/************************************************************************** * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ // // This class Defines the Geometry for the ITS services and support cones // outside of the ceneteral volume (except for the Ceneteral support // cylinders. Other classes define the rest of the ITS. Specificaly the ITS // The SSD support cone, SSD Support central cylinder, SDD support cone, // The SDD cupport central cylinder, the SPD Thermal Sheald, The supports // and cable trays on both the RB26 (muon dump) and RB24 sides, and all of // the cabling from the ladders/stave ends out past the TPC. // /* $Id$ */ // General Root includes #include #include #include #include #include #include // Root Geometry includes #include #include // contains TGeoTubeSeg #include #include #include #include #include #include // AliRoot includes #include "AliLog.h" #include "AliMagF.h" #include "AliRun.h" // Declaration file #include "AliITSv11GeometrySPD.h" // Constants definition const Double_t AliITSv11GeometrySPD::fgkGapLadder = AliITSv11Geometry::fgkmm * 0.075; // 75 um (expressed in cm) const Double_t AliITSv11GeometrySPD::fgkGapHalfStave = AliITSv11Geometry::fgkmm * 0.120; // 120 um (expressed in cm) ClassImp(AliITSv11GeometrySPD) //#define SQ(A) (A)*(A) AliITSv11GeometrySPD::AliITSv11GeometrySPD() : AliITSv11Geometry(), fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0) { // // Default constructor. // This does not initialize anything and is provided just for completeness. // It is recommended to use the other one. // The alignment gap is specified as argument (default = 0.0075 cm). // Int_t i = 0; for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; } // //__________________________________________________________________________________________ AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug): AliITSv11Geometry(debug), fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0) { // // Constructor with debug setting argument // This is the constructor which is recommended to be used. // It sets a debug level, and initializes the name of the object. // The alignment gap is specified as argument (default = 0.0075 cm). // Int_t i = 0; for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; } // //__________________________________________________________________________________________ TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, TGeoManager *mgr) const { // // This function is used to recovery any medium // used to build the geometry volumes. // If the required medium does not exists, // a NULL pointer is returned, and an error message is written. // Char_t itsMediumName[30]; sprintf(itsMediumName, "ITS_%s", mediumName); TGeoMedium* medium = mgr->GetMedium(itsMediumName); if (!medium) AliError(Form("Medium <%s> not found", mediumName)); return medium; } // //__________________________________________________________________________________________ Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset, Int_t &matOffset) const { // // Define the specific materials used for the ITS SPD central detectors. // --- // NOTE: These are the same old names. // By the ALICE naming conventions, they start with "ITS SPD ...." // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **. // --- // Arguments [the ones passed by reference contain output values]: // - medOffset --> (by ref) starting number of the list of media // - matOffset --> (by ref) starting number of the list of Materials // --- // Return value: // - the last material index used + 1 (= next avaiable material index) // --- // Begin_Html /*

The SPD Sector definition. In HPGL format.

The SPD all sector end view with thermal sheald.

SPD side view cross section with condes and thermal shealds.

Cross section A-A.

Cross section B-B.

Cross section C-C.

Cross section D-D.

Cross section E-E.

Cross section F-F.

Cross section G-G. */ // End_Html // const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree const Double_t kstemax = 1.0 * fgkcm; // cm const Double_t kdeemax = 0.1;//Fraction of particle's energy 0Field()->Integ()); Double_t fieldm = (gAlice->Field()->Max()); Double_t params[8] = {8 * 0.0}; params[1] = (Double_t) ifield; params[2] = fieldm; params[3] = ktmaxfdSi; params[4] = kstemaxSi; params[5] = kdeemaxSi; params[6] = kepsilSi; params[7] = kstminSi; // // Definition of materials and mediums. // Last argument in material definition is its pressure, // which is initialized to ZERO. // For better readability, it is simply set to zero. // Then the writing "0.0 * fgkPascal" is replaced by "0." // (Alberto) // // silicon definition for ITS (overall) mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3, TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.); mat->SetIndex(matindex); med = new TGeoMedium("SI", medindex++, mat, params); // silicon for ladder chips mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3, TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.); mat->SetIndex(matindex); med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params); // silicon for pixel bus mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3, TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.); mat->SetIndex(matindex); med = new TGeoMedium("SPD SI BUS", medindex++, mat, params); // carbon fiber material is defined as a mix of C-O-N-H // defined in terms of fractional weights according to 'C (M55J)' // it is used for the support and clips mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3); mix->SetIndex(matindex); mix->DefineElement(0, 12.01070, 6.0, 0.908508078); // C by fractional weight mix->DefineElement(1, 14.00670, 7.0, 0.010387573); // N by fractional weight mix->DefineElement(2, 15.99940, 8.0, 0.055957585); // O by fractional weight mix->DefineElement(3, 1.00794, 1.0, 0.025146765); // H by fractional weight mix->SetPressure(0.0 * fgkPascal); mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateSolid); params[3] = ktmaxfd; params[4] = kstemax; params[5] = kdeemax; params[6] = kepsil; params[7] = kstmin; med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params); // air defined as a mixture of C-N-O-Ar: // it is used to fill all containers mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3); mix->SetIndex(matindex); mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateGas); params[3] = ktmaxfdAir; params[4] = kstemaxAir; params[5] = kdeemaxAir; params[6] = kepsilAir; params[7] = kstminAir; med = new TGeoMedium("ITSspdAir", medindex++, mix, params); // inox stainless steel, defined as a mixture // used for all metallic parts mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3); mix->SetIndex(matindex); mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight mix->SetPressure(0.0 * fgkPascal); mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateSolid); params[3] = ktmaxfdAir; params[4] = kstemaxAir; params[5] = kdeemaxAir; params[6] = kepsilAir; params[7] = kstminAir; med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params); // freon gas which fills the cooling system (C+F) mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3); mix->SetIndex(matindex); mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere mix->SetTemperature(25.0 * fgkCelsius); mix->SetState(TGeoMaterial::kMatStateLiquid); params[3] = ktmaxfdAir; params[4] = kstemaxAir; params[5] = kdeemaxAir; params[6] = kepsilAir; params[7] = kstminAir; med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params); // return the next index to be used in case of adding new materials medOffset = medindex; matOffset = matindex; return matOffset; } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const { // // Do all SPD Central detector initializations (e.g.: transport cuts). // --- // Here follow some GEANT3 physics switches, which are interesting // for these settings to be defined: // - "MULTS" (MULtiple Scattering): // the variable IMULS controls this process. See [PHYS320/325/328] // 0 - No multiple scattering. // 1 - (DEFAULT) Multiple scattering according to Moliere theory. // 2 - Same as 1. Kept for backward compatibility. // 3 - Pure Gaussian scattering according to the Rossi formula. // - "DRAY" (Delta RAY production) // The variable IDRAY controls this process. See [PHYS430] // 0 - No delta rays production. // 1 - (DEFAULT) Delta rays production with generation of. // 2 - Delta rays production without generation of. // - "LOSS" (continuous energy loss) // The variable ILOSS controls this process. // 0 - No continuous energy loss, IDRAY is set to 0. // 1 - Continuous energy loss with generation of delta rays above // DCUTE (common/GCUTS/) and restricted Landau fluctuations below DCUTE. // 2 - (DEFAULT) Continuous energy loss without generation of delta rays // and full Landau-Vavilov-Gauss fluctuations. // In this case the variable IDRAY is forced to 0 to avoid // double counting of fluctuations. // 3 - Same as 1, kept for backward compatibility. // 4 - Energy loss without fluctuation. // The value obtained from the tables is used directly. // --- // Arguments: // Int_t offset --> the material/medium index offset // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC // Int_t i, n = 4; for(i=0;iGstpar(i+offset, "CUTGAM", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV); vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV); //vmc->Gstpar(i+offset, "PPCUTM", ); //vmc->Gstpar(i+offset, "PAIR", ); //vmc->Gstpar(i+offset, "COMPT", ); //vmc->Gstpar(i+offset, "PHOT", ); //vmc->Gstpar(i+offset, "PFIS", ); vmc->Gstpar(i+offset, "DRAY", 1); //vmc->Gstpar(i+offset, "ANNI", ); //vmc->Gstpar(i+offset, "BREM", ); //vmc->Gstpar(i+offset, "HADR", ); //vmc->Gstpar(i+offset, "MUNU", ); //vmc->Gstpar(i+offset, "DCAY", ); vmc->Gstpar(i+offset, "LOSS", 1); //vmc->Gstpar(i+offset, "MULS", ); //vmc->Gstpar(i+offset, "GHCOR1", ); //vmc->Gstpar(i+offset, "BIRK1", ); //vmc->Gstpar(i+offset, "BRIK2", ); //vmc->Gstpar(i+offset, "BRIK3", ); //vmc->Gstpar(i+offset, "LABS", ); //vmc->Gstpar(i+offset, "SYNC", ); //vmc->Gstpar(i+offset, "STRA", ); } } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr) { // // Creates a single SPD carbon fiber sector and places it // in a container volume passed as first argument ('moth'). // Second argument points to the TGeoManager which coordinates // the overall volume creation. // The position of the sector is based on distance of // closest point of SPD stave to beam pipe // (figures all-sections-modules.ps) of 7.22mm at section A-A. // const Double_t kSPDclossesStaveAA = 7.22 * fgkmm; const Double_t kSectorStartingAngle = -72.0 * fgkDegree; const Double_t kNSectorsTotal = 10.0; const Double_t kSectorRelativeAngle = 360.0 / kNSectorsTotal * fgkDegree; const Double_t kBeamPipeRadius = 0.5 * 60.0 * fgkmm; Int_t i; Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0; Double_t staveThicknessAA = 1.03 * fgkmm; // get from stave geometry. TGeoCombiTrans *secRot = new TGeoCombiTrans(); TGeoVolume *vCarbonFiberSector; TGeoMedium *medSPDcf; // define an assembly and fill it with the support of // a single carbon fiber sector and staves in it medSPDcf = GetMedium("SPD C (M55J)$", mgr); vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV"); vCarbonFiberSector->SetMedium(medSPDcf); CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr); vCarbonFiberSector->SetVisibility(kTRUE); // logical volume // Compute the radial shift out of the sectors radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA; radiusSector *= radiusSector; // squaring; radiusSector -= xAAtubeCenter0 * xAAtubeCenter0; radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector); // add 10 single sectors, by replicating the virtual sector defined above // and placing at different angles Double_t shiftX, shiftY; angle = kSectorStartingAngle; secRot->RotateZ(angle); for(i = 0; i < (Int_t)kNSectorsTotal; i++) { shiftX = -radiusSector * TMath::Sin(angle/fgkRadian); shiftY = radiusSector * TMath::Cos(angle/fgkRadian); secRot->SetDx(shiftX); secRot->SetDy(shiftY); moth->AddNode(vCarbonFiberSector, i+1, new TGeoCombiTrans(*secRot)); if(GetDebug(5)) { AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n", i, angle, angle/fgkRadian, radiusSector, shiftX, shiftY)); } angle += kSectorRelativeAngle; secRot->RotateZ(kSectorRelativeAngle); } if(GetDebug(3)) moth->PrintNodes(); delete secRot; } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::CarbonFiberSector (TGeoVolume *moth, Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr) { // // Define the detail SPD Carbon fiber support Sector geometry. // Based on the drawings: // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004) // - ALICE-SUPPORTO "Costruzione Profilo Modulo" // --- // Define outside radii as negative, where "outside" means that the // center of the arc is outside of the object (feb 16 2004). // --- // Arguments [the one passed by ref contain output values]: // TGeoVolume *moth --> the voulme which will contain this object // Double_t &xAAtubeCenter0 --> (by ref) x location of the outer surface // of the cooling tube center for tube 0. // Double_t &yAAtubeCenter0 --> (by ref) y location of the outer surface // of the cooling tube center for tube 0. // TGeoManager *mgr --> TGeo builder // --- // Int the two variables passed by reference values will be stored // which will then be used to correctly locate this sector. // The information used for this is the distance between the // center of the #0 detector and the beam pipe. // Measurements are taken at cross section A-A. // //TGeoMedium *medSPDfs = 0; // SPD support cone inserto stesalite 4411w. //TGeoMedium *medSPDfo = 0; // SPD support cone foam, Rohacell 50A. //TGeoMedium *medSPDal = 0; // SPD support cone SDD mounting bracket Al TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr); TGeoMedium *medSPDss = GetMedium("INOX$", mgr); TGeoMedium *medSPDair = GetMedium("AIR$", mgr); TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid const Double_t ksecDz = 0.5 * 500.0 * fgkmm; const Double_t ksecLen = 30.0 * fgkmm; const Double_t ksecCthick = 0.2 * fgkmm; const Double_t ksecDipLength = 3.2 * fgkmm; const Double_t ksecDipRadii = 0.4 * fgkmm; //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm; // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#') // are the centers and radii of curvature of all the rounded corners // between the straight borders of the SPD sector shape. // To draw this SPD sector, the following steps are followed: // 1) the (ksecX, ksecY) points are plotted // and circles of the specified radii are drawn around them. // 2) each pair of consecutive circles is connected by a line // tangent to them, in accordance with the radii being "internal" or "external" // with respect to the closed shape which describes the sector itself. // The resulting connected shape is the section // of the SPD sector surface in the transverse plane (XY). const Double_t ksecX0 = -10.725 * fgkmm; const Double_t ksecY0 = -14.853 * fgkmm; const Double_t ksecR0 = -0.8 * fgkmm; // external const Double_t ksecX1 = -13.187 * fgkmm; const Double_t ksecY1 = -19.964 * fgkmm; const Double_t ksecR1 = +0.6 * fgkmm; // internal // const Double_t ksecDip0 = 5.9 * fgkmm; const Double_t ksecX2 = -3.883 * fgkmm; const Double_t ksecY2 = -17.805 * fgkmm; const Double_t ksecR2 = +0.80 * fgkmm; // internal (guess) const Double_t ksecX3 = -3.123 * fgkmm; const Double_t ksecY3 = -14.618 * fgkmm; const Double_t ksecR3 = -0.6 * fgkmm; // external //const Double_t ksecDip1 = 8.035 * fgkmm; const Double_t ksecX4 = +11.280 * fgkmm; const Double_t ksecY4 = -14.473 * fgkmm; const Double_t ksecR4 = +0.8 * fgkmm; // internal const Double_t ksecX5 = +19.544 * fgkmm; const Double_t ksecY5 = +10.961 * fgkmm; const Double_t ksecR5 = +0.8 * fgkmm; // internal //const Double_t ksecDip2 = 4.553 * fgkmm; const Double_t ksecX6 = +10.830 * fgkmm; const Double_t ksecY6 = +16.858 * fgkmm; const Double_t ksecR6 = +0.6 * fgkmm; // internal const Double_t ksecX7 = +11.581 * fgkmm; const Double_t ksecY7 = +13.317 * fgkmm; const Double_t ksecR7 = -0.6 * fgkmm; // external //const Double_t ksecDip3 = 6.978 * fgkmm; const Double_t ksecX8 = -0.733 * fgkmm; const Double_t ksecY8 = +17.486 * fgkmm; const Double_t ksecR8 = +0.6 * fgkmm; // internal const Double_t ksecX9 = +0.562 * fgkmm; //const Double_t ksecY9 = +14.486 * fgkmm; // correction by const Double_t ksecY9 = +14.107 * fgkmm; // Alberto const Double_t ksecR9 = -0.6 * fgkmm; // external //const Double_t ksecDip4 = 6.978 * fgkmm; const Double_t ksecX10 = -12.252 * fgkmm; const Double_t ksecY10 = +16.298 * fgkmm; const Double_t ksecR10 = +0.6 * fgkmm; // internal const Double_t ksecX11 = -10.445 * fgkmm; const Double_t ksecY11 = +13.162 * fgkmm; const Double_t ksecR11 = -0.6 * fgkmm; // external //const Double_t ksecDip5 = 6.978 * fgkmm; const Double_t ksecX12 = -22.276 * fgkmm; const Double_t ksecY12 = +12.948 * fgkmm; const Double_t ksecR12 = +0.85 * fgkmm; // internal const Double_t ksecR13 = -0.8 * fgkmm; // external const Double_t ksecAngleSide13 = 36.0 * fgkDegree; const Int_t ksecNRadii = 20; const Int_t ksecNPointsPerRadii = 4; const Int_t ksecNCoolingTubeDips = 6; // Since the rounded parts are approximated by a regular polygon // and a cooling tube of the propper diameter must fit, a scaling factor // increases the size of the polygon for the tube to fit. //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/(Double_t)ksecNPointsPerRadii); const Double_t ksecZEndLen = 30.000 * fgkmm; //const Double_t ksecZFlangLen = 45.000 * fgkmm; const Double_t ksecTl = 0.860 * fgkmm; const Double_t ksecCthick2 = 0.600 * fgkmm; //const Double_t ksecCthick3 = 1.80 * fgkmm; //const Double_t ksecSidelen = 22.0 * fgkmm; //const Double_t ksecSideD5 = 3.679 * fgkmm; //const Double_t ksecSideD12 = 7.066 * fgkmm; const Double_t ksecRCoolOut = 2.400 * fgkmm; const Double_t ksecRCoolIn = 2.000 * fgkmm; const Double_t ksecDl1 = 5.900 * fgkmm; const Double_t ksecDl2 = 8.035 * fgkmm; const Double_t ksecDl3 = 4.553 * fgkmm; const Double_t ksecDl4 = 6.978 * fgkmm; const Double_t ksecDl5 = 6.978 * fgkmm; const Double_t ksecDl6 = 6.978 * fgkmm; const Double_t ksecCoolTubeThick = 0.04 * fgkmm; const Double_t ksecCoolTubeROuter = 2.6 * fgkmm; const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm; const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm; //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess // redefine some of the points already defined above // in the format of arrays (???) const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8; Double_t secX[ksecNRadii] = { ksecX0, ksecX1, -1000.0, ksecX2, ksecX3, -1000.0, ksecX4, ksecX5, -1000.0, ksecX6, ksecX7, -1000.0, ksecX8, ksecX9, -1000.0, ksecX10, ksecX11, -1000.0, ksecX12, -1000.0 }; Double_t secY[ksecNRadii] = { ksecY0, ksecY1, -1000.0, ksecY2, ksecY3, -1000.0, ksecY4, ksecY5, -1000.0, ksecY6, ksecY7, -1000.0, ksecY8, ksecY9, -1000.0, ksecY10, ksecY11, -1000.0, ksecY12, -1000.0 }; Double_t secR[ksecNRadii] = { ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii, ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii, ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii, ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii, ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii, ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii, ksecR12, ksecR13 }; /* Double_t secDip[ksecNRadii] = { 0., 0., ksecDip0, 0., 0., ksecDip1, 0., 0., ksecDip2, 0., 0., ksecDip3, 0., 0., ksecDip4, 0., 0., ksecDip5, 0., 0. }; */ Double_t secX2[ksecNRadii]; Double_t secY2[ksecNRadii]; Double_t secR2[ksecNRadii] = { ksecR0, ksecR1, ksecRCoolOut, ksecR2, ksecR3, ksecRCoolOut, ksecR4, ksecR5, ksecRCoolOut, ksecR6, ksecR7, ksecRCoolOut, ksecR8, ksecR9, ksecRCoolOut, ksecR10, ksecR11, ksecRCoolOut, ksecR12, ksecR13 }; Double_t secDip2[ksecNCoolingTubeDips] = { ksecDl1, ksecDl2, ksecDl3, ksecDl4, ksecDl5, ksecDl6 }; Double_t secX3[ksecNRadii]; Double_t secY3[ksecNRadii]; const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17}; Double_t secAngleStart[ksecNRadii]; Double_t secAngleEnd[ksecNRadii]; Double_t secAngleStart2[ksecNRadii]; Double_t secAngleEnd2[ksecNRadii]; Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0}; //Double_t secAngleStart3[ksecNRadii]; //Double_t secAngleEnd3[ksecNRadii]; Double_t xpp[ksecNPoints], ypp[ksecNPoints]; Double_t xpp2[ksecNPoints], ypp2[ksecNPoints]; Double_t *xp[ksecNRadii], *xp2[ksecNRadii]; Double_t *yp[ksecNRadii], *yp2[ksecNRadii]; TGeoXtru *sA0, *sA1, *sB0, *sB1; TGeoEltu *sTA0, *sTA1; TGeoTube *sTB0, *sTB1; //,*sM0; TGeoRotation *rot; TGeoTranslation *trans; TGeoCombiTrans *rotrans; Double_t t, t0, t1, a, b, x0, y0, x1, y1; Int_t i, j, k, m; Bool_t tst; if(!moth) { AliError("Container volume (argument) is NULL"); return; } for(i = 0; i < ksecNRadii; i++) { xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]); yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]); xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]); yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]); secX2[i] = secX[i]; secY2[i] = secY[i]; secX3[i] = secX[i]; secY3[i] = secY[i]; } // find starting and ending angles for all but cooling tube sections secAngleStart[0] = 0.5 * ksecAngleSide13; for(i = 0; i < ksecNRadii - 2; i++) { tst = kFALSE; for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || i == ksecDipIndex[j]); if (tst) continue; tst = kFALSE; for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || (i+1) == ksecDipIndex[j]); if (tst) j = i+2; else j = i+1; AnglesForRoundedCorners(secX[i], secY[i], secR[i], secX[j], secY[j], secR[j], t0, t1); secAngleEnd[i] = t0; secAngleStart[j] = t1; if(secR[i] > 0.0 && secR[j] > 0.0) { if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0; } secAngleStart2[i] = secAngleStart[i]; secAngleEnd2[i] = secAngleEnd[i]; } // end for i secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]); if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0; secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; secAngleEnd[ksecNRadii-1] = secAngleStart[0]; secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2]; secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2]; secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1]; secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1]; // find location of circle last rounded corner. i = 0; j = ksecNRadii - 2; t0 = TanD(secAngleStart[i]-90.); t1 = TanD(secAngleEnd[j]-90.); t = secY[i] - secY[j]; // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]); t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]); t += t1 * secX[j] - t0*secX[i]; t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]); t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]); secX[ksecNRadii-1] = t / (t1-t0); secY[ksecNRadii-1] = TanD(90. + 0.5*ksecAngleSide13) * (secX[ksecNRadii-1] - secX[0]) + secY[0]; secX2[ksecNRadii-1] = secX[ksecNRadii-1]; secY2[ksecNRadii-1] = secY[ksecNRadii-1]; secX3[ksecNRadii-1] = secX[ksecNRadii-1]; secY3[ksecNRadii-1] = secY[ksecNRadii-1]; // find location of cooling tube centers for(i = 0; i < ksecNCoolingTubeDips; i++) { j = ksecDipIndex[i]; x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]); y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]); x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]); y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]); t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); t = secDip2[i] / t0; a = x0+(x1-x0) * t; b = y0+(y1-y0) * t; if(i == 0) { // get location of tube center->Surface for locating // this sector around the beam pipe. // This needs to be double checked, but I need my notes for that. // (Bjorn Nilsen) xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5; yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5; } if(a + b*(a - x0) / (b - y0) > 0.0) { secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0; secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0; secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0; secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0; secX3[j] = a + TMath::Abs(y1-y0) * (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0; } else { secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0; } // Set up Start and End angles to correspond to start/end of dips. t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0; secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0; secAngleStart2[j] = secAngleStart[j]; t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0; secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]); if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; secAngleEnd2[j] = secAngleEnd[j]; if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii); } // end for i // Special cases secAngleStart2[8] -= 360.; secAngleStart2[11] -= 360.; SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd, ksecNPointsPerRadii, m, xp, yp); // Fix up dips to be square. for(i = 0; i < ksecNCoolingTubeDips; i++) { j = ksecDipIndex[i]; t = 0.5*ksecDipLength+ksecDipRadii; t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t); t1 = secAngleEnd[j] + t0; t0 = secAngleStart[j] - t0; x0 = xp[j][1] = secX[j] + t*CosD(t0); y0 = yp[j][1] = secY[j] + t*SinD(t0); x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1); y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1); t0 = 1./((Double_t)(ksecNPointsPerRadii-2)); for(k = 2; k < ksecNPointsPerRadii - 1; k++) { // extra points spread them out. t = ((Double_t)(k-1)) * t0; xp[j][k] = x0+(x1-x0) * t; yp[j][k] = y0+(y1-y0) * t; } // end for k secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0); if(GetDebug(3)) { AliInfo(Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)", i, secAngleTurbo[i], x0, y0, x1, y1)); } } // end for i sA0 = new TGeoXtru(2); sA0->SetName("ITS SPD Carbon fiber support Sector A0"); sA0->DefinePolygon(m, xpp, ypp); sA0->DefineSection(0, -ksecDz); sA0->DefineSection(1, ksecDz); // store the edges of each XY segment which defines // one of the plane zones where staves will have to be placed fSPDsectorX0.Set(ksecNCoolingTubeDips); fSPDsectorY0.Set(ksecNCoolingTubeDips); fSPDsectorX1.Set(ksecNCoolingTubeDips); fSPDsectorY1.Set(ksecNCoolingTubeDips); Int_t ixy0, ixy1; for(i = 0; i < ksecNCoolingTubeDips; i++) { // Find index in xpp[] and ypp[] corresponding to where the // SPD ladders are to be attached. Order them according to // the ALICE numbering schema. Using array of indexes (+-1 for // cooling tubes. For any "bend/dip/edge, there are // ksecNPointsPerRadii+1 points involved. if(i == 0) j = 1; else if (i == 1) j = 0; else j = i; ixy0 = (ksecDipIndex[j]-1) * (ksecNPointsPerRadii+1) + (ksecNPointsPerRadii); ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1); fSPDsectorX0[i] = sA0->GetX(ixy0); fSPDsectorY0[i] = sA0->GetY(ixy0); fSPDsectorX1[i] = sA0->GetX(ixy1); fSPDsectorY1[i] = sA0->GetY(ixy1); } //printf("SectorA#%d ",0); InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick, xpp2[0], ypp2[0]); for(i = 1; i < m - 1; i++) { j = i / (ksecNPointsPerRadii+1); //printf("SectorA#%d ",i); InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], ksecCthick, xpp2[i], ypp2[i]); } //printf("SectorA#%d ",m); InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick, xpp2[m-1], ypp2[m-1]); // Fix center value of cooling tube dip and // find location of cooling tube centers for(i = 0; i < ksecNCoolingTubeDips; i++) { j = ksecDipIndex[i]; x0 = xp2[j][1]; y0 = yp2[j][1]; x1 = xp2[j][ksecNPointsPerRadii-1]; y1 = yp2[j][ksecNPointsPerRadii-1]; t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); t = secDip2[i]/t0; for(k = 2; k < ksecNPointsPerRadii - 1; k++) { // extra points spread them out. t = ((Double_t)(k-1)) * t0; xp2[j][k] = x0+(x1-x0) * t; yp2[j][k] = y0+(y1-y0) * t; } } // end for i sA1 = new TGeoXtru(2); sA1->SetName("ITS SPD Carbon fiber support Sector Air A1"); sA1->DefinePolygon(m, xpp2, ypp2); sA1->DefineSection(0, -ksecDz); sA1->DefineSection(1, ksecDz); // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?). sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, 0.5 * ksecCoolTubeFlatX, ksecDz); sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", sTA0->GetA() - ksecCoolTubeThick, sTA0->GetB()-ksecCoolTubeThick,ksecDz); SPDsectorShape(ksecNRadii, secX2, secY2, secR2, secAngleStart2, secAngleEnd2, ksecNPointsPerRadii, m, xp, yp); sB0 = new TGeoXtru(2); sB0->SetName("ITS SPD Carbon fiber support Sector End B0"); sB0->DefinePolygon(m, xpp, ypp); sB0->DefineSection(0, ksecDz); sB0->DefineSection(1, ksecDz + ksecZEndLen); //printf("SectorB#%d ",0); InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick2, xpp2[0], ypp2[0]); for(i = 1; i < m - 1; i++) { t = ksecCthick2; for(k = 0; k < ksecNCoolingTubeDips; k++) if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k]) if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i || ksecDipIndex[k]*(ksecNPointsPerRadii+1) + ksecNPointsPerRadii == i)) t = ksecRCoolOut-ksecRCoolIn; //printf("SectorB#%d ",i); InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], t, xpp2[i], ypp2[i]); } //printf("SectorB#%d ",m); InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick2, xpp2[m-1], ypp2[m-1]); sB1 = new TGeoXtru(2); sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1"); sB1->DefinePolygon(m, xpp2, ypp2); sB1->DefineSection(0, ksecDz); sB1->DefineSection(1, ksecDz + ksecLen); sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0, 0.5 * ksecCoolTubeROuter, 0.5 * ksecLen); sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0, sTB0->GetRmax() - ksecCoolTubeThick, 0.5 * ksecLen); if(GetDebug(3)) { if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0"); if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0"); if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0"); if(medSPDcoolfl) medSPDcoolfl->Dump(); else AliInfo("medSPDcoolfl = 0"); sA0->InspectShape(); sA1->InspectShape(); sB0->InspectShape(); sB1->InspectShape(); } // create the assembly of the support and place staves on it TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly("ITSSPDSensitiveVirtualvolumeM0"); StavesInSector(vM0); // create other volumes with some graphical settings TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", sA0, medSPDcf); vA0->SetVisibility(kTRUE); vA0->SetLineColor(4); // Blue vA0->SetLineWidth(1); vA0->SetFillColor(vA0->GetLineColor()); vA0->SetFillStyle(4010); // 10% transparent TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", sA1, medSPDair); vA1->SetVisibility(kTRUE); vA1->SetLineColor(7); // light Blue vA1->SetLineWidth(1); vA1->SetFillColor(vA1->GetLineColor()); vA1->SetFillStyle(4090); // 90% transparent TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss); vTA0->SetVisibility(kTRUE); vTA0->SetLineColor(1); // Black vTA0->SetLineWidth(1); vTA0->SetFillColor(vTA0->GetLineColor()); vTA0->SetFillStyle(4000); // 0% transparent TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", sTA1, medSPDcoolfl); vTA1->SetVisibility(kTRUE); vTA1->SetLineColor(6); // Purple vTA1->SetLineWidth(1); vTA1->SetFillColor(vTA1->GetLineColor()); vTA1->SetFillStyle(4000); // 0% transparent TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", sB0, medSPDcf); vB0->SetVisibility(kTRUE); vB0->SetLineColor(4); // Blue vB0->SetLineWidth(1); vB0->SetFillColor(vB0->GetLineColor()); vB0->SetFillStyle(4010); // 10% transparent TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", sB1, medSPDair); vB1->SetVisibility(kTRUE); vB1->SetLineColor(7); // light Blue vB1->SetLineWidth(1); vB1->SetFillColor(vB1->GetLineColor()); vB1->SetFillStyle(4090); // 90% transparent TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0", sTB0, medSPDss); vTB0->SetVisibility(kTRUE); vTB0->SetLineColor(1); // Black vTB0->SetLineWidth(1); vTB0->SetFillColor(vTB0->GetLineColor()); vTB0->SetFillStyle(4000); // 0% transparent TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1", sTB1, medSPDcoolfl); vTB1->SetVisibility(kTRUE); vTB1->SetLineColor(6); // Purple vTB1->SetLineWidth(1); vTB1->SetFillColor(vTB1->GetLineColor()); vTB1->SetFillStyle(4000); // 0% transparent // add volumes to mother container passed as argument of this method moth->AddNode(vM0,1,0); // Add virtual volume to mother vA0->AddNode(vA1,1,0); // Put air inside carbon fiber. vB0->AddNode(vB1,1,0); // Put air inside carbon fiber. vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber. vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber. for(i = 0; i < ksecNCoolingTubeDips; i++) { x0 = secX3[ksecDipIndex[i]]; y0 = secY3[ksecDipIndex[i]]; t = 90.0 - secAngleTurbo[i]; trans = new TGeoTranslation("", x0, y0, 0.5 * (sB1->GetZ(0) + sB1->GetZ(1))); vB1->AddNode(vTB0, i+1, trans); rot = new TGeoRotation("", 0.0, 0.0, t); rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot); vM0->AddNode(vTA0, i+1, rotrans); } // end for i vM0->AddNode(vA0, 1, 0); vM0->AddNode(vB0, 1, 0); // Reflection. vM0->AddNode(vB0, 2, new TGeoRotation("", 90., 0., 90., 90., 180., 0.)); if(GetDebug(3)){ vM0->PrintNodes(); vA0->PrintNodes(); vA1->PrintNodes(); vB0->PrintNodes(); vB1->PrintNodes(); vTA0->PrintNodes(); vTA1->PrintNodes(); vTB0->PrintNodes(); vTB1->PrintNodes(); } } // //__________________________________________________________________________________________ Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints (Int_t index, Double_t &x0, Double_t &y0, Double_t &x1, Double_t &y1) const { // // Returns the edges of the straight borders in the SPD sector shape, // which are used to mount staves on them. // Coordinate system is that of the carbon fiber sector volume. // --- // Index numbering is as follows: // /5 // /\/4 // 1\ \/3 // 0|___\/2 // --- // Arguments [the ones passed by reference contain output values]: // Int_t index --> location index according to above scheme [0-5] // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm] // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm] // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm] // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm] // TGeoManager *mgr --> The TGeo builder // --- // The location is described by a line going from (x0, y0) to (x1, y1) // --- // Returns kTRUE if no problems encountered. // Returns kFALSE if a problem was encountered (e.g.: shape not found). // Int_t isize = fSPDsectorX0.GetSize(); x0 = x1 = y0 = y1 = 0.0; if(index < 0 || index > isize) { AliError(Form("index = %d: allowed 0 --> %", index, isize)); return kFALSE; } x0 = fSPDsectorX0[index]; x1 = fSPDsectorX1[index]; y0 = fSPDsectorY0[index]; y1 = fSPDsectorY1[index]; return kTRUE; } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::SPDsectorShape (Int_t n, const Double_t *xc, const Double_t *yc, const Double_t *r, const Double_t *ths, const Double_t *the, Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const { // Code to compute the points that make up the shape of the SPD // Carbon fiber support sections // Inputs: // Int_t n size of arrays xc,yc, and r. // Double_t *xc array of x values for radii centers. // Double_t *yc array of y values for radii centers. // Double_t *r array of signed radii values. // Double_t *ths array of starting angles [degrees]. // Double_t *the array of ending angles [degrees]. // Int_t npr the number of lines segments to aproximate the arc. // Outputs (arguments passed by reference): // Int_t m the number of enetries in the arrays *xp[npr+1] and *yp[npr+1]. // Double_t **xp array of x coordinate values of the line segments // which make up the SPD support sector shape. // Double_t **yp array of y coordinate values of the line segments // which make up the SPD support sector shape. // Int_t i, k; Double_t t, t0, t1; m = n*(npr + 1); if(GetDebug(2)) { cout <<" X \t Y \t R \t S \t E" << m << endl; for(i = 0; i < n; i++) { cout << "{" << xc[i] << ", "; cout << yc[i] << ", "; cout << r[i] << ", "; cout << ths[i] << ", "; cout << the[i] << "}, " << endl; } } if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"]["; if (GetDebug(4)) cout << "3] {"; else if(GetDebug(3)) cout <<"2] {"; t0 = (Double_t)npr; for(i = 0; i < n; i++) { t1 = (the[i] - ths[i]) / t0; if(GetDebug(5)) cout << "t1 = " << t1 << endl; for(k = 0; k <= npr; k++) { t = ths[i] + ((Double_t)k) * t1; xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i]; yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i]; if(GetDebug(3)) { cout << "{" << xp[i][k] << "," << yp[i][k]; if (GetDebug(4)) cout << "," << t; cout << "},"; } // end if GetDebug } // end for k if(GetDebug(3)) cout << endl; } // end of i if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0]; if(GetDebug(4)) cout << "," << ths[0]; if(GetDebug(3)) cout << "}}" << endl; } // //__________________________________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreateLadder (Int_t layer, TArrayD &sizes, TGeoManager *mgr) const { // Creates the "ladder" = silicon sensor + 5 chips. // Returns a TGeoVolume containing the following components: // - the sensor (TGeoBBox), whose name depends on the layer // - 5 identical chips (TGeoBBox) // - a guard ring around the sensor (subtraction of TGeoBBoxes), // which is separated from the rest of sensor because it is not // a sensitive part // - bump bondings (TGeoBBox stripes for the whole width of the // sensor, one per column). // --- // Arguments: // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised) // 2 - a TArrayD passed by reference, which will contain relevant // dimensions related to this object: // size[0] = 'thickness' (the smallest dimension) // size[1] = 'length' (the direction along the ALICE Z axis) // size[2] = 'width' (extension in the direction perp. to the above ones) // 3 - the used TGeoManager // ** CRITICAL CHECK ** // layer number can be ONLY 1 or 2 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2"); // ** MEDIA ** TGeoMedium *medAir = GetMedium("AIR$",mgr); TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP TGeoMedium *medSi = GetMedium("SI$",mgr); TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond // ** SIZES ** Double_t chipThickness = fgkmm * 0.150; Double_t chipWidth = fgkmm * 15.950; Double_t chipLength = fgkmm * 13.600; Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z Double_t sensThickness = fgkmm * 0.200; Double_t sensLength = fgkmm * 69.600; Double_t sensWidth = fgkmm * 12.800; Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness all around the sensor Double_t bbLength = fgkmm * 0.042; Double_t bbWidth = sensWidth; Double_t bbThickness = fgkmm * 0.012; Double_t bbPos = 0.080; // Z position w.r. to left pixel edge // compute the size of the container volume which // will also be returned in the referenced TArrayD; // for readability, they are linked by reference to a more meaningful name sizes.Set(3); Double_t &thickness = sizes[0]; Double_t &length = sizes[1]; Double_t &width = sizes[2]; // the container is a box which exactly enclose all the stuff; width = chipWidth; length = sensLength + 2.0*guardRingWidth; thickness = sensThickness + chipThickness + bbThickness; // ** VOLUMES ** // While creating this volume, since it is a sensitive volume, // we must respect some standard criteria for its local reference frame. // Local X must correspond to x coordinate of the sensitive volume: // this means that we are going to create the container with a local reference system // that is **not** in the middle of the box. // This is accomplished by calling the shape constructor with an additional option ('originShift'): Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth); Double_t originShift[3] = {-xSens, 0., 0.}; TGeoBBox *shapeContainer = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift); // then the volume is made of air, and using this shape TGeoVolume *container = new TGeoVolume(Form("LAY%d_LADDER",layer), shapeContainer, medAir); // the chip is a common box TGeoVolume *volChip = mgr->MakeBox ("CHIP", medSPDSiChip, 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength); // the sensor as well TGeoVolume *volSens = mgr->MakeBox (GetSenstiveVolumeName(layer), medSi, 0.5*sensWidth, 0.5*sensThickness, 0.5*sensLength); // the guard ring shape is the subtraction of two boxes with the same center. TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth, sensThickness, 0.5*sensLength); TGeoBBox *shOut = new TGeoBBox (0.5*sensWidth + guardRingWidth, 0.5*sensThickness, 0.5*sensLength + guardRingWidth); shIn->SetName("innerBox"); shOut->SetName("outerBox"); TGeoCompositeShape *shBorder = new TGeoCompositeShape("", "outerBox-innerBox"); TGeoVolume *volBorder = new TGeoVolume("GUARD_RING", shBorder, medSi); // bump bonds for one whole column TGeoVolume *volBB = mgr->MakeBox("BB", medBumpBond, 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength); // set colors of all objects for visualization volSens->SetLineColor(kYellow + 1); volChip->SetLineColor(kGreen); volBorder->SetLineColor(kYellow + 3); volBB->SetLineColor(kGray); // ** MOVEMENTS ** // sensor is translated along thickness (X) and width (Y) Double_t ySens = 0.5 * (thickness - sensThickness); Double_t zSens = 0.0; // we want that the x of the ladder is the same as the one of its sensitive volume TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens); // bump bonds are translated along all axes: // keep same Y used for sensors, but change the Z TGeoTranslation *trBB[160]; Double_t x = 0.0; Double_t y = 0.5 * (thickness - bbThickness) - sensThickness; Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos; Int_t i; for (i = 0; i < 160; i++) { trBB[i] = new TGeoTranslation(x, y, z); switch(i) { case 31: case 63: case 95: case 127: z += fgkmm * 0.625 + fgkmm * 0.2; break; default: z += fgkmm * 0.425; } } // the chips are translated along the length (Z) and thickness (X) TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0}; x = -xSens; y = 0.5 * (chipThickness - thickness); z = 0.0; for (i = 0; i < 5; i++) { z = -0.5*length + guardRingWidth + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength; trChip[i] = new TGeoTranslation(x, y, z); } // add nodes to container container->AddNode(volSens, 1, trSens); container->AddNode(volBorder, 1, trSens); for (i = 0; i < 160; i++) container->AddNode(volBB, i, trBB[i]); for (i = 0; i < 5; i++) container->AddNode(volChip, i + 2, trChip[i]); // return the container return container; } // //__________________________________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreateClip (TArrayD &sizes, Bool_t isDummy, TGeoManager *mgr) const { // // Creates the carbon fiber clips which are added to the central ladders. // They have a complicated shape which is approximated by a TGeoXtru // Implementation of a single clip over an half-stave. // It has a complicated shape which is approximated to a section like this: // // 6 // /\ . // 7 //\\ 5 // / 1\\___________________4 // 0 \___________________ // 2 3 // with a finite thickness for all the shape // Its local reference frame is such that point A corresponds to origin. // Double_t fullLength = fgkmm * 12.6; // = x4 - x0 Double_t flatLength = fgkmm * 5.4; // = x4 - x3 Double_t inclLongLength = fgkmm * 5.0; // = 5-6 Double_t inclShortLength = fgkmm * 2.0; // = 6-7 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3 Double_t thickness = fgkmm * 0.2; // thickness Double_t totalLength = fgkmm * 52.0; // total length in Z Double_t holeSize = fgkmm * 4.0; // dimension of cubic hole inserted for pt1000 Double_t angle1 = 27.0; // supplementary of angle DCB Double_t angle2; // angle DCB Double_t angle3; // angle of GH with vertical angle2 = 0.5 * (180.0 - angle1); angle3 = 90.0 - TMath::ACos(fullLength - flatLength - inclLongLength*TMath::Cos(angle1)) * TMath::RadToDeg(); angle1 *= TMath::DegToRad(); angle2 *= TMath::DegToRad(); angle3 *= TMath::DegToRad(); Double_t x[8], y[8]; x[0] = 0.0; x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1); x[2] = x[0] + fullLength - flatLength; x[3] = x[0] + fullLength; x[4] = x[3]; x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2); x[6] = x[1]; x[7] = x[0]; y[0] = 0.0; y[1] = y[0] + inclShortLength * TMath::Cos(angle3); y[2] = y[1] - inclLongLength * TMath::Sin(angle1); y[3] = y[2]; y[4] = y[3] + thickness; y[5] = y[4]; y[6] = y[1] + thickness; y[7] = y[0] + thickness; sizes.Set(7); sizes[0] = totalLength; sizes[1] = fullHeight; sizes[2] = y[2]; sizes[3] = y[6]; sizes[4] = x[0]; sizes[5] = x[3]; sizes[6] = x[2]; if (isDummy) { // use this argument when one wants just the positions // without creating any volume return NULL; } TGeoXtru *shClip = new TGeoXtru(2); shClip->SetName("SHCLIPSPD"); shClip->DefinePolygon(8, x, y); shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0); shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0); TGeoBBox *shHole = new TGeoBBox("SH_CLIPSPDHOLE", 0.5*holeSize, 0.5*holeSize, 0.5*holeSize); TGeoTranslation *tr1 = new TGeoTranslation("TR_CLIPSPDHOLE1", x[2], 0.0, fgkmm*14.); TGeoTranslation *tr2 = new TGeoTranslation("TR_CLIPSPDHOLE2", x[2], 0.0, 0.0); TGeoTranslation *tr3 = new TGeoTranslation("TR_CLIPSPDHOLE3", x[2], 0.0, -fgkmm*14.); tr1->RegisterYourself(); tr2->RegisterYourself(); tr3->RegisterYourself(); TString strExpr("SHCLIPSPD-("); strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName())); strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName())); strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName())); TGeoCompositeShape *shClipHole = new TGeoCompositeShape("SHCLIPSPDHOLES", strExpr.Data()); TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr); TGeoVolume *vClip = new TGeoVolume("VOLCLIPSPD", shClipHole, medSPDcf); vClip->SetLineColor(kGray + 2); return vClip; } // //______________________________________________________________________ TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape (Int_t itype, Double_t &length, Double_t &width, Double_t thickness, TArrayD &sizes) { // // Creates the typical composite shape of the grounding foil: // // +---------------------------------------------------------------------------------------------------+ // | 5 6 9 | // | +--------------+ +----------------+ 10 // | O | | | // | 3 /-----+ 4 +------+ // | 1 / 7 8 // | /--------------/ // +------------------------------------/ 2 + // 0 // Z + 11 // // This shape is used 4 times: two layers of glue, one in kapton and one in aluminum, // taking into account that the aliminum layer has small differences in the size of some parts. // --- // In order to overcome problems apparently due to a large number of points, the shape creation // is done according the following steps: // 1) a TGeoBBox is created with a size right enough to contain the whole shape (0-1-X-13) // 2) holes are defined as other TGeoBBox which are subtracted from the main shape // 3) a TGeoXtru is defined connecting the points (0-->11-->0) and is also subtracted from the main shape // --- // The argument ("type") is used to choose between all these // possibilities: // - type = 0 --> kapton layer // - type = 1 --> aluminum layer // - type = 2 --> glue layer between support and GF // - type = 3 --> glue layer between GF and ladders // Returns: a TGeoCompositeShape which will then be used to shape several volumes. // Since TGeoXtru is used, the local reference frame of this object has X horizontal and Y vertical w.r to // the shape drawn above, and Z axis going perpendicularly to the screen. // This is not the correct reference for the half stave, for which the "long" dimension is Z and the "short" // is X, while Y goes in the direction of thickness. // This will imply some rotations when using the volumes created with this shape. // // suffix to differentiate names Char_t type[10]; // size of the virtual box containing exactly this volume length = fgkmm * 243.18; width = fgkmm * 15.95; if (itype == 1) { length -= fgkmm * 0.4; width -= fgkmm * 0.4; } switch (itype) { case 0: sprintf(type, "KAP"); break; case 1: sprintf(type, "ALU"); break; case 2: sprintf(type, "GLUE1"); break; case 3: sprintf(type, "GLUE2"); break; } // we divide the shape in several slices along the horizontal direction (local X) // here we define define the length of all sectors (from leftmost to rightmost) Int_t i; Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00, 10.00, 24.40, 10.00, 24.81 }; for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm; if (itype == 1) { sliceLength[0] -= fgkmm * 0.2; sliceLength[4] -= fgkmm * 0.2; sliceLength[5] += fgkmm * 0.4; sliceLength[6] -= fgkmm * 0.4; } // as shown in the drawing, we have four different widths (along local Y) in this shape: Double_t widthMax = fgkmm * 15.95; Double_t widthMed1 = fgkmm * 15.00; Double_t widthMed2 = fgkmm * 11.00; Double_t widthMin = fgkmm * 4.40; if (itype == 1) { widthMax -= fgkmm * 0.4; widthMed1 -= fgkmm * 0.4; widthMed2 -= fgkmm * 0.4; widthMin -= fgkmm * 0.4; } // create the main shape TGeoBBox *shGroundFull = 0; shGroundFull = new TGeoBBox(Form("SH_GFOIL_%s_FULL", type), 0.5*length, 0.5*width, 0.5*thickness); // create the polygonal shape to be subtracted to give the correct shape to the borders // its vertices are defined in sugh a way that this polygonal will be placed in the correct place // considered that the origin of the local reference frame is in the center of the main box: // we fix the starting point at the lower-left edge of the shape (point 12), // and add all points in order, following a clockwise rotation Double_t x[13], y[13]; x[ 0] = -0.5 * length + sliceLength[0]; y[ 0] = -0.5 * widthMax; x[ 1] = x[0] + sliceLength[1]; y[ 1] = y[0] + (widthMax - widthMed1); x[ 2] = x[1] + sliceLength[2]; y[ 2] = y[1]; x[ 3] = x[2] + sliceLength[3]; y[ 3] = y[2] + (widthMed1 - widthMed2); x[ 4] = x[3] + sliceLength[4]; y[ 4] = y[3]; x[ 5] = x[4]; y[ 5] = y[4] + (widthMed2 - widthMin); x[ 6] = x[5] + sliceLength[5]; y[ 6] = y[5]; x[ 7] = x[6]; y[ 7] = y[4]; x[ 8] = x[7] + sliceLength[6]; y[ 8] = y[7]; x[ 9] = x[8]; y[ 9] = y[6]; x[10] = x[9] + sliceLength[7] + 0.5; y[10] = y[9]; x[11] = x[10]; y[11] = y[0] - 0.5; x[12] = x[0]; y[12] = y[11]; // create the shape TGeoXtru *shGroundXtru = new TGeoXtru(2); shGroundXtru->SetName(Form("SH_GFOIL_%s_XTRU", type)); shGroundXtru->DefinePolygon(13, x, y); shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0); shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0); // define a string which will express the algebric operations among volumes // and add the subtraction of this shape from the main one TString strComposite(Form("SH_GFOIL_%s_FULL - (%s + ", type, shGroundXtru->GetName())); // define the holes according to size information coming from drawings: Double_t holeLength = fgkmm * 10.00; Double_t holeWidth = fgkmm * 7.50; Double_t holeSepX0 = fgkmm * 7.05; // separation between center of first hole and left border Double_t holeSepXC = fgkmm * 14.00; // separation between the centers of two consecutive holes Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of 5th and 6th hole Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of 10th and 11th hole if (itype == 1) { holeSepX0 -= fgkmm * 0.2; holeLength += fgkmm * 0.4; holeWidth += fgkmm * 0.4; } sizes.Set(7); sizes[0] = holeLength; sizes[1] = holeWidth; sizes[2] = holeSepX0; sizes[3] = holeSepXC; sizes[4] = holeSepX1; sizes[5] = holeSepX2; sizes[6] = fgkmm * 4.40; // X position of hole center (will change for each hole) Double_t holeX = -0.5*length; // Y position of center of all holes (= 4.4 mm from upper border) Double_t holeY = 0.5*(width - holeWidth) - widthMin; // create a shape for the holes (common) TGeoBBox *shHole = 0; shHole = new TGeoBBox(Form("%sGFOIL_HOLE", type), 0.5*holeLength, 0.5*holeWidth, thickness); // insert the holes in the XTRU shape: // starting from the first value of X, they are simply shifted along this axis char name[200]; TGeoTranslation *transHole[11]; for (Int_t i = 0; i < 11; i++) { // set the position of the hole, depending on index if (i == 0) { holeX += holeSepX0; } else if (i < 5) { holeX += holeSepXC; } else if (i == 5) { holeX += holeSepX1; } else if (i < 10) { holeX += holeSepXC; } else { holeX += holeSepX2; } //cout << i << " --> X = " << holeX << endl; sprintf(name, "TR_GFOIL_%s_HOLE%d", type, i); transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0); transHole[i]->RegisterYourself(); strComposite.Append(Form("%sGFOIL_HOLE:%s", type, name)); if (i < 10) strComposite.Append("+"); else strComposite.Append(")"); } // create composite shape TGeoCompositeShape *shGround = new TGeoCompositeShape(Form("SH_GFOIL_%s", type), strComposite.Data()); return shGround; } // //__________________________________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil (Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) { // // Create a volume containing all parts of the grounding foil a for a half-stave. // It consists of 4 layers with the same shape but different thickness: // 1) a layer of glue // 2) the aluminum layer // 3) the kapton layer // 4) another layer of glue // --- // Arguments: // 1: a boolean value to know if it is the grounding foir for // the right or left side // 2: a TArrayD which will contain the dimension of the container box: // - size[0] = length along Z (the beam line direction) // - size[1] = the 'width' of the stave, which defines, together // with Z, the plane of the carbon fiber support // - size[2] = 'thickness' (= the direction along which all // stave components are superimposed) // 3: the TGeoManager // --- // The return value is a TGeoBBox volume containing all grounding // foil components. // to avoid strange behaviour of the geometry manager, // create a suffix to be used in the names of all shapes char suf[5]; if (isRight) strcpy(suf, "R"); else strcpy(suf, "L"); // this volume will be created in order to ease its placement in // the half-stave; then, it is added here the small distance of // the "central" edge of each volume from the Z=0 plane in the stave // reference (which coincides with ALICE one) Double_t dist = fgkmm * 0.71; // define materials TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr); TGeoMedium *medAlu = GetMedium("AL$", mgr); TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT // compute the volume shapes (thicknesses change from one to the other) Double_t kpLength, kpWidth, alLength, alWidth; TArrayD kpSize, alSize, glSize; Double_t kpThickness = fgkmm * 0.05; Double_t alThickness = fgkmm * 0.025; Double_t glThickness = fgkmm * 0.1175 - fgkGapLadder; TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0, kpLength, kpWidth, kpThickness, kpSize); TGeoCompositeShape *alShape = CreateGroundingFoilShape(1, alLength, alWidth, alThickness, alSize); TGeoCompositeShape *glShape = CreateGroundingFoilShape(2, kpLength, kpWidth, glThickness, glSize); // create the component volumes and register their sizes in the // passed arrays for readability reasons, some reference variables // explicit the meaning of the array slots TGeoVolume *kpVol = new TGeoVolume(Form("GFOIL_KAP_%s", suf), kpShape, medKap); TGeoVolume *alVol = new TGeoVolume(Form("GFOIL_ALU_%s", suf), alShape, medAlu); TGeoVolume *glVol = new TGeoVolume(Form("GFOIL_GLUE_%s", suf), glShape, medGlue); // set colors for the volumes kpVol->SetLineColor(kRed); alVol->SetLineColor(kGray); glVol->SetLineColor(kYellow); // create references for the final size object if (sizes.GetSize() != 3) sizes.Set(3); Double_t &fullThickness = sizes[0]; Double_t &fullLength = sizes[1]; Double_t &fullWidth = sizes[2]; // kapton leads the larger dimensions of the foil // (including the cited small distance from Z=0 stave reference plane) // the thickness is the sum of the ones of all components fullLength = kpLength + dist; fullWidth = kpWidth; fullThickness = kpThickness + alThickness + 2.0 * glThickness; // create the container TGeoMedium *air = GetMedium("AIR$", mgr); TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", suf), air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength); // create the common correction rotation (which depends of what side we are building) TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity); if (isRight) rotCorr->RotateY(90.0); else rotCorr->RotateY(-90.0); // compute the translations, which are in the length and thickness directions Double_t x, y, z, shift = 0.0; if (isRight) shift = dist; // glue (bottom) x = -0.5*(fullThickness - glThickness); z = 0.5*(fullLength - kpLength) - shift; TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr); // kapton x += 0.5*(glThickness + kpThickness); TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); // aluminum x += 0.5*(kpThickness + alThickness); z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength); TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); // glue (top) x += 0.5*(alThickness + glThickness); z = 0.5*(fullLength - kpLength) - shift; TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr); // add to container container->AddNode(kpVol, 0, kpTrans); container->AddNode(alVol, 0, alTrans); container->AddNode(glVol, 0, glTrans0); container->AddNode(glVol, 1, glTrans1); // to add the grease we remember the sizes of the holes, stored as // additional parameters in the kapton layer size: // - sizes[3] = hole length // - sizes[4] = hole width // - sizes[5] = position of first hole center // - sizes[6] = standard separation between holes // - sizes[7] = separation between 5th and 6th hole // - sizes[8] = separation between 10th and 11th hole // - sizes[9] = separation between the upper hole border and // the foil border Double_t holeLength = kpSize[0]; Double_t holeWidth = kpSize[1]; Double_t holeFirstZ = kpSize[2]; Double_t holeSepZ = kpSize[3]; Double_t holeSep5th6th = kpSize[4]; Double_t holeSep10th11th = kpSize[5]; Double_t holeSepY = kpSize[6]; // volume (common) TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE TGeoVolume *hVol = mgr->MakeBox("GREASE", grease, 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength); hVol->SetLineColor(kBlue); // displacement of volumes in the container Int_t idx = 0; x = 0.0; y = 0.5*(fullWidth - holeWidth) - holeSepY; if (isRight) z = holeFirstZ - 0.5*fullLength + dist; else z = 0.5*fullLength - holeFirstZ - dist; for (Int_t i = 0; i < 11; i++) { TGeoTranslation *t = 0; t = new TGeoTranslation(x, y, -z); container->AddNode(hVol, idx++, t); if (i < 4) shift = holeSepZ; else if (i == 4) shift = holeSep5th6th; else if (i < 9) shift = holeSepZ; else shift = holeSep10th11th; if (isRight) z += shift; else z -= shift; } return container; } // //__________________________________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM (Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const { // // Create a TGeoAssembly containing all the components of the MCM. // The TGeoVolume container is rejected due to the possibility of overlaps // when placing this object on the carbon fiber sector. // The assembly contains: // - the thin part of the MCM (integrated circuit) // - the MCM chips (specifications from EDMS) // - the cap which covers the zone where chips are bound to MCM // --- // The local reference frame of this assembly is defined in such a way // that all volumes are contained in a virtual box whose center // is placed exactly in the middle of the occupied space w.r to all directions. // This will ease the positioning of this object in the half-stave. // The sizes of this virtual box are stored in // the array passed by reference. // --- // Arguments: // - a boolean flag to know if this is the "left" or "right" MCM, when // looking at the stave from above (i.e. the direction from which // one sees bus over ladders over grounding foil) and keeping the continuous border // in the upper part, one sees the thicker part on the left or right. // - an array passed by reference which will contain the size of the virtual container. // - a pointer to the used TGeoManager. // // to distinguish the "left" and "right" objects, a suffix is created char suf[5]; if (isRight) strcpy(suf, "R"); else strcpy(suf, "L"); // ** MEDIA ** TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr); TGeoMedium *medCap = GetMedium("AL$",mgr); // The shape of the MCM is divided into 3 sectors with different // widths (Y) and lengths (X), like in this sketch: // // 0 1 2 // +---------------------+-----------------------------------+ // | 4 sect 2 | // | 6 sect 1 /-------------------+ // | sect 0 /--------------/ 3 // +--------------------/ 5 // 8 7 // // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees. // From drawings we can parametrize the dimensions of all these sectors, // then the shape of this part of the MCM is implemented as a // TGeoXtru centerd in the virtual XY space. // The first step is definig the relevant sizes of this shape: Int_t i, j; Double_t mcmThickness = fgkmm * 0.35; Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2) // resp. 7-8, 5-6 and 3-4 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8}; // resp. 0-8, 1-6 and 2-3 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0}; Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7) Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5) // define sizes of chips (last is the thickest) Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 }; Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 }; Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 }; TString name[5]; name[0] = "ANALOG"; name[1] = "PILOT"; name[2] = "GOL"; name[3] = "RX40"; name[4] = "OPTICAL"; Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange }; // define the sizes of the cover Double_t capThickness = fgkmm * 0.3; Double_t capHeight = fgkmm * 1.7; // compute the total size of the virtual container box sizes.Set(3); Double_t &thickness = sizes[0]; Double_t &length = sizes[1]; Double_t &width = sizes[2]; length = sizeXtot; width = sizeYsector[0]; thickness = mcmThickness + capHeight; // define all the relevant vertices of the polygon // which defines the transverse shape of the MCM. // These values are used to several purposes, and // for each one, some points must be excluded Double_t xRef[9], yRef[9]; xRef[0] = -0.5*sizeXtot; yRef[0] = 0.5*sizeYsector[0]; xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01; yRef[1] = yRef[0]; xRef[2] = -xRef[0]; yRef[2] = yRef[0]; xRef[3] = xRef[2]; yRef[3] = yRef[2] - sizeYsector[2]; xRef[4] = xRef[3] - sizeXsector[2]; yRef[4] = yRef[3]; xRef[5] = xRef[4] - sizeSep12; yRef[5] = yRef[4] - sizeSep12; xRef[6] = xRef[5] - sizeXsector[1]; yRef[6] = yRef[5]; xRef[7] = xRef[6] - sizeSep01; yRef[7] = yRef[6] - sizeSep01; xRef[8] = xRef[0]; yRef[8] = -yRef[0]; // the above points are defined for the "right" MCM (if ve view the // stave from above) in order to change to the "left" one, we must // change the sign to all X values: if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i]; // the shape of the MCM and glue layer are done excluding point 1, // which is not necessary and cause the geometry builder to get confused j = 0; Double_t xBase[8], yBase[8]; for (i = 0; i < 9; i++) { if (i == 1) continue; xBase[j] = xRef[i]; yBase[j] = yRef[i]; j++; } // the MCM cover is superimposed over the zones 1 and 2 only Double_t xCap[6], yCap[6]; j = 0; for (i = 1; i <= 6; i++) { xCap[j] = xRef[i]; yCap[j] = yRef[i]; j++; } // define positions of chips, // which must be added to the bottom-left corner of MCM // and divided by 1E4; Double_t chipX[5], chipY[5]; if (isRight) { chipX[0] = 666320.; chipX[1] = 508320.; chipX[2] = 381320.; chipX[3] = 295320.; chipX[4] = 150320.; chipY[0] = 23750.; chipY[1] = 27750.; chipY[2] = 20750.; chipY[3] = 42750.; chipY[4] = 39750.; } else { chipX[0] = 389730.; chipX[1] = 548630.; chipX[2] = 674930.; chipX[3] = 761430.; chipX[4] = 905430.; chipY[0] = 96250.; chipY[1] = 91950.; chipY[2] = 99250.; chipY[3] = 107250.; chipY[4] = 109750.; } for (i = 0; i < 5; i++) { chipX[i] *= 0.00001; chipY[i] *= 0.00001; if (isRight) { chipX[i] += xRef[3]; chipY[i] += yRef[3]; } else { chipX[i] += xRef[8]; chipY[i] += yRef[8]; } // end for isRight chipLength[i] *= fgkmm; chipWidth[i] *= fgkmm; chipThickness[i] *= fgkmm; } // create shapes for MCM Double_t z1, z2; TGeoXtru *shBase = new TGeoXtru(2); z1 = -0.5*thickness; z2 = z1 + mcmThickness; shBase->DefinePolygon(8, xBase, yBase); shBase->DefineSection(0, z1, 0., 0., 1.0); shBase->DefineSection(1, z2, 0., 0., 1.0); // create volumes of MCM TGeoVolume *volBase = new TGeoVolume("BASE", shBase, medBase); volBase->SetLineColor(kRed); // to create the border of the MCM cover, it is required the // subtraction of two shapes the outer is created using the // reference points defined here TGeoXtru *shCapOut = new TGeoXtru(2); shCapOut->SetName(Form("SHCAPOUT%s", suf)); z1 = z2; z2 = z1 + capHeight - capThickness; shCapOut->DefinePolygon(6, xCap, yCap); shCapOut->DefineSection(0, z1, 0., 0., 1.0); shCapOut->DefineSection(1, z2, 0., 0., 1.0); // the inner is built similarly but subtracting the thickness Double_t angle, cs; Double_t xin[6], yin[6]; if (!isRight) { angle = 45.0; cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); xin[0] = xCap[0] + capThickness; yin[0] = yCap[0] - capThickness; xin[1] = xCap[1] - capThickness; yin[1] = yin[0]; xin[2] = xin[1]; yin[2] = yCap[2] + capThickness; xin[3] = xCap[3] - capThickness*cs; yin[3] = yin[2]; xin[4] = xin[3] - sizeSep12; yin[4] = yCap[4] + capThickness; xin[5] = xin[0]; yin[5] = yin[4]; } else { angle = 45.0; cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); xin[0] = xCap[0] - capThickness; yin[0] = yCap[0] - capThickness; xin[1] = xCap[1] + capThickness; yin[1] = yin[0]; xin[2] = xin[1]; yin[2] = yCap[2] + capThickness; xin[3] = xCap[3] - capThickness*cs; yin[3] = yin[2]; xin[4] = xin[3] + sizeSep12; yin[4] = yCap[4] + capThickness; xin[5] = xin[0]; yin[5] = yin[4]; } TGeoXtru *shCapIn = new TGeoXtru(2); shCapIn->SetName(Form("SHCAPIN%s", suf)); shCapIn->DefinePolygon(6, xin, yin); shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0); shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0); // compose shapes TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(Form("SHBORDER%s", suf), Form("%s-%s", shCapOut->GetName(), shCapIn->GetName())); // create volume TGeoVolume *volCapBorder = new TGeoVolume("CAPBORDER",shCapBorder,medCap); volCapBorder->SetLineColor(kGreen); // finally, we create the top of the cover, which has the same // shape of outer border and a thickness equal of the one othe // cover border one TGeoXtru *shCapTop = new TGeoXtru(2); z1 = z2; z2 = z1 + capThickness; shCapTop->DefinePolygon(6, xCap, yCap); shCapTop->DefineSection(0, z1, 0., 0., 1.0); shCapTop->DefineSection(1, z2, 0., 0., 1.0); TGeoVolume *volCapTop = new TGeoVolume("CAPTOP", shCapTop, medCap); volCapTop->SetLineColor(kBlue); // create container assembly with right suffix TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(Form("MCM_%", suf)); // add mcm layer mcmAssembly->AddNode(volBase, 0, gGeoIdentity); // add chips for (i = 0; i < 5; i++) { TGeoVolume *box = gGeoManager->MakeBox(name[i], medChip, 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]); TGeoTranslation *tr = new TGeoTranslation(chipX[i], chipY[i], 0.5*(-thickness + chipThickness[i]) + mcmThickness); box->SetLineColor(color[i]); mcmAssembly->AddNode(box, 0, tr); } // add cap border mcmAssembly->AddNode(volCapBorder, 0, gGeoIdentity); // add cap top mcmAssembly->AddNode(volCapTop, 0, gGeoIdentity); return mcmAssembly; } // //__________________________________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus (Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const { // // The pixel bus is implemented as a TGeoBBox with some objects on it, // which could affect the particle energy loss. // --- // In order to avoid confusion, the bus is directly displaced // according to the axis orientations which are used in the final stave: // X --> thickness direction // Y --> width direction // Z --> length direction // // ** MEDIA ** //PIXEL BUS TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000 // Capacity TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr); // ??? Resistance TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr); // ** SIZES & POSITIONS ** Double_t busLength = 170.501 * fgkmm; // length of plane part Double_t busWidth = 13.800 * fgkmm; // width Double_t busThickness = 0.280 * fgkmm; // thickness Double_t pt1000Length = fgkmm * 1.50; Double_t pt1000Width = fgkmm * 3.10; Double_t pt1000Thickness = fgkmm * 0.60; Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus Double_t capLength = fgkmm * 2.55; Double_t capWidth = fgkmm * 1.50; Double_t capThickness = fgkmm * 1.35; Double_t capY[2], capZ[2]; Double_t resLength = fgkmm * 2.20; Double_t resWidth = fgkmm * 0.80; Double_t resThickness = fgkmm * 0.35; Double_t resY[2], resZ[2]; // position of pt1000, resistors and capacitors depends on the // bus if it's left or right one if (!isRight) { pt1000Y = 64400.; pt1000Z[0] = 66160.; pt1000Z[1] = 206200.; pt1000Z[2] = 346200.; pt1000Z[3] = 486200.; pt1000Z[4] = 626200.; pt1000Z[5] = 776200.; pt1000Z[6] = 916200.; pt1000Z[7] = 1056200.; pt1000Z[8] = 1196200.; pt1000Z[9] = 1336200.; resZ[0] = 1397500.; resY[0] = 26900.; resZ[1] = 682500.; resY[1] = 27800.; capZ[0] = 1395700.; capY[0] = 45700.; capZ[1] = 692600.; capY[1] = 45400.; } else { pt1000Y = 66100.; pt1000Z[0] = 319700.; pt1000Z[1] = 459700.; pt1000Z[2] = 599700.; pt1000Z[3] = 739700.; pt1000Z[4] = 879700.; pt1000Z[5] = 1029700.; pt1000Z[6] = 1169700.; pt1000Z[7] = 1309700.; pt1000Z[8] = 1449700.; pt1000Z[9] = 1589700.; capY[0] = 44500.; capZ[0] = 266700.; capY[1] = 44300.; capZ[1] = 974700.; resZ[0] = 266500.; resY[0] = 29200.; resZ[1] = 974600.; resY[1] = 29900.; } // end if isRight Int_t i; pt1000Y *= 1E-4 * fgkmm; for (i = 0; i < 10; i++) { pt1000Z[i] *= 1E-4 * fgkmm; if (i < 2) { capZ[i] *= 1E-4 * fgkmm; capY[i] *= 1E-4 * fgkmm; resZ[i] *= 1E-4 * fgkmm; resY[i] *= 1E-4 * fgkmm; } // end if iM2 } // end for i Double_t &fullLength = sizes[1]; Double_t &fullWidth = sizes[2]; Double_t &fullThickness = sizes[0]; fullLength = busLength; fullWidth = busWidth; // add the thickness of the thickest component on bus (capacity) fullThickness = busThickness + capThickness; // ** VOLUMES ** TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus"); TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, 0.5*busWidth, 0.5*busLength); TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length); TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness, 0.5*resWidth, 0.5*resLength); TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness, 0.5*capWidth, 0.5*capLength); bus->SetLineColor(kYellow + 2); pt1000->SetLineColor(kGreen + 3); res->SetLineColor(kRed + 1); cap->SetLineColor(kBlue - 7); // ** MOVEMENTS AND POSITIONEMENT ** // bus TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - fullThickness), 0.0, 0.0); container->AddNode(bus, 0, trBus); Double_t zRef, yRef, x, y, z; if (isRight) { zRef = -0.5*fullLength; yRef = -0.5*fullWidth; } else { zRef = -0.5*fullLength; yRef = -0.5*fullWidth; } // end if isRight // pt1000 x = 0.5*(pt1000Thickness - fullThickness) + busThickness; for (i = 0; i < 10; i++) { y = yRef + pt1000Y; z = zRef + pt1000Z[i]; TGeoTranslation *tr = new TGeoTranslation(x, y, z); container->AddNode(pt1000, i, tr); } // end for i // capacitors x = 0.5*(capThickness - fullThickness) + busThickness; for (i = 0; i < 2; i++) { y = yRef + capY[i]; z = zRef + capZ[i]; TGeoTranslation *tr = new TGeoTranslation(x, y, z); container->AddNode(cap, i, tr); } // end for i // resistors x = 0.5*(resThickness - fullThickness) + busThickness; for (i = 0; i < 2; i++) { y = yRef + resY[i]; z = zRef + resZ[i]; TGeoTranslation *tr = new TGeoTranslation(x, y, z); container->AddNode(res, i, tr); } // end for i sizes[3] = yRef + pt1000Y; sizes[4] = zRef + pt1000Z[2]; sizes[5] = zRef + pt1000Z[7]; return container; } // //__________________________________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreateExtender (const Double_t *extenderParams, const TGeoMedium *extenderMedium, TArrayD& sizes) const { // ------------------ CREATE AN EXTENDER ------------------------ // // This function creates the following picture (in plane xOy) // Should be useful for the definition of the pixel bus and MCM extenders // The origin corresponds to point 0 on the picture, at half-width in Z direction // // Y 7 6 5 // ^ +---+---------------------+ // | / | // | / | // 0------> X / +---------------------+ // / / 3 4 // / / // 9 8 / / // +-----------+ / // | / // | / // ---> +-----------+---+ // | 0 1 2 // | // origin (0,0,0) // // // Takes 6 parameters in the following order : // |--> par 0 : inner length [0-1] / [9-8] // |--> par 1 : thickness ( = [0-9] / [4-5]) // |--> par 2 : angle of the slope // |--> par 3 : total height in local Y direction // |--> par 4 : outer length [3-4] / [6-5] // |--> par 5 : width in local Z direction // Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] * TMath::Cos(extenderParams[2])) / TMath::Tan(extenderParams[2]); Double_t extenderXtruX[10] = { 0 , extenderParams[0] , extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) , extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX , extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4], extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4], extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX , extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) , extenderParams[0] , 0 } ; Double_t extenderXtruY[10] = { 0 , 0 , extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , extenderParams[3] - extenderParams[1] , extenderParams[3] - extenderParams[1] , extenderParams[3] , extenderParams[3] , extenderParams[3] - extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , extenderParams[1] , extenderParams[1] } ; if (sizes.GetSize() != 3) sizes.Set(3); Double_t &thickness = sizes[0] ; Double_t &length = sizes[1] ; Double_t &width = sizes[2] ; thickness = extenderParams[3] ; width = extenderParams[5] ; length = extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4] ; // creation of the volume TGeoXtru *extenderXtru = new TGeoXtru(2); TGeoVolume *extenderXtruVol = new TGeoVolume("EXTENDER",extenderXtru,extenderMedium) ; extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY); extenderXtru->DefineSection(0,-0.5*extenderParams[4]); extenderXtru->DefineSection(1, 0.5*extenderParams[4]); return extenderXtruVol ; } //______________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions (Bool_t /*zpos*/, TGeoManager *mgr) const { // // Creates an assembly which contains the pixel bus and its extension // and the extension of the MCM. // By: Renaud Vernet // NOTE: to be defined its material and its extension in the outside direction // // ==== constants ===== //get the media //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr) ; // ??? PIXEL BUS TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? IXEL BUS EXTENDER TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? MCM EXTENDER // //geometrical constants const Double_t kPbextenderThickness = 0.07 * fgkmm ; const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK const Double_t kPbExtenderHeight = 1.92 * fgkmm ; // = 2.6 - (0.28+0.05+0.35) cf design const Double_t kPbExtenderWidthY = 11.0 * fgkmm ; const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK const Double_t kMcmExtenderThickness = 0.10 * fgkmm ; const Double_t kMcmExtenderHeight = 1.8 * fgkmm ; const Double_t kMcmExtenderWidthY = kPbExtenderWidthY ; // const Double_t groundingThickness = 0.07 * fgkmm ; // const Double_t grounding2pixelBusDz = 0.625 * fgkmm ; // const Double_t pixelBusThickness = 0.28 * fgkmm ; // const Double_t groundingWidthX = 170.501 * fgkmm ; // const Double_t pixelBusContactDx = 1.099 * fgkmm ; // const Double_t pixelBusWidthY = 13.8 * fgkmm ; // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180. ; //design=20 deg. // const Double_t pbExtenderTopZ = 2.72 * fgkmm ; // const Double_t mcmThickness = 0.35 * fgkmm ; // const Double_t halfStaveTotalLength = 247.64 * fgkmm ; // const Double_t deltaYOrigin = 15.95/2.* fgkmm ; // const Double_t deltaXOrigin = 1.1 * fgkmm ; // const Double_t deltaZOrigin = halfStaveTotalLength / 2. ; // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+groundingThickness/2. + pixelBusThickness/2. ; // const Double_t pixelBusWidthX = groundingWidthX ; // const Double_t pixelBusRaiseLength = (pixelBusContactDx-pixelBusThickness*TMath::Sin(pixelBusContactPhi))/TMath::Cos(pixelBusContactPhi) ; // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 + pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi) ; // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ ; // const Double_t pbExtenderEndPointX = 2*deltaZOrigin - groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi) ; // const Double_t pbExtenderXtru3L = 1.5 * fgkmm ; //arbitrary ? // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ + pixelBusThickness*(TMath::Cos(extenderSlope)-2))/TMath::Sin(extenderSlope) ; // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm ; // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm ; // //===== end constants ===== const Double_t kPbExtenderInnerLength = 10. * fgkmm ; const Double_t kPbExtenderOuterLength = 15. * fgkmm ; const Double_t kMcmExtenderInnerLength = 10. * fgkmm ; const Double_t kMcmExtenderOuterLength = 15. * fgkmm ; Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0 kPbextenderThickness, //1 kPbExtenderSlopeAngle, //2 kPbExtenderHeight, //3 kPbExtenderOuterLength, //4 kPbExtenderWidthY}; //5 Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0 kMcmExtenderThickness, //1 kMcmExtenderSlopeAngle, //2 kMcmExtenderHeight, //3 kMcmExtenderOuterLength, //4 kMcmExtenderWidthY}; //5 TArrayD sizes(3); TGeoVolume* pbExtender = CreateExtender(pbExtenderParams, medPBExtender, sizes) ; printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]); TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams, medMCMExtender, sizes) ; printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]); // Double_t pixelBusValues[5] = {pixelBusWidthX, //0 // pixelBusThickness, //1 // pixelBusContactPhi, //2 // pixelBusRaiseLength, //3 // pixelBusWidthY} ; //4 // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0 // pixelBusContactPhi, //1 // pbExtenderXtru3L, //2 // pixelBusThickness, //3 // extenderSlope, //4 // pbExtenderXtru4L, //5 // pbExtenderEndPointX, //6 // kPbExtenderWidthY} ; //7 // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0 // mcmExtenderThickness, //1 // extenderSlope, //2 // deltaMcmMcmExtender, //3 // mcmExtenderEndPointX, //4 // mcmExtenderWidthY}; //5 // TGeoVolumeAssembly *pixelBus = new TGeoVolumeAssembly("PIXEL BUS"); // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus) ; // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly("PIXEL BUS EXTENDER"); // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender) ; // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly("MCM EXTENDER"); // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender) ; // //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS ------------------- // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0); // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0)) ; // TGeoTranslation * pixelBusTrans = new TGeoTranslation(pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm , // -pixelBusWidthY/2. + deltaYOrigin , // -groundingWidthX/2. + deltaZOrigin) ; // TGeoRotation * pixelBusRot = new TGeoRotation(*commonRot); // TGeoTranslation * pbExtenderTrans = new TGeoTranslation(*pixelBusTrans) ; // TGeoRotation * pbExtenderRot = new TGeoRotation(*pixelBusRot) ; // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) - pixelBusWidthX/2. - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)) ; // if (!zpos) { // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) - (pixelBusWidthY - kPbExtenderWidthY)/2.); // } // else { // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) + (pixelBusWidthY - kPbExtenderWidthY)/2.); // } // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) + pixelBusThickness/2 + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi)) ; // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm + mcmThickness - deltaXOrigin, // pbExtenderTrans->GetTranslation()[1], // -4.82); // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot); // // add pt1000 components // Double_t pt1000Z = fgkmm * 64400. * 1E-4; // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700., 879700., 1029700., 1169700., 1309700., 1449700., 1589700.}; // Double_t pt1000X[10] = {66160., 206200., 346200., 486200., 626200., 776200., 916200., 1056200., 1196200., 1336200.}; // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1}; // Int_t i; // for (i = 0; i < 10; i++) { // pt1000X[i] *= fgkmm * 1E-4; // } // TGeoVolume *pt1000 = mgr->MakeBox("PT1000", 0, 0.5*pt1000size[0], 0.5*pt1000size[1], 0.5*pt1000size[2]); // pt1000->SetLineColor(kGray); // Double_t refThickness = - pixelBusThickness ; // for (i = 0; i < 10; i++) { // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]), pt1000Z -0.5*pixelBusWidthY); // pixelBus->AddNode(pt1000, i, tr); // } //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("EXTENDERS"); // assembly->AddNode((TGeoVolume*)pixelBus ,0, new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot)); // assembly->AddNode((TGeoVolume*)pbExtender ,0, new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot)); // assembly->AddNode((TGeoVolume*)mcmExtender ,0, new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot)); // assembly->AddNode(mcmExtender,0,new TGeoIdentity()); assembly->AddNode(pbExtender,0); assembly->AddNode(mcmExtender,0); // assembly->SetTransparency(50); return assembly ; } // //__________________________________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave (Bool_t isRight, Int_t layer, Int_t idxCentral, Int_t idxSide, TArrayD &sizes, TGeoManager *mgr) { // // Implementation of an half-stave, which depends on the side where we are on the stave. // The convention for "left" and "right" is the same as for the MCM. // The return value is a TGeoAssembly which is structured in such a way that the origin // of its local reference frame coincides with the origin of the whole stave. // The TArrayD passed by reference will contain details of the shape: // - sizes[0] = thickness // - sizes[1] = length // - sizes[2] = width // - sizes[3] = common 'x' position for eventual clips // - sizes[4] = common 'y' position for eventual clips // - sizes[5] = 'z' position of first clip // - sizes[6] = 'z' position of second clip // // ** CHECK ** // idxCentral and idxSide must be different if (idxCentral == idxSide) { AliInfo("Ladders must be inserted in half-stave with different indexes."); idxSide = idxCentral + 1; AliInfo(Form("Central ladder will be inserted with index %d", idxCentral)); AliInfo(Form("Side ladder will be inserted with index %d", idxSide)); } // define the separations along Z direction between the objects Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder and the Z=0 plane in stave ref. Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder and MCM Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge and the Z=0 plane in stave ref. // ** VOLUMES ** // grounding foil TArrayD grndSize(3); // This one line repalces the 3 bellow, BNS. TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr); Double_t &grndThickness = grndSize[0]; Double_t &grndLength = grndSize[1]; // ladder TArrayD ladderSize(3); TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr); Double_t ladderThickness = ladderSize[0]; Double_t ladderLength = ladderSize[1]; Double_t ladderWidth = ladderSize[2]; // MCM TArrayD mcmSize(3); TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr); Double_t mcmThickness = mcmSize[0]; Double_t mcmLength = mcmSize[1]; Double_t mcmWidth = mcmSize[2]; // bus TArrayD busSize(6); TGeoVolumeAssembly *bus = CreatePixelBus(isRight, busSize, mgr); Double_t busThickness = busSize[0]; Double_t busLength = busSize[1]; Double_t busWidth = busSize[2]; // glue between ladders and pixel bus TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder; TGeoVolume *ladderGlue = mgr->MakeBox("LADDER_GLUE", medLadGlue, 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength); ladderGlue->SetLineColor(kYellow + 5); // create references for the whole object, as usual sizes.Set(7); Double_t &fullThickness = sizes[0]; Double_t &fullLength = sizes[1]; Double_t &fullWidth = sizes[2]; // compute the full size of the container fullLength = sepLadderCenter + 2.0*ladderLength + sepLadderMCM + sepLadderLadder + mcmLength; fullWidth = ladderWidth; fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness; // ** MOVEMENTS ** // grounding foil (shifted only along thickness) Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness; Double_t zGrnd = -0.5*grndLength; if (!isRight) zGrnd = -zGrnd; TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd); // ladders (translations along thickness and length) // layers must be sorted going from the one at largest Z to the one at smallest Z: // -|Zmax| ------> |Zmax| // 3 2 1 0 // then, for layer 1 ladders they must be placed exactly this way, and in layer 2 at the opposite. // In order to remember the placements, we define as "inner" and "outer" ladder respectively // the one close to barrel center, and the one closer to MCM, respectively. Double_t xLad, zLadIn, zLadOut; xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + 0.01175 - fgkGapLadder; zLadIn = -sepLadderCenter - 0.5*ladderLength; zLadOut = zLadIn - sepLadderLadder - ladderLength; if (!isRight) { zLadIn = -zLadIn; zLadOut = -zLadOut; } TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity); rotLad->RotateZ(90.0); rotLad->RotateY(180.0); Double_t sensWidth = fgkmm * 12.800; Double_t chipWidth = fgkmm * 15.950; Double_t guardRingWidth = fgkmm * 0.560; Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth); TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad, ladderShift, zLadIn, rotLad); TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad, ladderShift, zLadOut, rotLad); // MCM (length and thickness direction, placing at same level as the ladder, which implies to // recompute the position of center, because ladder and MCM have NOT the same thickness) // the two copies of the MCM are placed at the same distance from the center, on both sides Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + 0.01175 - fgkGapLadder; Double_t yMCM = 0.5*(fullWidth - mcmWidth); Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM; if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + sepLadderMCM; // create the correction rotations TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity); rotMCM->RotateY(90.0); TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM); // glue between ladders and pixel bus Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 - fgkGapLadder + 0.5*ladGlueThickness; // bus (length and thickness direction) Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness; Double_t yBus = 0.5*(fullWidth - busWidth); Double_t zBus = -0.5*busLength - sepBusCenter; if (!isRight) zBus = -zBus; TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus); TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus); // create the container TGeoVolumeAssembly *container = 0; if (idxCentral+idxSide==5) { container = new TGeoVolumeAssembly("HALF-STAVE1"); } else { container = new TGeoVolumeAssembly("HALF-STAVE0"); } // add to container all objects container->AddNode(grndVol, 1, grndTrans); // ladders are inserted in different order to respect numbering scheme // which is inverted when going from outer to inner layer container->AddNode(ladder, idxCentral, trLadIn); container->AddNode(ladder, idxSide, trLadOut); container->AddNode(ladderGlue, 0, trLadGlue); container->AddNode(mcm, 0, trMCM); container->AddNode(bus, 0, trBus); // since the clips are placed in correspondence of two pt1000s, // their position is computed here, but they are not added by default // it will be the StavesInSector method which will decide to add them // anyway, to recovery some size informations on the clip, it must be created TArrayD clipSize; // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr); CreateClip(clipSize, kTRUE, mgr); // define clip movements (width direction) sizes[3] = xBus + 0.5*busThickness; sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48; sizes[5] = zBus + busSize[4]; sizes[6] = zBus + busSize[5]; return container; } // //__________________________________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave (Int_t layer, TArrayD &sizes, TGeoManager *mgr) { // // This method uses all other ones which create pieces of the stave // and assemblies everything together, in order to return the whole // stave implementation, which is returned as a TGeoVolumeAssembly, // due to the presence of some parts which could generate fake overlaps // when put on the sector. // This assembly contains, going from bottom to top in the thickness direction: // - the complete grounding foil, defined by the "CreateGroundingFoil" method which // already joins some glue and real groudning foil layers for the whole stave (left + right); // - 4 ladders, which are sorted according to the ALICE numbering scheme, which depends // on the layer we are building this stave for; // - 2 MCMs (a left and a right one); // - 2 pixel buses (a left and a right one); // --- // Arguments: // - the layer number, which determines the displacement and naming of sensitive volumes // - a TArrayD passed by reference which will contain the size of virtual box containing the stave: // - sizes[0] = thickness; // - sizes[1] = length; // - sizes[2] = width; // - sizes[3] = common X position of clips // - sizes[4] = common Y position of clips // - sizes[5] = Z position of first clip // - sizes[6] = Z position of second clip // - sizes[7] = Z position of third clip // - sizes[8] = Z position of fourth clip // - the TGeoManager // // create the container TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("LAY%d_STAVE", layer)); // define the indexes of the ladders in order to have the correct order // keeping in mind that the staves will be inserted as they are on layer 2, while // they are rotated around their local Y axis when inserted on layer 1, so in this case // they must be put in the "wrong" order to turn out to be right at the end // The convention is: // -|Zmax| ------> |Zmax| // 3 2 1 0 // with respect to the "native" stave reference frame, "left" is in the positive Z // this leads the definition of these indexes: Int_t idxCentralL, idxSideL, idxCentralR, idxSideR; if (layer == 1) { idxSideL = 3; idxCentralL = 2; idxCentralR = 1; idxSideR = 0; } else { idxSideL = 0; idxCentralL = 1; idxCentralR = 2; idxSideR = 3; } // create the two half-staves TArrayD sizeL, sizeR; TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, idxSideL, sizeL, mgr); TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, idxSideR, sizeR, mgr); // copy the size to the stave's one sizes.Set(9); sizes[0] = sizeL[0]; sizes[1] = sizeR[1] + sizeL[1]; sizes[2] = sizeL[2]; sizes[3] = sizeL[3]; sizes[4] = sizeL[4]; sizes[5] = sizeL[5]; sizes[6] = sizeL[6]; sizes[7] = sizeR[5]; sizes[8] = sizeR[6]; // add to container all objects container->AddNode(hstaveL, 1); container->AddNode(hstaveR, 1); return container; } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask) { // // Define a mask which states qhich staves must be placed. // It is a string which must contain '0' or '1' depending if // a stave must be placed or not. // Each place is referred to one of the staves, so the first // six characters of the string will be checked. // Int_t i; for (i = 0; i < 6; i++) fAddStave[i] = mask[i]; } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) { // // Unification of essentially two methods: // - the one which creates the sector structure // - the one which returns the complete stave // --- // For compatibility, this method requires the same arguments // asked by "CarbonFiberSector" method, which is recalled here. // Like this cited method, this one does not return any value, // but it inserts in the mother volume (argument 'moth') all the stuff // which composes the complete SPD sector. // --- // In the following, the stave numbering order used for arrays is the same as // defined in the GetSectorMountingPoints(): // /5 // /\/4 // 1\ \/3 // 0|___\/2 // --- // Arguments: see description of "CarbonFiberSector" method. // Double_t shift[6]; // shift from the innermost position in the sector placement plane // (where the stave edge is in the point where the rounded corner begins) shift[0] = fgkmm * -0.691; shift[1] = fgkmm * 5.041; shift[2] = fgkmm * 1.816; shift[3] = fgkmm * -0.610; shift[4] = fgkmm * -0.610; shift[5] = fgkmm * -0.610; // create stave volumes (different for layer 1 and 2) TArrayD staveSizes1(9), staveSizes2(9), clipSize(5); Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0]; TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr); TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr); TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr); Double_t xL, yL; // leftmost edge of mounting point (XY projection) Double_t xR, yR; // rightmost edge of mounting point (XY projection) Double_t xM, yM; // middle point of the segment L-R Double_t dx, dy; // (xL - xR) and (yL - yR) Double_t widthLR; // width of the segment L-R Double_t angle; // stave rotation angle in degrees Double_t diffWidth; // difference between mounting plane width and stave width (smaller) Double_t xPos, yPos; // final translation of the stave Double_t parMovement; // translation in the LR plane direction staveThickness += fgkGapHalfStave; // loop on staves Int_t i, iclip = 0; for (i = 0; i < 6; i++) { // in debug mode, if this stave is not required, it is skipped if (!fAddStave[i]) continue; // retrieve reference points GetSectorMountingPoints(i, xL, yL, xR, yR); xM = 0.5 * (xL + xR); yM = 0.5 * (yL + yR); dx = xL - xR; dy = yL - yR; angle = TMath::ATan2(dy, dx); widthLR = TMath::Sqrt(dx*dx + dy*dy); diffWidth = 0.5*(widthLR - staveHeight); // first, a movement along this plane must be done // by an amount equal to the width difference // and then the fixed shift must also be added parMovement = diffWidth + shift[i]; // due to stave thickness, another movement must be done // in the direction normal to the mounting plane // which is computed using an internal method, in a reference frame where the LR segment // has its middle point in the origin and axes parallel to the master reference frame if (i == 0) { ParallelPosition(-0.5*staveThickness, -parMovement, angle, xPos, yPos); } if (i == 1) { ParallelPosition( 0.5*staveThickness, -parMovement, angle, xPos, yPos); } else { ParallelPosition( 0.5*staveThickness, parMovement, angle, xPos, yPos); } // then we go into the true reference frame xPos += xM; yPos += yM; // using the parameters found here, compute the // translation and rotation of this stave: TGeoRotation *rot = new TGeoRotation(*gGeoIdentity); if (i == 0 || i == 1) rot->RotateX(180.0); rot->RotateZ(90.0 + angle * TMath::RadToDeg()); TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot); if (i == 0 || i == 1) { moth->AddNode(stave1, i, trans); } else { moth->AddNode(stave2, i - 2, trans); if (i != 2) { // except in the case of stave #2, // clips must be added, and this is done directly on the sector Int_t j; TArrayD clipSize; TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity); rotClip->RotateZ(-90.0); rotClip->RotateX(180.0); Double_t x = staveSizes2[3] + fgkGapHalfStave; Double_t y = staveSizes2[4]; Double_t z[4] = { staveSizes2[5], staveSizes2[6], staveSizes2[7], staveSizes2[8] }; for (j = 0; j < 4; j++) { TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j], rotClip); *trClip = *trans * *trClip; moth->AddNode(clip, iclip++, trClip); } } } } } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2, Double_t phi, Double_t &x, Double_t &y) const { // Performs the following steps: // 1 - finds a straight line parallel to the one passing through the origin and with angle 'phi' with X axis // (phi in RADIANS); // 2 - finds another line parallel to the previous one, with a distance 'dist1' from it // 3 - takes a reference point in the second line in the intersection between the normal to both lines // passing through the origin // 4 - finds a point whith has distance 'dist2' from this reference, in the second line (point 2) // ---- // According to the signs given to dist1 and dist2, the point is found in different position w.r. to the origin // // compute the point Double_t cs = TMath::Cos(phi); Double_t sn = TMath::Sin(phi); x = dist2*cs - dist1*sn; y = dist1*cs + dist2*sn; } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath, const Char_t *type, TGeoManager *mgr) const { // Creates Figure 0 for the documentation of this class. In this // specific case, it creates the X,Y cross section of the SPD suport // section, center and ends. The output is written to a standard // file name to the path specificed. // Inputs: // const Char_t *filepath Path where the figure is to be drawn // const Char_t *type The type of file, default is gif. // TGeoManager *mgr The TGeoManager default gGeoManager // Output: // none. // Return: // none. TGeoXtru *sA0,*sA1,*sB0,*sB1; //TPolyMarker *pmA,*pmB; TPolyLine plA0,plA1,plB0,plB1; TCanvas *canvas; TLatex txt; Double_t x=0.0,y=0.0; Int_t i,kNRadii=6; if(strcmp(filepath,"")){ Error("CreateFigure0","filepath=%s type=%s",filepath,type); } // end if // sA0 = (TGeoXtru*) mgr->GetVolume( "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape(); sA1 = (TGeoXtru*) mgr->GetVolume( "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape(); sB0 = (TGeoXtru*) mgr->GetVolume( "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape(); sB1 = (TGeoXtru*) mgr->GetVolume( "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape(); //pmA = new TPolyMarker(); //pmA.SetMarkerStyle(2); // + //pmA.SetMarkerColor(7); // light blue //pmB = new TPolyMarker(); //pmB.SetMarkerStyle(5); // X //pmB.SetMarkerColor(6); // purple plA0.SetPolyLine(sA0->GetNvert()); plA0.SetLineColor(1); // black plA0.SetLineStyle(1); plA1.SetPolyLine(sA1->GetNvert()); plA1.SetLineColor(2); // red plA1.SetLineStyle(1); plB0.SetPolyLine(sB0->GetNvert()); plB0.SetLineColor(3); // Green plB0.SetLineStyle(2); plB1.SetPolyLine(sB1->GetNvert()); plB1.SetLineColor(4); // Blue plB1.SetLineStyle(2); //for(i=0;iGetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i)); for(i=0;iGetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i)); for(i=0;iGetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i)); for(i=0;iGetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i)); canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000); canvas->Range(-3.,-3.,3.,3.); txt.SetTextSize(0.05); txt.SetTextAlign(33); txt.SetTextColor(1); txt.DrawLatex(2.9,2.9,"Section A-A outer Carbon Fiber surface"); txt.SetTextColor(2); txt.DrawLatex(2.9,2.5,"Section A-A Inner Carbon Fiber surface"); txt.SetTextColor(3); txt.DrawLatex(2.9,2.1,"Section E-E outer Carbon Fiber surface"); txt.SetTextColor(4); txt.DrawLatex(2.9,1.7,"Section E-E Inner Carbon Fiber surface"); plA0.Draw(); plA1.Draw(); plB0.Draw(); plB1.Draw(); //pmA.Draw(); //pmB.Draw(); // x = 1.0; y = -2.5; Char_t chr[3]; for(i=0;i 2 ios::fmtflags fmt = cout.flags(); #else Int_t fmt; #endif #else #if defined __ICC || defined __ECC || defined __xlC__ ios::fmtflags fmt; #else Int_t fmt; #endif #endif os->flags(fmt); // reset back to old Formating. return; } // //__________________________________________________________________________________________ void AliITSv11GeometrySPD::ReadAscii(istream* /* is */){ // Read in class data values in Ascii Form to output stream // Inputs: // istream *is Input stream where Ascii data is to be read in from // Outputs: // none. // Return: // none. } // //__________________________________________________________________________________________ ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s){ // Standard output streaming function // Inputs: // ostream &os output steam // AliITSvPPRasymmFMD &s class to be streamed. // Output: // none. // Return: // ostream &os The stream pointer s.PrintAscii(&os); return os; } // //__________________________________________________________________________________________ istream &operator>>(istream &is,AliITSv11GeometrySPD &s){ // Standard inputput streaming function // Inputs: // istream &is input steam // AliITSvPPRasymmFMD &s class to be streamed. // Output: // none. // Return: // ostream &os The stream pointer s.ReadAscii(&is); return is; } // //__________________________________________________________________________________________ Bool_t AliITSv11GeometrySPD::Make2DCrossSections(TPolyLine &a0,TPolyLine &a1, TPolyLine &b0,TPolyLine &b1,TPolyMarker &p)const{ // Fill the objects with the points representing // a0 the outer carbon fiber SPD sector shape Cross Section A // a1 the inner carbon fiber SPD sector shape Cross Section A // b0 the outer carbon fiber SPD sector shape Cross Section B // b1 the inner carbon fiber SPD sector shape Cross Section B // // Inputs: // TPolyLine &a0 The outer carbon fiber SPD sector shape // TPolyLine &a1 The Inner carbon fiber SPD sector shape // TPolyLine &b0 The outer carbon fiber SPD sector shape // TPolyLine &b1 The Inner carbon fiber SPD sector shape // TPolyMarker &p The points where the ladders are to be placed // Outputs: // TPolyLine &a0 The shape filled with the points // TPolyLine &a1 The shape filled with the points // TPolyLine &b0 The shape filled with the points // TPolyLine &b1 The shape filled with the points // TPolyMarker &p The filled array of points // Return: // An error flag. Int_t n0,n1,i; Double_t x,y; TGeoVolume *a0V,*a1V,*b0V,*b1V; TGeoXtru *a0S,*a1S,*b0S,*b1S; TGeoManager *mgr = gGeoManager; a0V = mgr->GetVolume("ITS SPD Carbon fiber support Sector A0"); a0S = dynamic_cast(a0V->GetShape()); n0 = a0S->GetNvert(); a0.SetPolyLine(n0+1); //for(i=0;iGetX(i); y = a0S->GetY(i); //printf("%d %g %g\n",i,x,y); a0.SetPoint(i,x,y); if(i==0) a0.SetPoint(n0,x,y); } // end for i a1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1"); a1S = dynamic_cast(a1V->GetShape()); n1 = a1S->GetNvert(); a1.SetPolyLine(n1+1); for(i=0;iGetX(i); y = a1S->GetY(i); a1.SetPoint(i,x,y); if(i==0) a1.SetPoint(n1,x,y); } // end for i // Cross Section B b0V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0"); b0S = dynamic_cast(b0V->GetShape()); n0 = b0S->GetNvert(); b0.SetPolyLine(n0+1); for(i=0;iGetX(i); y = b0S->GetY(i); b0.SetPoint(i,x,y); if(i==0) b0.SetPoint(n0,x,y); } // end for i b1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1"); b1S = dynamic_cast(b1V->GetShape()); n1 = b1S->GetNvert(); b1.SetPolyLine(n1+1); for(i=0;iGetX(i); y = b1S->GetY(i); b1.SetPoint(i,x,y); if(i==0) b1.SetPoint(n1,x,y); } // end for i // Double_t x0,y0,x1,y1; p.SetPolyMarker(2*fSPDsectorX0.GetSize()); for(i=0;i