.0855, 14., 2.33, 9.36, 999.); AliMaterial(6, "SSD C$", 12.011, 6., 2.265,18.8, 999.); AliMaterial(7, "SSD Kapton$", 12.011, 6., 0.01, 31.27, 999.);//honeycomb AliMaterial(8, "SSD G10FR4$", 17.749, 8.875, 1.8, 21.822, 999.); //** AliMedium(0, "FMD air$", 0, 0, isxfld, sxmgmx, 1., .001, 1., .001, .001); AliMedium(1, "Plastic$", 1, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003); AliMedium(2, "SSD PCB$", 2, 0, isxfld, sxmgmx, 1., .001, 1., .001, .001); AliMedium(3, "SSD Copper$", 3, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003); AliMedium(4, "SSD Si$", 4, 1, isxfld, sxmgmx, 1., .001, 1., .001, .001); AliMedium(5, "SSD Si chip$", 5, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003); AliMedium(6, "SSD C$", 6, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003); AliMedium(7, "SSD Kapton$", 7, 0, isxfld, sxmgmx, 1., .001, 1., .001, .001); AliMedium(8, "SSD G10FR4$", 8, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003); } //--------------------------------------------------------------------- void AliFMDv1::DrawDetector() { // // Draw a shaded view of the Forward multiplicity detector version 0 // //Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // //Set volumes visible gMC->Gsatt("FMD1","SEEN",1); gMC->Gsatt("FMD2","SEEN",1); gMC->Gsatt("FMD3","SEEN",1); gMC->Gsatt("FMD4","SEEN",1); gMC->Gsatt("FMD5","SEEN",1); // gMC->Gdopt("hide","on"); gMC->Gdopt("shad","on"); gMC->SetClipBox("."); gMC->SetClipBox("*",0,1000,-1000,1000,-1000,1000); gMC->DefaultRange(); gMC->Gdraw("alic",40,30,0,12,9.5,.2,0.2); gMC->Gdhead(1111,"Forward multiplicity detector"); gMC->Gdopt("hide","off"); } //------------------------------------------------------------------- void AliFMDv1::Init() { // Initialises version 0 of the Forward Multiplicity Detector // AliFMD::Init(); fIdSens1=gMC->VolId("GRN1"); fIdSens2=gMC->VolId("GRN2"); fIdSens3=gMC->VolId("GRN3"); fIdSens4=gMC->VolId("GRN4"); fIdSens5=gMC->VolId("GRN5"); printf("*** FMD version 1 initialized ***\n"); } //------------------------------------------------------------------- void AliFMDv1::StepManager() { // // Called for every step in the Forward Multiplicity Detector // Int_t id,copy,copy1,copy2; static Float_t hits[9]; static Int_t vol[3]; static Float_t de; TLorentzVector pos; TLorentzVector mom; TClonesArray &lhits = *fHits; if(!gMC->IsTrackAlive()) return; // particle has disappeared Float_t charge = gMC->TrackCharge(); if(TMath::Abs(charge)<=0.) return; //take only charged particles // printf(" in StepManeger \n"); id=gMC->CurrentVolID(copy); //((TGeant3*)gMC)->Gpcxyz(); // Check the sensetive volume if(id==fIdSens1||id==fIdSens2||id==fIdSens3||id==fIdSens4||id==fIdSens5) { if(gMC->IsTrackEntering()) { vol[2]=copy; gMC->CurrentVolOffID(1,copy1); vol[1]=copy1; gMC->CurrentVolOffID(2,copy2); vol[0]=copy2; gMC->TrackPosition(pos); hits[0]=pos[0]; hits[1]=pos[1]; hits[2]=pos[2]; gMC->TrackMomentum(mom); hits[3]=mom[0]; hits[4]=mom[1]; hits[5]=mom[2]; Int_t iPart= gMC->TrackPid(); Int_t partId=gMC->IdFromPDG(iPart); hits[7]=partId; hits[8]=1e9*gMC->TrackTime(); de=0.; } if(gMC->IsTrackInside()){ de=de+1000.*gMC->Edep(); } if(gMC->IsTrackExiting() ||gMC->IsTrackDisappeared()|| gMC->IsTrackStop()) { hits[6]=de+1000.*gMC->Edep(); new(lhits[fNhits++]) AliFMDhit(fIshunt,gAlice->GetCurrentTrackNumber(),vol,hits); } // IsTrackExiting() } } //-------------------------------------------------------------------------- void AliFMDv1::Response( Float_t Edep) { Float_t I=1.664*0.04*2.33/22400; // = 0.69e-6; Float_t chargeOnly=Edep/I; //Add noise ~500electrons Int_t charge=500; if (Edep>0) charge=Int_t(gRandom->Gaus(chargeOnly,500)); }