/**************************************************************************
* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
* *
* Author: The ALICE Off-line Project. *
* Contributors are mentioned in the code where appropriate. *
* *
* Permission to use, copy, modify and distribute this software and its *
* documentation strictly for non-commercial purposes is hereby granted *
* without fee, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission notice *
* appear in the supporting documentation. The authors make no claims *
* about the suitability of this software for any purpose. It is *
* provided "as is" without express or implied warranty. *
**************************************************************************/
/* $Id$ */
/////////////////////////////////////////////////////////////////////
// //
// Forward Multiplicity detector based on Silicon version 0 //
//
//Begin Html
/*
*/
//End Html
// //
// //
//////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "AliFMDdigit.h"
#include "AliFMDhit.h"
#include "AliFMDv0.h"
#include "AliFMDv1.h"
#include "AliMagF.h"
#include "AliRun.h"
ClassImp(AliFMDv1)
//--------------------------------------------------------------------
AliFMDv1::AliFMDv1(const char *name, const char *title):
AliFMD(name,title)
{
//
// Standart constructor for Forward Multiplicity Detector version 0
//
fIdSens1=0;
fIdSens2=0;
fIdSens3=0;
fIdSens4=0;
fIdSens5=0;
// setBufferSize(128000);
}
//-------------------------------------------------------------------------
void AliFMDv1::CreateGeometry()
{
//
// Create the geometry of Forward Multiplicity Detector version 0
//
//Detector consists of 6 volumes:
// 1st covered pseudorapidity interval from 3.3 to 2.0
// and placed on 65cm in Z-direction;
// 2nd - from 2.0 to 1.6 and Z=85 cm;
// 3d - the same pseudorapidity interval as the 1st
// but on the other side from the interaction point z=-65cm;
// 4th - simmetricaly with the 2nd :
// pseudorapidity from 2.0 to 1.6, Z=-85cm
// 5th - from 3.6 to 4.7, Z=-270cm
// 6th - from 4.5 to 5.5 , Z=-630cm.
// Each part has 400mkm Si (sensetive area, detector itself),
// 0.75cm of plastic simulated electronics material,
// Al support ring 2cm thickness and 1cm width placed on
// the outer radius of each Si disk;
//
// begin Html
/*
*/
//
Int_t *idtmed = fIdtmed->GetArray();
Int_t ifmd;
Int_t idrotm[999];
Float_t zFMD,par[3],ppcon[15];
Float_t z[5]={62.8, 75.2, -83.4, -75.2, -340.};
Float_t NylonTube[3]={0.2,0.6,0.45};
Float_t zPCB=0.12; Float_t zHoneyComb=0.5;
Float_t zSi=0.03;
char nameFMD[5], nameSi[5], nameSector[5], nameRing[5];
Char_t nameHoney[5], nameHoneyIn[5], nameHoneyOut[5];
Char_t namePCB[5], nameCopper[5], nameChips[5], nameG10[5];
Char_t nameLPCB[5], nameLCopper[5], nameLChips[5], nameGL10[5];;
Float_t rin[5]={4.2,15.4,4.2,15.4,4.2};
Float_t rout[5]={17.4,28.4,17.4,28.4,17.4};
Float_t RinHoneyComb[5] ={ 5.15,16.4, 5.15,16.4, 5.15};
Float_t RoutHoneyComb[5]={20.63,34.92,22.3, 32.02,20.63};
Float_t zInside;
Float_t zCooper=0.01; Float_t zChips=0.01;
Float_t yNylonTube[5]={10,20,10,20,10};
AliMatrix(idrotm[901], 90, 0, 90, 90, 180, 0);
// Nylon tubes
gMC->Gsvolu("GNYL","TUBE", idtmed[1], NylonTube, 3); //support nylon tube
Float_t wideSupport=zSi+3*zPCB+2*NylonTube[2]+zHoneyComb;
cout<<" wideSupport "<Gsvolu(nameFMD,"PCON",idtmed[0],ppcon,15);
if (z[ifmd] >0){
zFMD=z[ifmd]+wideSupport;
gMC->Gspos(nameFMD,1,"ALIC",0,0,zFMD,0, "ONLY");}
else {
zFMD=z[ifmd]-wideSupport;
gMC->Gspos(nameFMD,1,"ALIC",0,0,zFMD,idrotm[901], "ONLY");}
//silicon
sprintf(nameSi,"GSI%d",ifmd+1);
sprintf(nameSector,"GSC%d",ifmd+1);
sprintf(nameRing,"GRN%d",ifmd+1);
//honeycomb support
sprintf(nameHoney,"GSU%d",ifmd+1);
gMC->Gsvolu(nameHoney,"TUBE", idtmed[0], par, 0); //honeycomb
sprintf(nameHoneyIn,"GHI%d",ifmd+1);
gMC->Gsvolu(nameHoneyIn,"TUBE", idtmed[7], par, 0); //honey comb inside
sprintf(nameHoneyOut,"GHO%d",ifmd+1);
gMC->Gsvolu(nameHoneyOut,"TUBE", idtmed[6], par, 0); //honey comb skin
//PCB
sprintf(namePCB,"GPC%d",ifmd+1);
gMC->Gsvolu(namePCB,"TUBE", idtmed[0], par, 0); //PCB
sprintf(nameCopper,"GCO%d",ifmd+1);
gMC->Gsvolu(nameCopper,"TUBE", idtmed[3], par, 0); // Cooper
sprintf(nameChips,"GCH%d",ifmd+1);
gMC->Gsvolu(nameChips,"TUBE", idtmed[5], par, 0); // Si chips
sprintf(nameG10,"G10%d",ifmd+1);
gMC->Gsvolu(nameG10,"TUBE", idtmed[2], par, 0); //G10 plate
//last PCB
sprintf(nameLPCB,"GPL%d",ifmd+1);
gMC->Gsvolu(nameLPCB,"TUBE", idtmed[0], par, 0); //PCB
sprintf(nameLCopper,"GCL%d",ifmd+1);
gMC->Gsvolu(nameLCopper,"TUBE", idtmed[3], par, 0); // Cooper
sprintf(nameLChips,"GHL%d",ifmd+1);
gMC->Gsvolu(nameLChips,"TUBE", idtmed[5], par, 0); // Si chips
sprintf(nameGL10,"G1L%d",ifmd+1);
gMC->Gsvolu(nameGL10,"TUBE", idtmed[2], par, 0); // Last G10
par[0]=rin[ifmd]; // pipe size
par[1]=rout[ifmd];
par[2]=zSi/2;
gMC->Gsvolu(nameSi,"TUBE", idtmed[4], par, 3);
zInside=ppcon[3]+par[2];
gMC->Gspos(nameSi,ifmd+1,nameFMD,0,0,zInside,0, "ONLY");
//PCB 1
zInside += par[2]+zPCB/2;
par[2]=zPCB/2;
gMC->Gsposp(namePCB,1,nameFMD,0,0,zInside,0, "ONLY",par,3);
zInside += zPCB;
gMC->Gsposp(namePCB,2,nameFMD,0,0,zInside,0, "ONLY",par,3);
Float_t NulonTubeBegin=zInside+2.5*zPCB;
par[2]=zPCB/2-0.02;
Float_t zInPCB = -zPCB/2+par[2];
gMC->Gsposp(nameG10,1,namePCB,0,0,zInPCB,0, "ONLY",par,3);
zInPCB+=par[2]+zCooper/2 ;
par[2]=zCooper/2;
gMC->Gsposp(nameCopper,1,namePCB,0,0,zInPCB,0, "ONLY",par,3);
zInPCB += zCooper/2 + zChips/2;
par[2]=zChips/2;
gMC->Gsposp(nameChips,1,namePCB,0,0,zInPCB,0, "ONLY",par,3);
//HoneyComb
zHoneyComb=0.8;
par[0] = RinHoneyComb[ifmd];
par[1] = RoutHoneyComb[ifmd];
par[2] = zHoneyComb/2;
zInside += 2*NylonTube[2]+par[2];
gMC->Gsposp(nameHoney,1,nameFMD,0,0,zInside,0, "ONLY",par,3);
par[2]=0.1/2;
Float_t zHoney=-zHoneyComb/2+par[2];
gMC->Gsposp(nameHoneyOut,1,nameHoney,0,0,zHoney,0,
"ONLY",par,3); //shkurki
zHoney=zHoneyComb/2-par[2];
gMC->Gsposp(nameHoneyOut,2,nameHoney,0,0,zHoney,0, "ONLY",par,3);
par[2]=(zHoneyComb-2.*0.1)/2; //soty vnutri
gMC->Gsposp(nameHoneyIn,1,nameHoney,0,0,0,0, "ONLY",par,3);
gMC->Gspos("GNYL",1,nameFMD,0,yNylonTube[ifmd],
NulonTubeBegin+NylonTube[2]/2.,0, "ONLY");
gMC->Gspos("GNYL",2,nameFMD,0,-yNylonTube[ifmd],
NulonTubeBegin+NylonTube[2]/2.,0, "ONLY");
//last PCB
par[0]=RoutHoneyComb[ifmd]-9;
par[1]=RoutHoneyComb[ifmd];
par[2]=zPCB/2;
zInside += zHoneyComb/2+par[2];
gMC->Gsposp(nameLPCB,1,nameFMD,0,0,zInside,0, "ONLY",par,3);
par[2]=zPCB/2-0.02;
zInPCB = -zPCB/2+par[2];
gMC->Gsposp(nameGL10,1,nameLPCB,0,0,zInPCB,0, "ONLY",par,3);
zInPCB+=par[2]+zCooper/2 ;
par[2]=zCooper/2;
gMC->Gsposp(nameLCopper,1,nameLPCB,0,0,zInPCB,0, "ONLY",par,3);
zInPCB += zCooper/2 + zChips/2;
par[2]=zChips/2;
gMC->Gsposp(nameLChips,1,nameLPCB,0,0,zInPCB,0, "ONLY",par,3);
//Granularity
fSectorsSi1=20;
fRingsSi1=256*2;
// fRingsSi1=3; // for drawing only
fSectorsSi2=40;
fRingsSi2=128*2;
// fRingsSi2=3; //for drawing onl
if(ifmd==1||ifmd==3)
{
gMC->Gsdvn(nameSector, nameSi , fSectorsSi2, 2);
gMC->Gsdvn(nameRing, nameSector, fRingsSi2, 1);
}
else
{
gMC->Gsdvn(nameSector, nameSi , fSectorsSi1, 2);
gMC->Gsdvn(nameRing, nameSector , fRingsSi1, 1);
}
}
}
//------------------------------------------------------------------------
void AliFMDv1::CreateMaterials()
{
Int_t isxfld = gAlice->Field()->Integ();
Float_t sxmgmx = gAlice->Field()->Max();
// Plastic CH
Float_t aPlastic[2]={1.01,12.01};
Float_t zPlastic[2]={1,6};
Float_t wPlastic[2]={1,1};
Float_t denPlastic=1.03;
//
// 60% SiO2 , 40% G10FR4
// PC board
Float_t apcb[3] = { 28.0855,15.9994,17.749 };
Float_t zpcb[3] = { 14.,8.,8.875 };
Float_t wpcb[3] = { .28,.32,.4 };
Float_t denspcb = 1.8;
//
//*** Definition Of avaible FMD materials ***
AliMaterial(0, "FMD Air$", 14.61, 7.3, .001205, 30423.,999);
AliMixture(1, "Plastic$",aPlastic,zPlastic,denPlastic,-2,wPlastic);
AliMixture(2, "SSD PCB$", apcb, zpcb, denspcb, 3, wpcb);
AliMaterial(3, "SSD Copper$", 63.546, 29., 8.96, 1.43, 999.);
AliMaterial(4, "SSD Si$", 28.0855, 14., 2.33, 9.36, 999.);
AliMaterial(5, "SSD Si chip$", 28.0855, 14., 2.33, 9.36, 999.);
AliMaterial(6, "SSD C$", 12.011, 6., 2.265,18.8, 999.);
AliMaterial(7, "SSD Kapton$", 12.011, 6., 0.01, 31.27, 999.);//honeycomb
AliMaterial(8, "SSD G10FR4$", 17.749, 8.875, 1.8, 21.822, 999.);
//**
AliMedium(0, "FMD air$", 0, 0, isxfld, sxmgmx, 1., .001, 1., .001, .001);
AliMedium(1, "Plastic$", 1, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003);
AliMedium(2, "SSD PCB$", 2, 0, isxfld, sxmgmx, 1., .001, 1., .001, .001);
AliMedium(3, "SSD Copper$", 3, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003);
AliMedium(4, "SSD Si$", 4, 1, isxfld, sxmgmx, 1., .001, 1., .001, .001);
AliMedium(5, "SSD Si chip$", 5, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003);
AliMedium(6, "SSD C$", 6, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003);
AliMedium(7, "SSD Kapton$", 7, 0, isxfld, sxmgmx, 1., .001, 1., .001, .001);
AliMedium(8, "SSD G10FR4$", 8, 0,isxfld, sxmgmx, 10., .01, 1., .003, .003);
}
//---------------------------------------------------------------------
void AliFMDv1::DrawDetector()
{
//
// Draw a shaded view of the Forward multiplicity detector version 0
//
//Set ALIC mother transparent
gMC->Gsatt("ALIC","SEEN",0);
//
//Set volumes visible
gMC->Gsatt("FMD1","SEEN",1);
gMC->Gsatt("FMD2","SEEN",1);
gMC->Gsatt("FMD3","SEEN",1);
gMC->Gsatt("FMD4","SEEN",1);
gMC->Gsatt("FMD5","SEEN",1);
//
gMC->Gdopt("hide","on");
gMC->Gdopt("shad","on");
gMC->SetClipBox(".");
gMC->SetClipBox("*",0,1000,-1000,1000,-1000,1000);
gMC->DefaultRange();
gMC->Gdraw("alic",40,30,0,12,9.5,.2,0.2);
gMC->Gdhead(1111,"Forward multiplicity detector");
gMC->Gdopt("hide","off");
}
//-------------------------------------------------------------------
void AliFMDv1::Init()
{
// Initialises version 0 of the Forward Multiplicity Detector
//
AliFMD::Init();
fIdSens1=gMC->VolId("GRN1");
fIdSens2=gMC->VolId("GRN2");
fIdSens3=gMC->VolId("GRN3");
fIdSens4=gMC->VolId("GRN4");
fIdSens5=gMC->VolId("GRN5");
printf("*** FMD version 1 initialized ***\n");
}
//-------------------------------------------------------------------
void AliFMDv1::StepManager()
{
//
// Called for every step in the Forward Multiplicity Detector
//
Int_t id,copy,copy1,copy2;
static Float_t hits[9];
static Int_t vol[3];
static Float_t de;
TLorentzVector pos;
TLorentzVector mom;
TClonesArray &lhits = *fHits;
if(!gMC->IsTrackAlive()) return; // particle has disappeared
Float_t charge = gMC->TrackCharge();
if(TMath::Abs(charge)<=0.) return; //take only charged particles
// printf(" in StepManeger \n");
id=gMC->CurrentVolID(copy);
//((TGeant3*)gMC)->Gpcxyz();
// Check the sensetive volume
if(id==fIdSens1||id==fIdSens2||id==fIdSens3||id==fIdSens4||id==fIdSens5)
{
if(gMC->IsTrackEntering())
{
vol[2]=copy;
gMC->CurrentVolOffID(1,copy1);
vol[1]=copy1;
gMC->CurrentVolOffID(2,copy2);
vol[0]=copy2;
gMC->TrackPosition(pos);
hits[0]=pos[0];
hits[1]=pos[1];
hits[2]=pos[2];
gMC->TrackMomentum(mom);
hits[3]=mom[0];
hits[4]=mom[1];
hits[5]=mom[2];
Int_t iPart= gMC->TrackPid();
Int_t partId=gMC->IdFromPDG(iPart);
hits[7]=partId;
hits[8]=1e9*gMC->TrackTime();
de=0.;
}
if(gMC->IsTrackInside()){
de=de+1000.*gMC->Edep();
}
if(gMC->IsTrackExiting()
||gMC->IsTrackDisappeared()||
gMC->IsTrackStop())
{
hits[6]=de+1000.*gMC->Edep();
new(lhits[fNhits++]) AliFMDhit(fIshunt,gAlice->GetCurrentTrackNumber(),vol,hits);
} // IsTrackExiting()
}
}
//--------------------------------------------------------------------------
void AliFMDv1::Response( Float_t Edep)
{
Float_t I=1.664*0.04*2.33/22400; // = 0.69e-6;
Float_t chargeOnly=Edep/I;
//Add noise ~500electrons
Int_t charge=500;
if (Edep>0)
charge=Int_t(gRandom->Gaus(chargeOnly,500));
}