// ************************************************************************** // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * // * * // * Author: The ALICE Off-line Project. * // * Contributors are mentioned in the code where appropriate. * // * * // * Permission to use, copy, modify and distribute this software and its * // * documentation strictly for non-commercial purposes is hereby granted * // * without fee, provided that the above copyright notice appears in all * // * copies and that both the copyright notice and this permission notice * // * appear in the supporting documentation. The authors make no claims * // * about the suitability of this software for any purpose. It is * // * provided "as is" without express or implied warranty. * // ************************************************************************** #include "AliHMPIDCluster.h" //class header #include //Solve() #include //Solve() #include //Draw() ClassImp(AliHMPIDCluster) //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CoG() { // Calculates naive cluster position as a center of gravity of its digits. // Arguments: none // Returns: none // if(fDigs==0) return; //no digits in this cluster fX=fY=fQ=0; //set cluster position to (0,0) to start to collect contributions Int_t maxQpad=-1,maxQ=-1; //to calculate the pad with the highest charge AliHMPIDDigit *pDig; for(Int_t iDig=0;iDigGetEntriesFast();iDig++){//digits loop pDig=(AliHMPIDDigit*)fDigs->At(iDig); //get pointer to next digit Float_t q=pDig->Q(); //get QDC fX += pDig->LorsX()*q;fY +=pDig->LorsY()*q; //add digit center weighted by QDC fQ+=q; //increment total charge if(q>maxQ) {maxQpad = pDig->Pad();maxQ=(Int_t)q;} // to find pad with highest charge }//digits loop if ( fQ != 0 ) fX/=fQ;fY/=fQ; //final center of gravity CorrSin(); //correct it by sinoid fCh=pDig->Ch(); //initialize chamber number fMaxQpad = maxQpad; fMaxQ=maxQ; //store max charge pad to the field fXi=fX+99; fYi=fY+99; fQi=fQ+99; //initial local max position is to be shifted artificially fSt=kCoG; }//CoG() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CorrSin() { // Correction of cluster x position due to sinoid, see HMPID TDR page 30 // Arguments: none // Returns: none AliHMPIDDigit dig;dig.Manual1(Ch(),fX,fY); //tmp digit to get it center Float_t x=fX-dig.LorsX(); fX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::Draw(Option_t*) { TMarker *pMark=new TMarker(X(),Y(),5); pMark->SetMarkerColor(kBlue); pMark->Draw(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t *, Double_t &chi2, Double_t *par, Int_t ) { // Cluster fit function // par[0]=x par[1]=y par[2]=q for the first Mathieson shape // par[3]=x par[4]=y par[5]=q for the second Mathieson shape and so on up to iNpars/3 Mathieson shapes // For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions // Then the chi2 is calculated as the sum of this value squared for all pad in the cluster. // Arguments: iNpars - number of parameters which is number of local maxima of cluster * 3 // chi2 - function result to be minimised // par - parameters array of size iNpars // Returns: none AliHMPIDCluster *pClu=(AliHMPIDCluster*)gMinuit->GetObjectFit(); Int_t iNshape = iNpars/3; chi2 = 0; for(Int_t i=0;iSize();i++){ //loop on all pads of the cluster Double_t dQpadMath = 0; //pad charge collector for(Int_t j=0;jDig(i)->Mathieson(par[3*j],par[3*j+1]); // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson } chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2); // } //loop on all pads of the cluster }//FitFunction() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::Print(Option_t* opt)const { //Print current cluster const char *status=0; switch(fSt){ case kFrm : status="formed " ;break; case kUnf : status="unfolded (fit)" ;break; case kCoG : status="coged " ;break; case kLo1 : status="locmax 1 (fit)" ;break; case kAbn : status="abnorm (fit)" ;break; case kMax : status="exceeded (cog)" ;break; case kNot : status="not done (cog)" ;break; case kEmp : status="empty " ;break; case kEdg : status="edge (fit)" ;break; case kSi1 : status="size 1 (cog)" ;break; case kNoLoc: status="no LocMax(fit)" ;break; default: status="??????" ;break; } Printf("%sCLU:(%7.3f,%7.3f) Q=%8.3f ch=%i, FormedSize=%2i N loc. max. %i Box %i Chi2 %7.3f %s", opt, X(), Y(), Q(), Ch(), Size(), fNlocMax, fBox, fChi2, status); if(fDigs) fDigs->Print(); }//Print() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold) { //This methode is invoked when the cluster is formed to solve it. Solve the cluster means to try to unfold the cluster //into the local maxima number of clusters. This methode is invoked by AliHMPIDRconstructor::Dig2Clu() on cluster by cluster basis. //At this point, cluster contains a list of digits, cluster charge and size is precalculated in AddDigit(), position is preset to (-1,-1) in ctor, //status is preset to kFormed in AddDigit(), chamber-sector info is preseted to actual values in AddDigit() //Method first finds number of local maxima and if it's more then one tries to unfold this cluster into local maxima number of clusters //Arguments: pCluLst - cluster list pointer where to add new cluster(s) // isTryUnfold - flag to switch on/off unfolding // Returns: number of local maxima of original cluster CoG(); // Printf("1 - fStatus: %d",fSt); Int_t iCluCnt=pCluLst->GetEntriesFast(); //get current number of clusters already stored in the list by previous operations if(isTryUnfold==kFALSE || Size()==1) { //if cluster contains single pad there is no way to improve the knowledge (isTryUnfold)?fSt=kSi1:fSt=kNot; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add this raw cluster return 1; } // Printf("2 - fStatus: %d",fSt); //Phase 0. Initialise TMinuit const Int_t kMaxLocMax=6; //max allowed number of loc max for fitting TMinuit *pMinuit = new TMinuit(3*kMaxLocMax); //init MINUIT with this number of parameters (3 params per mathieson) pMinuit->SetObjectFit((TObject*)this); pMinuit->SetFCN(AliHMPIDCluster::FitFunc); //set fit function Double_t aArg=-1; Int_t iErrFlg; //tmp vars for TMinuit pMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg); //suspend all printout from TMinuit pMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg); //suspend all warning printout from TMinuit //Phase 1. Find number of local maxima. Strategy is to check if the current pad has QDC more then all neigbours. Also find the box contaning the cluster fNlocMax=0; Int_t minPadX=999,minPadY=999,maxPadX=-1,maxPadY=-1,pc=-1; //for box finding //Double_t lowX,highX,lowY,highY; // Printf("3 - fStatus: %d",fSt); for(Int_t iDig1=0;iDig1Pc(); //finding the box if(pDig1->PadPcX() > maxPadX) maxPadX = pDig1->PadPcX(); if(pDig1->PadPcY() > maxPadY) maxPadY = pDig1->PadPcY(); if(pDig1->PadPcX() < minPadX) minPadX = pDig1->PadPcX(); if(pDig1->PadPcY() < minPadY) minPadY = pDig1->PadPcY(); fBox=(maxPadX-minPadX+1)*100+maxPadY-minPadY+1; Int_t iHowManyMoreCnt = 0; //counts how many neighbouring pads has QDC more then current one for(Int_t iDig2=0;iDig2PadChX()-pDig2->PadChX()),1)+TMath::Sign(Int_t(pDig1->PadChY()-pDig2->PadChY()),1);//distance between pads if(dist==1) //means dig2 is a neighbour of dig1 if(pDig2->Q()>=pDig1->Q()) iHowManyMoreCnt++; //count number of pads with Q more then Q of current pad }//second digits loop if(iHowManyMoreCnt==0&&fNlocMaxQ(); fXi=pDig1->LorsX(); fYi=pDig1->LorsY(); //initial position of this Mathieson is to be in the center of loc max pad /* pMinuit->mnparm(3*fNlocMax ,Form("x%i",fNlocMax),fXi,0.01,lowX,highX,iErrFlg); pMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fYi,0.01,lowY,highY,iErrFlg); pMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQi,0.01,lowQ,highQ,iErrFlg); */ pMinuit->mnparm(3*fNlocMax ,Form("x%i",fNlocMax),fXi,0.01,0,0,iErrFlg); pMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fYi,0.01,0,0,iErrFlg); pMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQi,0.01,0,100000,iErrFlg); fNlocMax++; }//if this pad is local maximum }//first digits loop //Int_t fitChk=0; //Phase 2. Fit loc max number of Mathiesons or add this current cluster to the list // Printf("4 - fStatus: %d",fSt); if ( fNlocMax == 0) { // case of no local maxima found: pads with same charge... pMinuit->mnparm(3*fNlocMax ,Form("x%i",fNlocMax),fX,0.01,0,0,iErrFlg); pMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fY,0.01,0,0,iErrFlg); pMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQ,0.01,0,100000,iErrFlg); fNlocMax = 1; fSt=kNoLoc; } if ( fNlocMax >= kMaxLocMax) { fSt = kMax; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add this raw cluster } else{ //resonable number of local maxima to fit and user requested it Double_t arglist[10]; arglist[0] = 10000; arglist[1] = 1.; //number of steps and sigma on pads charges pMinuit->mnexcm("MIGRAD" ,arglist,0,iErrFlg); //start fitting if (iErrFlg) { fSt = kAbn; //fit fails, MINUIT returns error flag new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add this raw cluster } else { //Only if MIGRAD converged normally Double_t d2,d3; TString sName; //vars to get results from TMinuit for(Int_t i=0;imnpout(3*i ,sName, fX, fXe , d2, d3, iErrFlg); pMinuit->mnpout(3*i+1 ,sName, fY, fYe , d2, d3, iErrFlg); pMinuit->mnpout(3*i+2 ,sName, fQ, fQe , d2, d3, iErrFlg); pMinuit->mnstat(fChi2,d2,d2,iErrFlg,iErrFlg,iErrFlg); if(fNlocMax!=1)fSt=kUnf; if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1; if ( !IsInPc()) fSt = kEdg; if(fSt==kNoLoc) fNlocMax=0; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add new unfolded cluster } } } delete pMinuit; return fNlocMax; }//Solve() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++