/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // // AliHMPIDRecon // // // // HMPID class to perfom pattern recognition based on Hough transfrom // // for single chamber // ////////////////////////////////////////////////////////////////////////// #include "AliHMPIDRecon.h" //class header #include "AliHMPIDParam.h" //CkovAngle() #include "AliHMPIDCluster.h" //CkovAngle() #include //TracePhot() #include //HoughResponse() #include //CkovAngle() #include //CkovAngle() const Double_t AliHMPIDRecon::fgkRadThick=1.5; const Double_t AliHMPIDRecon::fgkWinThick=0.5; const Double_t AliHMPIDRecon::fgkGapThick=8.0; const Double_t AliHMPIDRecon::fgkWinIdx =1.5787; const Double_t AliHMPIDRecon::fgkGapIdx =1.0005; //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDRecon::AliHMPIDRecon():TTask("RichRec","RichPat"), fRadNmean(1.292), fPhotCnt(-1), fCkovSigma2(0), fIsWEIGHT(kFALSE), fDTheta(0.001), fWindowWidth(0.045), fTrkDir(TVector3(0,0,1)),fTrkPos(TVector2(30,40)) { // main ctor for (Int_t i=0; i<3000; i++) { fPhotFlag[i] = 0; fPhotCkov[i] = -1; fPhotPhi [i] = -1; fPhotWei [i] = 0; } } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean) { // Pattern recognition method based on Hough transform // Arguments: pTrk - track for which Ckov angle is to be found // pCluLst - list of clusters for this chamber // Returns: - track ckov angle, [rad], AliHMPIDParam *pParam=AliHMPIDParam::Instance(); if(pCluLst->GetEntries()>pParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction else fIsWEIGHT = kFALSE; Float_t xRa,yRa,th,ph; pTrk->GetHMPIDtrk(xRa,yRa,th,ph); //initialize this track: th and ph angles at middle of RAD SetTrack(xRa,yRa,th,ph); fRadNmean=nmean; Float_t dMin=999,mipX=-1,mipY=-1;Int_t chId=-1,mipId=-1,mipQ=-1; fPhotCnt=0; for (Int_t iClu=0; iCluGetEntriesFast();iClu++){//clusters loop AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster chId=pClu->Ch(); if(pClu->Q()>pParam->QCut()){ //charge compartible with MIP clusters Float_t dX=fPc.X()-pClu->X(),dY=fPc.Y()-pClu->Y(),d =TMath::Sqrt(dX*dX+dY*dY); //distance between current cluster and intersection point if( d < dMin) {mipId=iClu; dMin=d;mipX=pClu->X();mipY=pClu->Y();mipQ=(Int_t)pClu->Q();} //current cluster is closer, overwrite data for min cluster }else{ //charge compatible with photon cluster Double_t thetaCer,phiCer; if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){ //find ckov angle for this photon candidate fPhotCkov[fPhotCnt]=thetaCer; //actual theta Cerenkov (in TRS) fPhotPhi [fPhotCnt]=phiCer; //actual phi Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z) fPhotCnt++; //increment counter of photon candidates } } }//clusters loop Int_t iNacc=FlagPhot(HoughResponse()); //flag photons according to individual theta ckov with respect to most probable pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNacc); //store mip info if(mipId==-1) {pTrk->SetHMPIDsignal(kMipQdcCut); return;} //no clusters with QDC more the threshold at all if(dMin>pParam->DistCut()) {pTrk->SetHMPIDsignal(kMipDistCut); return;} //closest cluster with enough charge is still too far from intersection pTrk->SetHMPIDcluIdx(chId,mipId); //set index of cluster if(iNacc<1) pTrk->SetHMPIDsignal(kNoPhotAccept); //no photon candidates is accepted else pTrk->SetHMPIDsignal(FindRingCkov(pCluLst->GetEntries())); //find best Theta ckov for ring i.e. track pTrk->SetHMPIDchi2(fCkovSigma2); //errors squared }//ThetaCerenkov() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCer,Double_t &phiCer) { // Finds Cerenkov angle for this photon candidate // Arguments: cluX,cluY - position of cadidate's cluster // Returns: Cerenkov angle TVector3 dirCkov; Double_t zRad= -0.5*fgkRadThick-0.5*fgkWinThick; //z position of middle of RAD TVector3 rad(fTrkPos.X(),fTrkPos.Y(),zRad); //impact point at middle of RAD TVector3 pc(cluX,cluY,0.5*fgkWinThick+fgkGapIdx); //mip at PC Double_t cluR = TMath::Sqrt((cluX-fTrkPos.X())*(cluX-fTrkPos.X())+ (cluY-fTrkPos.Y())*(cluY-fTrkPos.Y()));//ref. distance impact RAD-CLUSTER Double_t phi=(pc-rad).Phi(); //phi of photon Double_t ckov1=0; Double_t ckov2=0.75+fTrkDir.Theta(); //start to find theta cerenkov in DRS const Double_t kTol=0.01; Int_t iIterCnt = 0; while(1){ if(iIterCnt>=50) return kFALSE; Double_t ckov=0.5*(ckov1+ckov2); dirCkov.SetMagThetaPhi(1,ckov,phi); TVector2 posC=TraceForward(dirCkov); //trace photon with actual angles Double_t dist=cluR-(posC-fTrkPos).Mod(); //get distance between trial point and cluster position if(posC.X()==-999) dist = - 999; //total reflection problem iIterCnt++; //counter step if (dist> kTol) ckov1=ckov; //cluster @ larger ckov else if(dist<-kTol) ckov2=ckov; //cluster @ smaller ckov else{ //precision achived: ckov in DRS found dirCkov.SetMagThetaPhi(1,ckov,phi); // RecPhot(dirCkov,thetaCer,phiCer); //find ckov (in TRS:the effective Cherenkov angle!) return kTRUE; } } }//FindPhotTheta() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::TraceForward(TVector3 dirCkov)const { //Trace forward a photon from (x,y) up to PC // Arguments: dirCkov photon vector in LORS // Returns: pos of traced photon at PC TVector2 pos(-999,-999); Double_t thetaCer = dirCkov.Theta(); if(thetaCer > TMath::ASin(1./fRadNmean)) return pos; //total refraction on WIN-GAP boundary Double_t zRad= -0.5*fgkRadThick-0.5*fgkWinThick; //z position of middle of RAD TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),zRad); //RAD: photon position is track position @ middle of RAD Propagate(dirCkov,posCkov, -0.5*fgkWinThick); //go to RAD-WIN boundary Refract (dirCkov, fRadNmean,fgkWinIdx); //RAD-WIN refraction Propagate(dirCkov,posCkov, 0.5*fgkWinThick); //go to WIN-GAP boundary Refract (dirCkov, fgkWinIdx,fgkGapIdx); //WIN-GAP refraction Propagate(dirCkov,posCkov,0.5*fgkWinThick+fgkGapThick); //go to PC pos.Set(posCkov.X(),posCkov.Y()); return pos; }//TraceForward() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::RecPhot(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer) { //Theta Cerenkov reconstruction // Arguments: (x,y) of initial point in LORS, dirCkov photon vector in LORS // Returns: thetaCer theta cerenkov reconstructed // TVector3 dirTrk; // dirTrk.SetMagThetaPhi(1,fTrkDir.Theta(),fTrkDir.Phi()); // Double_t thetaCer = TMath::ACos(dirCkov*dirTrk); TRotation mtheta; mtheta.RotateY(- fTrkDir.Theta()); TRotation mphi; mphi.RotateZ(- fTrkDir.Phi()); TRotation mrot=mtheta*mphi; TVector3 dirCkovTRS; dirCkovTRS=mrot*dirCkov; phiCer = dirCkovTRS.Phi(); //actual value of the phi of the photon thetaCer= dirCkovTRS.Theta(); //actual value of thetaCerenkov of the photon } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::FindRingArea(Double_t ckovAng)const { // Find area inside the cerenkov ring which lays inside PCs // Arguments: ckovAng - cerenkov angle // Returns: area of the ring in cm^2 for given theta ckov const Int_t kN=100; Double_t area=0; for(Int_t i=0;ickovMax) ckovMax=fPhotCkov[i]; weightThetaCerenkov += fPhotCkov[i]*fPhotWei[i]; wei += fPhotWei[i]; //collect weight as sum of all candidate weghts sigma2 += 1./Sigma2(fPhotCkov[i],fPhotPhi[i]); } }//candidates loop if(sigma2>0) fCkovSigma2=1./sigma2; else fCkovSigma2=1e10; if(wei != 0.) weightThetaCerenkov /= wei; else weightThetaCerenkov = 0.; return weightThetaCerenkov; }//FindCkovRing() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDRecon::FlagPhot(Double_t ckov) { // Flag photon candidates if their individual ckov angle is inside the window around ckov angle returned by HoughResponse() // Arguments: ckov- value of most probable ckov angle for track as returned by HoughResponse() // Returns: number of photon candidates happened to be inside the window // Photon Flag: Flag = 0 initial set; // Flag = 1 good candidate (charge compatible with photon); // Flag = 2 photon used for the ring; Int_t steps = (Int_t)((ckov )/ fDTheta); //how many times we need to have fDTheta to fill the distance between 0 and thetaCkovHough Double_t tmin = (Double_t)(steps - 1)*fDTheta; Double_t tmax = (Double_t)(steps)*fDTheta; Double_t tavg = 0.5*(tmin+tmax); tmin = tavg - 0.5*fWindowWidth; tmax = tavg + 0.5*fWindowWidth; Int_t iInsideCnt = 0; //count photons which Theta ckov inside the window for(Int_t i=0;i= tmin && fPhotCkov[i] <= tmax) { fPhotFlag[i]=2; iInsideCnt++; } } return iInsideCnt; }//FlagPhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::TracePhot(Double_t ckovThe,Double_t ckovPhi)const { // Trace a single Ckov photon from emission point somewhere in radiator up to photocathode taking into account ref indexes of materials it travereses // Arguments: ckovThe,ckovPhi- photon ckov angles in DRS, [rad] // Returns: distance between photon point on PC and track projection TRotation mtheta; mtheta.RotateY(fTrkDir.Theta()); TRotation mphi; mphi.RotateZ(fTrkDir.Phi()); TRotation mrot=mphi*mtheta; TVector3 dirCkov,dirCkovTors; dirCkovTors.SetMagThetaPhi(1,ckovThe,ckovPhi); //initially photon is directed according to requested ckov angle dirCkov=mrot*dirCkovTors; //now we know photon direction in LORS return TraceForward(dirCkov); }//TracePhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Propagate(const TVector3 dir,TVector3 &pos,Double_t z)const { // Finds an intersection point between a line and XY plane shifted along Z. // Arguments: dir,pos - vector along the line and any point of the line // z - z coordinate of plain // Returns: none // On exit: pos is the position if this intesection if any static TVector3 nrm(0,0,1); TVector3 pnt(0,0,z); TVector3 diff=pnt-pos; Double_t sint=(nrm*diff)/(nrm*dir); pos+=sint*dir; }//Propagate() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Refract(TVector3 &dir,Double_t n1,Double_t n2)const { // Refract direction vector according to Snell law // Arguments: // n1 - ref idx of first substance // n2 - ref idx of second substance // Returns: none // On exit: dir is new direction Double_t sinref=(n1/n2)*TMath::Sin(dir.Theta()); if(sinref>1.) dir.SetXYZ(-999,-999,-999); else dir.SetTheta(TMath::ASin(sinref)); }//Refract() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::HoughResponse() { // // // Double_t kThetaMax=0.75; Int_t nChannels = (Int_t)(kThetaMax/fDTheta+0.5); TH1D *phots = new TH1D("Rphot" ,"phots" ,nChannels,0,kThetaMax); TH1D *photsw = new TH1D("RphotWeighted" ,"photsw" ,nChannels,0,kThetaMax); TH1D *resultw = new TH1D("resultw","resultw" ,nChannels,0,kThetaMax); Int_t nBin = (Int_t)(kThetaMax/fDTheta); Int_t nCorrBand = (Int_t)(fWindowWidth/(2*fDTheta)); for (Int_t i=0; i< fPhotCnt; i++){//photon cadidates loop Double_t angle = fPhotCkov[i]; if(angle<0||angle>kThetaMax) continue; phots->Fill(angle); Int_t bin = (Int_t)(0.5+angle/(fDTheta)); Double_t weight=1.; if(fIsWEIGHT){ Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta; Double_t diffArea = FindRingArea(upperlimit)-FindRingArea(lowerlimit); if(diffArea>0) weight = 1./diffArea; } photsw->Fill(angle,weight); fPhotWei[i]=weight; }//photon candidates loop for (Int_t i=1; i<=nBin;i++){ Int_t bin1= i-nCorrBand; Int_t bin2= i+nCorrBand; if(bin1<1) bin1=1; if(bin2>nBin)bin2=nBin; Double_t sumPhots=phots->Integral(bin1,bin2); if(sumPhots<3) continue; // if less then 3 photons don't trust to this ring Double_t sumPhotsw=photsw->Integral(bin1,bin2); resultw->Fill((Double_t)((i+0.5)*fDTheta),sumPhotsw); } // evaluate the "BEST" theta ckov as the maximum value of histogramm Double_t *pVec = resultw->GetArray(); Int_t locMax = TMath::LocMax(nBin,pVec); phots->Delete();photsw->Delete();resultw->Delete(); // Reset and delete objects return (Double_t)(locMax*fDTheta+0.5*fDTheta); //final most probable track theta ckov }//HoughResponse() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::Sigma2(Double_t ckovTh, Double_t ckovPh)const { // Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] TVector3 v(-999,-999,-999); Double_t trkBeta = 1./(TMath::Cos(ckovTh)*fRadNmean); v.SetX(SigLoc (ckovTh,ckovPh,trkBeta)); v.SetY(SigGeom(ckovTh,ckovPh,trkBeta)); v.SetZ(SigCrom(ckovTh,ckovPh,trkBeta)); return v.Mag2(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::SigLoc(Double_t thetaC, Double_t phiC,Double_t betaM)const { // Analithical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - fTrkDir.Phi(); Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta()); Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); if (k<0) return 1e10; Double_t mu =TMath::Sin(fTrkDir.Theta())*TMath::Sin(fTrkDir.Phi())+TMath::Tan(thetaC)*(TMath::Cos(fTrkDir.Theta())*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Phi())+TMath::Sin(phiDelta)*TMath::Cos(fTrkDir.Phi())); Double_t e =TMath::Sin(fTrkDir.Theta())*TMath::Cos(fTrkDir.Phi())+TMath::Tan(thetaC)*(TMath::Cos(fTrkDir.Theta())*TMath::Cos(phiDelta)*TMath::Cos(fTrkDir.Phi())-TMath::Sin(phiDelta)*TMath::Sin(fTrkDir.Phi())); Double_t kk = betaM*TMath::Sqrt(k)/(8*alpha); Double_t dtdxc = kk*(k*(TMath::Cos(phiDelta)*TMath::Cos(fTrkDir.Phi())-TMath::Cos(fTrkDir.Theta())*TMath::Sin(phiDelta)*TMath::Sin(fTrkDir.Phi()))-(alpha*mu/(betaM*betaM))*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiDelta)); Double_t dtdyc = kk*(k*(TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Phi())+TMath::Cos(fTrkDir.Theta())*TMath::Sin(phiDelta)*TMath::Cos(fTrkDir.Phi()))+(alpha* e/(betaM*betaM))*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiDelta)); return TMath::Sqrt(0.2*0.2*dtdxc*dtdxc + 0.25*0.25*dtdyc*dtdyc); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::SigCrom(Double_t thetaC, Double_t phiC,Double_t betaM)const { // Analithical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - fTrkDir.Phi(); Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta()); Double_t dtdn = TMath::Cos(fTrkDir.Theta())*fRadNmean*betaM*betaM/(alpha*TMath::Tan(thetaC)); Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.); return f*dtdn; }//SigCrom() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::SigGeom(Double_t thetaC, Double_t phiC,Double_t betaM)const { // Analithical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Formulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - fTrkDir.Phi(); Double_t alpha =TMath::Cos(fTrkDir.Theta())-TMath::Tan(thetaC)*TMath::Cos(phiDelta)*TMath::Sin(fTrkDir.Theta()); Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); if (k<0) return 1e10; Double_t eTr = 0.5*1.5*betaM*TMath::Sqrt(k)/(8*alpha); Double_t lambda = 1.-TMath::Sin(fTrkDir.Theta())*TMath::Sin(fTrkDir.Theta())*TMath::Sin(phiC)*TMath::Sin(phiC); Double_t c = 1./(1.+ eTr*k/(alpha*alpha*TMath::Cos(thetaC)*TMath::Cos(thetaC))); Double_t i = betaM*TMath::Tan(thetaC)*lambda*TMath::Power(k,1.5); Double_t ii = 1.+eTr*betaM*i; Double_t err = c * (i/(alpha*alpha*8) + ii*(1.-lambda) / ( alpha*alpha*8*betaM*(1.+eTr)) ); Double_t trErr = 1.5/(TMath::Sqrt(12.)*TMath::Cos(fTrkDir.Theta())); return trErr*err; }//SigGeom() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++