/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpeateose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.7 2000/10/02 21:28:09 fca Removal of useless dependecies via forward declarations Revision 1.6 2000/10/02 17:20:45 egangler Cleaning of the code (continued ) : -> coding conventions -> void Streamers -> some useless includes removed or replaced by "class" statement Revision 1.5 2000/06/28 15:16:35 morsch (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) to allow development of slat-muon chamber simulation and reconstruction code in the MUON framework. The changes should have no side effects (mostly dummy arguments). (2) Hit disintegration uses 3-dim hit coordinates to allow simulation of chambers with overlapping modules (MakePadHits, Disintegration). Revision 1.4 2000/06/26 14:02:38 morsch Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. Revision 1.3 2000/06/22 14:10:05 morsch HP scope problems corrected (PH) Revision 1.2 2000/06/15 07:58:49 morsch Code from MUON-dev joined Revision 1.1.2.14 2000/06/14 14:37:25 morsch Initialization of TriggerCircuit added (PC) Revision 1.1.2.13 2000/06/09 21:55:47 morsch Most coding rule violations corrected. Revision 1.1.2.12 2000/05/05 11:34:29 morsch Log inside comments. Revision 1.1.2.11 2000/05/05 10:06:48 morsch Coding Rule violations regarding trigger section corrected (CP) Log messages included. */ ///////////////////////////////////////////////////////// // Manager and hits classes for set:MUON version 0 // ///////////////////////////////////////////////////////// #include #include #include #include #include #include "AliMUONv1.h" #include "AliRun.h" #include "AliMC.h" #include "AliMagF.h" #include "AliCallf77.h" #include "AliConst.h" #include "AliMUONChamber.h" #include "AliMUONHit.h" #include "AliMUONPadHit.h" #include "AliMUONConstants.h" #include "AliMUONTriggerCircuit.h" ClassImp(AliMUONv1) //___________________________________________ AliMUONv1::AliMUONv1() : AliMUON() { // Constructor fChambers = 0; } //___________________________________________ AliMUONv1::AliMUONv1(const char *name, const char *title) : AliMUON(name,title) { // Constructor } //___________________________________________ void AliMUONv1::CreateGeometry() { // // Note: all chambers have the same structure, which could be // easily parameterised. This was intentionally not done in order // to give a starting point for the implementation of the actual // design of each station. Int_t *idtmed = fIdtmed->GetArray()-1099; // Distance between Stations // Float_t bpar[3]; Float_t tpar[3]; Float_t pgpar[10]; Float_t zpos1, zpos2, zfpos; Float_t dframep=.001; // Value for station 3 should be 6 ... Float_t dframep1=.001; // Bool_t frames=kTRUE; Bool_t frames=kFALSE; Float_t dframez=0.9; Float_t dr; Float_t dstation; // // Rotation matrices in the x-y plane Int_t idrotm[1199]; // phi= 0 deg AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); // phi= 90 deg AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); // phi= 180 deg AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); // phi= 270 deg AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); // Float_t phi=2*TMath::Pi()/12/2; // // pointer to the current chamber // pointer to the current chamber Int_t idAlu1=idtmed[1103]; Int_t idAlu2=idtmed[1104]; // Int_t idAlu1=idtmed[1100]; // Int_t idAlu2=idtmed[1100]; Int_t idAir=idtmed[1100]; Int_t idGas=idtmed[1105]; AliMUONChamber *iChamber, *iChamber1, *iChamber2; //******************************************************************** // Station 1 ** //******************************************************************** // CONCENTRIC // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; iChamber2 =(AliMUONChamber*) (*fChambers)[1]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep1; tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); // Aluminium frames // Outer frames pgpar[0] = 360/12/2; pgpar[1] = 360.; pgpar[2] = 12.; pgpar[3] = 2; pgpar[4] = -dframez/2; pgpar[5] = iChamber->ROuter(); pgpar[6] = pgpar[5]+dframep1; pgpar[7] = +dframez/2; pgpar[8] = pgpar[5]; pgpar[9] = pgpar[6]; gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); // // Inner frame tpar[0]= iChamber->RInner()-dframep1; tpar[1]= iChamber->RInner(); tpar[2]= dframez/2; gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); // // Frame Crosses if (frames) { bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; bpar[1] = dframep1/2; bpar[2] = dframez/2; gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); } // // Chamber Material represented by Alu sheet tpar[0]= iChamber->RInner(); tpar[1]= iChamber->ROuter(); tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); // // Sensitive volumes // tpar[2] = iChamber->DGas(); tpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3); gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3); gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); // // Frame Crosses to be placed inside gas if (frames) { dr = (iChamber->ROuter() - iChamber->RInner()); bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; bpar[1] = dframep1/2; bpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); } //******************************************************************** // Station 2 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; iChamber2 =(AliMUONChamber*) (*fChambers)[3]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); // Aluminium frames // Outer frames pgpar[0] = 360/12/2; pgpar[1] = 360.; pgpar[2] = 12.; pgpar[3] = 2; pgpar[4] = -dframez/2; pgpar[5] = iChamber->ROuter(); pgpar[6] = pgpar[5]+dframep; pgpar[7] = +dframez/2; pgpar[8] = pgpar[5]; pgpar[9] = pgpar[6]; gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); // // Inner frame tpar[0]= iChamber->RInner()-dframep; tpar[1]= iChamber->RInner(); tpar[2]= dframez/2; gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); // // Frame Crosses if (frames) { bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; bpar[1] = dframep/2; bpar[2] = dframez/2; gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); } // // Chamber Material represented by Alu sheet tpar[0]= iChamber->RInner(); tpar[1]= iChamber->ROuter(); tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); // // Sensitive volumes // tpar[2] = iChamber->DGas(); tpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); if (frames) { // // Frame Crosses to be placed inside gas dr = (iChamber->ROuter() - iChamber->RInner()); bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2; bpar[1] = dframep/2; bpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); } //******************************************************************** // Station 3 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; iChamber2 =(AliMUONChamber*) (*fChambers)[5]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); // volumes for slat geometry (xx=5,..,10 chamber id): // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes // SxxG --> Sensitive volume (gas) // SxxP --> PCB (copper) // SxxI --> Insulator (vetronite) // SxxC --> Carbon panel // SxxR --> Rohacell // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) // define the id of tracking media: Int_t idCopper = idtmed[1110]; Int_t idGlass = idtmed[1111]; Int_t idCarbon = idtmed[1112]; Int_t idRoha = idtmed[1113]; const Int_t nSlats3 = 4; // number of slats per quadrant const Int_t nPCB3[nSlats3] = {4,4,3,2}; // n PCB per slat // sensitive area: 40*40 cm**2 const Float_t SensLength = 40.; const Float_t SensHeight = 40.; const Float_t SensWidth = 0.5; // according to TDR fig 2.120 const Int_t SensMaterial = idGas; const Float_t yOverlap = 1.5; // PCB dimensions in cm; width: 30 mum copper const Float_t PCBLength = SensLength; const Float_t PCBHeight = 60.; const Float_t PCBWidth = 0.003; const Int_t PCBMaterial = idCopper; // Insulating material: 200 mum glass fiber glued to pcb const Float_t InsuLength = PCBLength; const Float_t InsuHeight = PCBHeight; const Float_t InsuWidth = 0.020; const Int_t InsuMaterial = idGlass; // Carbon fiber panels: 200mum carbon/epoxy skin const Float_t PanelLength = SensLength; const Float_t PanelHeight = SensHeight; const Float_t PanelWidth = 0.020; const Int_t PanelMaterial = idCarbon; // rohacell between the two carbon panels const Float_t RohaLength = SensLength; const Float_t RohaHeight = SensHeight; const Float_t RohaWidth = 0.5; const Int_t RohaMaterial = idRoha; // Frame around the slat: 2 sticks along length,2 along height // H: the horizontal ones const Float_t HFrameLength = PCBLength; const Float_t HFrameHeight = 1.5; const Float_t HFrameWidth = SensWidth; const Int_t HFrameMaterial = idGlass; // V: the vertical ones const Float_t VFrameLength = 4.0; const Float_t VFrameHeight = SensHeight + HFrameHeight; const Float_t VFrameWidth = SensWidth; const Int_t VFrameMaterial = idGlass; // B: the horizontal border filled with rohacell const Float_t BFrameLength = HFrameLength; const Float_t BFrameHeight = (PCBHeight - SensHeight)/2. - HFrameHeight; const Float_t BFrameWidth = HFrameWidth; const Int_t BFrameMaterial = idRoha; // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) const Float_t NulocLength = 2.5; const Float_t NulocHeight = 7.5; const Float_t NulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; const Int_t NulocMaterial = idCopper; // Gassiplex package const Float_t GassiLength = 1.0; const Float_t GassiHeight = 1.0; const Float_t GassiWidth = 0.15; // check it !!! const Int_t GassiMaterial = idGlass; // slat dimensions: slat is a MOTHER volume!!! made of air Float_t SlatLength[nSlats3]; const Float_t SlatHeight = PCBHeight; const Float_t SlatWidth = SensWidth + 2.*(PCBWidth + InsuWidth + 2.* PanelWidth + RohaWidth); const Int_t SlatMaterial = idAir; const Float_t dSlatLength = VFrameLength; // border on left and right // create and position the slat (mother) volumes Float_t spar[3]; char VolNam5[5]; char VolNam6[5]; Float_t xSlat[nSlats3]; Float_t ySlat[nSlats3]; for (Int_t i = 0; iGsvolu(VolNam5,"BOX",SlatMaterial,spar,3); gMC->Gspos(VolNam5, i*4+1,"C05M", xSlat[i], ySlat[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam5, i*4+2,"C05M",-xSlat[i], ySlat[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam5, i*4+3,"C05M", xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); gMC->Gspos(VolNam5, i*4+4,"C05M",-xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); sprintf(VolNam6,"S06%d",i); gMC->Gsvolu(VolNam6,"BOX",SlatMaterial,spar,3); gMC->Gspos(VolNam6, i*4+1,"C06M", xSlat[i], ySlat[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam6, i*4+2,"C06M",-xSlat[i], ySlat[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam6, i*4+3,"C06M", xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); gMC->Gspos(VolNam6, i*4+4,"C06M",-xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); } // create the sensitive volumes (subdivided as the PCBs), Float_t SensPar[3] = { SensLength/2., SensHeight/2., SensWidth/2. }; gMC->Gsvolu("S05G","BOX",SensMaterial,SensPar,3); gMC->Gsvolu("S06G","BOX",SensMaterial,SensPar,3); // create the PCB volume Float_t PCBpar[3] = { PCBLength/2., PCBHeight/2., PCBWidth/2. }; gMC->Gsvolu("S05P","BOX",PCBMaterial,PCBpar,3); gMC->Gsvolu("S06P","BOX",PCBMaterial,PCBpar,3); // create the insulating material volume Float_t Insupar[3] = { InsuLength/2., InsuHeight/2., InsuWidth/2. }; gMC->Gsvolu("S05I","BOX",InsuMaterial,Insupar,3); gMC->Gsvolu("S06I","BOX",InsuMaterial,Insupar,3); // create the panel volume Float_t Panelpar[3] = { PanelLength/2., PanelHeight/2., PanelWidth/2. }; gMC->Gsvolu("S05C","BOX",PanelMaterial,Panelpar,3); gMC->Gsvolu("S06C","BOX",PanelMaterial,Panelpar,3); // create the rohacell volume Float_t Rohapar[3] = { RohaLength/2., RohaHeight/2., RohaWidth/2. }; gMC->Gsvolu("S05R","BOX",RohaMaterial,Rohapar,3); gMC->Gsvolu("S06R","BOX",RohaMaterial,Rohapar,3); // create the vertical frame volume Float_t VFramepar[3]={VFrameLength/2., VFrameHeight/2., VFrameWidth/2.}; gMC->Gsvolu("S05V","BOX",VFrameMaterial,VFramepar,3); gMC->Gsvolu("S06V","BOX",VFrameMaterial,VFramepar,3); // create the horizontal frame volume Float_t HFramepar[3]={HFrameLength/2., HFrameHeight/2., HFrameWidth/2.}; gMC->Gsvolu("S05H","BOX",HFrameMaterial,HFramepar,3); gMC->Gsvolu("S06H","BOX",HFrameMaterial,HFramepar,3); // create the horizontal border volume Float_t BFramepar[3]={BFrameLength/2., BFrameHeight/2., BFrameWidth/2.}; gMC->Gsvolu("S05B","BOX",BFrameMaterial,BFramepar,3); gMC->Gsvolu("S06B","BOX",BFrameMaterial,BFramepar,3); Int_t index=0; for (Int_t i = 0; iGspos("S05V",2*i-1,VolNam5, xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S05V",2*i ,VolNam5,-xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S06V",2*i-1,VolNam6, xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S06V",2*i ,VolNam6,-xvframe, 0., 0. , 0, "ONLY"); for (Int_t j=0; jGspos("S05G",index,VolNam5, xx, yy, zSens , 0, "ONLY"); gMC->Gspos("S06G",index,VolNam6, xx, yy, zSens , 0, "ONLY"); Float_t zPCB = (SensWidth+PCBWidth)/2.; gMC->Gspos("S05P",2*index-1,VolNam5, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S05P",2*index ,VolNam5, xx, yy,-zPCB , 0, "ONLY"); gMC->Gspos("S06P",2*index-1,VolNam6, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S06P",2*index ,VolNam6, xx, yy,-zPCB , 0, "ONLY"); Float_t zInsu = (InsuWidth+PCBWidth)/2. + zPCB; gMC->Gspos("S05I",2*index-1,VolNam5, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S05I",2*index ,VolNam5, xx, yy,-zInsu , 0, "ONLY"); gMC->Gspos("S06I",2*index-1,VolNam6, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S06I",2*index ,VolNam6, xx, yy,-zInsu , 0, "ONLY"); Float_t zPanel1 = (InsuWidth+PanelWidth)/2. + zInsu; gMC->Gspos("S05C",4*index-3,VolNam5, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S05C",4*index-2,VolNam5, xx, yy,-zPanel1 , 0, "ONLY"); gMC->Gspos("S06C",4*index-3,VolNam6, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S06C",4*index-2,VolNam6, xx, yy,-zPanel1 , 0, "ONLY"); Float_t zRoha = (RohaWidth+PanelWidth)/2. + zPanel1; gMC->Gspos("S05R",2*index-1,VolNam5, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S05R",2*index ,VolNam5, xx, yy,-zRoha , 0, "ONLY"); gMC->Gspos("S06R",2*index-1,VolNam6, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S06R",2*index ,VolNam6, xx, yy,-zRoha , 0, "ONLY"); Float_t zPanel2 = (RohaWidth+PanelWidth)/2. + zRoha; gMC->Gspos("S05C",4*index-1,VolNam5, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S05C",4*index ,VolNam5, xx, yy,-zPanel2 , 0, "ONLY"); gMC->Gspos("S06C",4*index-1,VolNam6, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S06C",4*index ,VolNam6, xx, yy,-zPanel2 , 0, "ONLY"); Float_t yframe = (SensHeight + HFrameHeight)/2.; gMC->Gspos("S05H",2*index-1,VolNam5, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S05H",2*index ,VolNam5, xx,-yframe, 0. , 0, "ONLY"); gMC->Gspos("S06H",2*index-1,VolNam6, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S06H",2*index ,VolNam6, xx,-yframe, 0. , 0, "ONLY"); Float_t yborder = (BFrameHeight + HFrameHeight)/2. + yframe; gMC->Gspos("S05B",2*index-1,VolNam5, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S05B",2*index ,VolNam5, xx,-yborder, 0. , 0, "ONLY"); gMC->Gspos("S06B",2*index-1,VolNam6, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S06B",2*index ,VolNam6, xx,-yborder, 0. , 0, "ONLY"); } } // create the NULOC volume and position it in the horizontal frame Float_t nulocpar[3]={NulocLength/2., NulocHeight/2., NulocWidth/2.}; gMC->Gsvolu("S05N","BOX",NulocMaterial,nulocpar,3); gMC->Gsvolu("S06N","BOX",NulocMaterial,nulocpar,3); Float_t xxmax = (BFrameLength - NulocLength)/2.; index = 0; for (Float_t xx = -xxmax; xx<=xxmax; xx+=3*NulocLength) { index++; gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S05N",2*index ,"S05B", xx, 0., BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S06N",2*index ,"S06B", xx, 0., BFrameWidth/4., 0, "ONLY"); } // create the gassiplex volume Float_t gassipar[3]={GassiLength/2., GassiHeight/2., GassiWidth/2.}; gMC->Gsvolu("S05E","BOX",GassiMaterial,gassipar,3); gMC->Gsvolu("S06E","BOX",GassiMaterial,gassipar,3); // position 4 gassiplex in the nuloc gMC->Gspos("S05E",1,"S05N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S05E",2,"S05N", 0., - NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S05E",3,"S05N", 0., NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S05E",4,"S05N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",1,"S06N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",2,"S06N", 0., - NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",3,"S06N", 0., NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",4,"S06N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY"); //******************************************************************** // Station 4 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; iChamber2 =(AliMUONChamber*) (*fChambers)[7]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = 3.252; gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); const Int_t nSlats4 = 7; // number of slats per quadrant const Int_t nPCB4[nSlats4] = {7,7,6,6,5,4,2}; // n PCB per slat // slat dimensions: slat is a MOTHER volume!!! made of air Float_t SlatLength4[nSlats4]; // create and position the slat (mother) volumes char VolNam7[5]; char VolNam8[5]; Float_t xSlat4; Float_t ySlat41, ySlat42; for (Int_t i = 0; iGsvolu(VolNam7,"BOX",SlatMaterial,spar,3); gMC->Gspos(VolNam7, i*4+1,"C07M", xSlat4, ySlat41, -zSlat, 0, "ONLY"); gMC->Gspos(VolNam7, i*4+2,"C07M",-xSlat4, ySlat41, -zSlat, 0, "ONLY"); gMC->Gspos(VolNam7, i*4+3,"C07M", xSlat4, ySlat42, zSlat, 0, "ONLY"); gMC->Gspos(VolNam7, i*4+4,"C07M",-xSlat4, ySlat42, zSlat, 0, "ONLY"); sprintf(VolNam8,"S08%d",i); gMC->Gsvolu(VolNam8,"BOX",SlatMaterial,spar,3); gMC->Gspos(VolNam8, i*4+1,"C08M", xSlat4, ySlat41, -zSlat, 0, "ONLY"); gMC->Gspos(VolNam8, i*4+2,"C08M",-xSlat4, ySlat41, -zSlat, 0, "ONLY"); gMC->Gspos(VolNam8, i*4+3,"C08M", xSlat4, ySlat42, zSlat, 0, "ONLY"); gMC->Gspos(VolNam8, i*4+4,"C08M",-xSlat4, ySlat42, zSlat, 0, "ONLY"); } // create the sensitive volumes (subdivided as the PCBs), gMC->Gsvolu("S07G","BOX",SensMaterial,SensPar,3); gMC->Gsvolu("S08G","BOX",SensMaterial,SensPar,3); // create the PCB volume gMC->Gsvolu("S07P","BOX",PCBMaterial,PCBpar,3); gMC->Gsvolu("S08P","BOX",PCBMaterial,PCBpar,3); // create the insulating material volume gMC->Gsvolu("S07I","BOX",InsuMaterial,Insupar,3); gMC->Gsvolu("S08I","BOX",InsuMaterial,Insupar,3); // create the panel volume gMC->Gsvolu("S07C","BOX",PanelMaterial,Panelpar,3); gMC->Gsvolu("S08C","BOX",PanelMaterial,Panelpar,3); // create the rohacell volume gMC->Gsvolu("S07R","BOX",RohaMaterial,Rohapar,3); gMC->Gsvolu("S08R","BOX",RohaMaterial,Rohapar,3); // create the vertical frame volume gMC->Gsvolu("S07V","BOX",VFrameMaterial,VFramepar,3); gMC->Gsvolu("S08V","BOX",VFrameMaterial,VFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S07H","BOX",HFrameMaterial,HFramepar,3); gMC->Gsvolu("S08H","BOX",HFrameMaterial,HFramepar,3); // create the horizontal border volume gMC->Gsvolu("S07B","BOX",BFrameMaterial,BFramepar,3); gMC->Gsvolu("S08B","BOX",BFrameMaterial,BFramepar,3); for (Int_t i = 0; iGspos("S07V",2*i-1,VolNam7, xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S07V",2*i ,VolNam7,-xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S08V",2*i-1,VolNam8, xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S08V",2*i ,VolNam8,-xvframe, 0., 0. , 0, "ONLY"); for (Int_t j=0; jGspos("S07G",index,VolNam7, xx, yy, zSens , 0, "ONLY"); gMC->Gspos("S08G",index,VolNam8, xx, yy, zSens , 0, "ONLY"); Float_t zPCB = (SensWidth+PCBWidth)/2.; gMC->Gspos("S07P",2*index-1,VolNam7, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S07P",2*index ,VolNam7, xx, yy,-zPCB , 0, "ONLY"); gMC->Gspos("S08P",2*index-1,VolNam8, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S08P",2*index ,VolNam8, xx, yy,-zPCB , 0, "ONLY"); Float_t zInsu = (InsuWidth+PCBWidth)/2. + zPCB; gMC->Gspos("S07I",2*index-1,VolNam7, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S07I",2*index ,VolNam7, xx, yy,-zInsu , 0, "ONLY"); gMC->Gspos("S08I",2*index-1,VolNam8, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S08I",2*index ,VolNam8, xx, yy,-zInsu , 0, "ONLY"); Float_t zPanel1 = (InsuWidth+PanelWidth)/2. + zInsu; gMC->Gspos("S07C",4*index-3,VolNam7, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S07C",4*index-2,VolNam7, xx, yy,-zPanel1 , 0, "ONLY"); gMC->Gspos("S08C",4*index-3,VolNam8, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S08C",4*index-2,VolNam8, xx, yy,-zPanel1 , 0, "ONLY"); Float_t zRoha = (RohaWidth+PanelWidth)/2. + zPanel1; gMC->Gspos("S07R",2*index-1,VolNam7, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S07R",2*index ,VolNam7, xx, yy,-zRoha , 0, "ONLY"); gMC->Gspos("S08R",2*index-1,VolNam8, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S08R",2*index ,VolNam8, xx, yy,-zRoha , 0, "ONLY"); Float_t zPanel2 = (RohaWidth+PanelWidth)/2. + zRoha; gMC->Gspos("S07C",4*index-1,VolNam7, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S07C",4*index ,VolNam7, xx, yy,-zPanel2 , 0, "ONLY"); gMC->Gspos("S08C",4*index-1,VolNam8, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S08C",4*index ,VolNam8, xx, yy,-zPanel2 , 0, "ONLY"); Float_t yframe = (SensHeight + HFrameHeight)/2.; gMC->Gspos("S07H",2*index-1,VolNam7, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S07H",2*index ,VolNam7, xx,-yframe, 0. , 0, "ONLY"); gMC->Gspos("S08H",2*index-1,VolNam8, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S08H",2*index ,VolNam8, xx,-yframe, 0. , 0, "ONLY"); Float_t yborder = (BFrameHeight + HFrameHeight)/2. + yframe; gMC->Gspos("S07B",2*index-1,VolNam7, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S07B",2*index ,VolNam7, xx,-yborder, 0. , 0, "ONLY"); gMC->Gspos("S08B",2*index-1,VolNam8, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S08B",2*index ,VolNam8, xx,-yborder, 0. , 0, "ONLY"); } } // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S07N","BOX",NulocMaterial,nulocpar,3); gMC->Gsvolu("S08N","BOX",NulocMaterial,nulocpar,3); index = 0; for (Float_t xx = -xxmax; xx<=xxmax; xx+=3*NulocLength) { index++; gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S07N",2*index ,"S07B", xx, 0., BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S08N",2*index ,"S08B", xx, 0., BFrameWidth/4., 0, "ONLY"); } // create the gassiplex volume gMC->Gsvolu("S07E","BOX",GassiMaterial,gassipar,3); gMC->Gsvolu("S08E","BOX",GassiMaterial,gassipar,3); // position 4 gassiplex in the nuloc gMC->Gspos("S07E",1,"S07N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S07E",2,"S07N", 0., - NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S07E",3,"S07N", 0., NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S07E",4,"S07N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",1,"S08N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",2,"S08N", 0., - NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",3,"S08N", 0., NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",4,"S08N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY"); //******************************************************************** // Station 5 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; iChamber2 =(AliMUONChamber*) (*fChambers)[9]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); const Int_t nSlats5 = 7; // number of slats per quadrant const Int_t nPCB5[nSlats5] = {6,6,6,5,5,4,3}; // n PCB per slat // slat dimensions: slat is a MOTHER volume!!! made of air Float_t SlatLength5[nSlats5]; //const Float_t SlatHeight = PCBHeight; // const Float_t SlatWidth = SensWidth + 2.*(PCBWidth + InsuWidth + // 2.* PanelWidth + RohaWidth); // const Int_t SlatMaterial = idAir; // const Float_t dSlatLength = VFrameLength; // border on left and right // create and position the slat (mother) volumes // Float_t spar[3]; char VolNam9[5]; char VolNam10[5]; Float_t xSlat5[nSlats5]; Float_t ySlat5[nSlats5]; for (Int_t i = 0; iGsvolu(VolNam9,"BOX",SlatMaterial,spar,3); gMC->Gspos(VolNam9, i*4+1,"C09M", xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam9, i*4+2,"C09M",-xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam9, i*4+3,"C09M", xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); gMC->Gspos(VolNam9, i*4+4,"C09M",-xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); sprintf(VolNam10,"S10%d",i); gMC->Gsvolu(VolNam10,"BOX",SlatMaterial,spar,3); gMC->Gspos(VolNam10, i*4+1,"C10M", xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam10, i*4+2,"C10M",-xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); gMC->Gspos(VolNam10, i*4+3,"C10M", xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); gMC->Gspos(VolNam10, i*4+4,"C10M",-xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); } // create the sensitive volumes (subdivided as the PCBs), gMC->Gsvolu("S09G","BOX",SensMaterial,SensPar,3); gMC->Gsvolu("S10G","BOX",SensMaterial,SensPar,3); // create the PCB volume gMC->Gsvolu("S09P","BOX",PCBMaterial,PCBpar,3); gMC->Gsvolu("S10P","BOX",PCBMaterial,PCBpar,3); // create the insulating material volume gMC->Gsvolu("S09I","BOX",InsuMaterial,Insupar,3); gMC->Gsvolu("S10I","BOX",InsuMaterial,Insupar,3); // create the panel volume gMC->Gsvolu("S09C","BOX",PanelMaterial,Panelpar,3); gMC->Gsvolu("S10C","BOX",PanelMaterial,Panelpar,3); // create the rohacell volume gMC->Gsvolu("S09R","BOX",RohaMaterial,Rohapar,3); gMC->Gsvolu("S10R","BOX",RohaMaterial,Rohapar,3); // create the vertical frame volume gMC->Gsvolu("S09V","BOX",VFrameMaterial,VFramepar,3); gMC->Gsvolu("S10V","BOX",VFrameMaterial,VFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S09H","BOX",HFrameMaterial,HFramepar,3); gMC->Gsvolu("S10H","BOX",HFrameMaterial,HFramepar,3); // create the horizontal border volume gMC->Gsvolu("S09B","BOX",BFrameMaterial,BFramepar,3); gMC->Gsvolu("S10B","BOX",BFrameMaterial,BFramepar,3); for (Int_t i = 0; iGspos("S09V",2*i-1,VolNam9, xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S09V",2*i ,VolNam9,-xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S10V",2*i-1,VolNam10, xvframe, 0., 0. , 0, "ONLY"); gMC->Gspos("S10V",2*i ,VolNam10,-xvframe, 0., 0. , 0, "ONLY"); for (Int_t j=0; jGspos("S09G",index,VolNam9, xx, yy, zSens , 0, "ONLY"); gMC->Gspos("S10G",index,VolNam10, xx, yy, zSens , 0, "ONLY"); Float_t zPCB = (SensWidth+PCBWidth)/2.; gMC->Gspos("S09P",2*index-1,VolNam9, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S09P",2*index ,VolNam9, xx, yy,-zPCB , 0, "ONLY"); gMC->Gspos("S10P",2*index-1,VolNam10, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S10P",2*index ,VolNam10, xx, yy,-zPCB , 0, "ONLY"); Float_t zInsu = (InsuWidth+PCBWidth)/2. + zPCB; gMC->Gspos("S09I",2*index-1,VolNam9, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S09I",2*index ,VolNam9, xx, yy,-zInsu , 0, "ONLY"); gMC->Gspos("S10I",2*index-1,VolNam10, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S10I",2*index ,VolNam10, xx, yy,-zInsu , 0, "ONLY"); Float_t zPanel1 = (InsuWidth+PanelWidth)/2. + zInsu; gMC->Gspos("S09C",4*index-3,VolNam9, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S09C",4*index-2,VolNam9, xx, yy,-zPanel1 , 0, "ONLY"); gMC->Gspos("S10C",4*index-3,VolNam10, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S10C",4*index-2,VolNam10, xx, yy,-zPanel1 , 0, "ONLY"); Float_t zRoha = (RohaWidth+PanelWidth)/2. + zPanel1; gMC->Gspos("S09R",2*index-1,VolNam9, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S09R",2*index ,VolNam9, xx, yy,-zRoha , 0, "ONLY"); gMC->Gspos("S10R",2*index-1,VolNam10, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S10R",2*index ,VolNam10, xx, yy,-zRoha , 0, "ONLY"); Float_t zPanel2 = (RohaWidth+PanelWidth)/2. + zRoha; gMC->Gspos("S09C",4*index-1,VolNam9, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S09C",4*index ,VolNam9, xx, yy,-zPanel2 , 0, "ONLY"); gMC->Gspos("S10C",4*index-1,VolNam10, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S10C",4*index ,VolNam10, xx, yy,-zPanel2 , 0, "ONLY"); Float_t yframe = (SensHeight + HFrameHeight)/2.; gMC->Gspos("S09H",2*index-1,VolNam9, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S09H",2*index ,VolNam9, xx,-yframe, 0. , 0, "ONLY"); gMC->Gspos("S10H",2*index-1,VolNam10, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S10H",2*index ,VolNam10, xx,-yframe, 0. , 0, "ONLY"); Float_t yborder = (BFrameHeight + HFrameHeight)/2. + yframe; gMC->Gspos("S09B",2*index-1,VolNam9, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S09B",2*index ,VolNam9, xx,-yborder, 0. , 0, "ONLY"); gMC->Gspos("S10B",2*index-1,VolNam10, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S10B",2*index ,VolNam10, xx,-yborder, 0. , 0, "ONLY"); } } // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S09N","BOX",NulocMaterial,nulocpar,3); gMC->Gsvolu("S10N","BOX",NulocMaterial,nulocpar,3); index = 0; for (Float_t xx = -xxmax; xx<=xxmax; xx+=3*NulocLength) { index++; gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S09N",2*index ,"S09B", xx, 0., BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-BFrameWidth/4., 0, "ONLY"); gMC->Gspos("S10N",2*index ,"S10B", xx, 0., BFrameWidth/4., 0, "ONLY"); } // create the gassiplex volume gMC->Gsvolu("S09E","BOX",GassiMaterial,gassipar,3); gMC->Gsvolu("S10E","BOX",GassiMaterial,gassipar,3); // position 4 gassiplex in the nuloc gMC->Gspos("S09E",1,"S09N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S09E",2,"S09N", 0., - NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S09E",3,"S09N", 0., NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S09E",4,"S09N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",1,"S10N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",2,"S10N", 0., - NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",3,"S10N", 0., NulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",4,"S10N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY"); /////////////////////////////////////// // GEOMETRY FOR THE TRIGGER CHAMBERS // /////////////////////////////////////// // 03/00 P. Dupieux : introduce a slighly more realistic // geom. of the trigger readout planes with // 2 Zpos per trigger plane (alternate // between left and right of the trigger) // Parameters of the Trigger Chambers const Float_t kXMC1MIN=34.; const Float_t kXMC1MED=51.; const Float_t kXMC1MAX=272.; const Float_t kYMC1MIN=34.; const Float_t kYMC1MAX=51.; const Float_t kRMIN1=50.; const Float_t kRMAX1=62.; const Float_t kRMIN2=50.; const Float_t kRMAX2=66.; // zposition of the middle of the gas gap in mother vol const Float_t kZMCm=-3.6; const Float_t kZMCp=+3.6; // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 // iChamber 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; iChamber2 =(AliMUONChamber*) (*fChambers)[11]; // 03/00 // zpos1 and zpos2 are now the middle of the first and second // plane of station 1 : // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm // // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) // rem : the total thickness accounts for 1 mm of al on both // side of the RPCs (see zpos1 and zpos2), as previously zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); // Mother volume definition tpar[0] = iChamber->RInner(); tpar[1] = iChamber->ROuter(); tpar[2] = 4.0; gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); // Definition of the flange between the beam shielding and the RPC tpar[0]= kRMIN1; tpar[1]= kRMAX1; tpar[2]= 4.0; gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); // FIRST PLANE OF STATION 1 // ratios of zpos1m/zpos1p and inverse for first plane Float_t zmp=(zpos1-3.6)/(zpos1+3.6); Float_t zpm=1./zmp; // Definition of prototype for chambers in the first plane tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; const Float_t kYMC1Am=0.; const Float_t kYMC1Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = (kXMC1MAX-kXMC1MED)/2.; tpar[1] = kYMC1MIN; gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B Float_t tpar1save=tpar[1]; Float_t y1msave=kYMC1Am; Float_t y1psave=kYMC1Ap; tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; const Float_t kXMC1B=kXMC1MIN+tpar[0]; const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar1save=tpar[1]; y1msave=kYMC1Bm; y1psave=kYMC1Bp; tpar[0] = kXMC1MAX/2; tpar[1] = kYMC1MAX/2; const Float_t kXMC1C=tpar[0]; // warning : same Z than type B const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar1save=tpar[1]; y1msave=kYMC1Cm; y1psave=kYMC1Cp; tpar[0] = kXMC1MAX/2.; tpar[1] = kYMC1MIN; const Float_t kXMC1D=tpar[0]; const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); tpar1save=tpar[1]; y1msave=kYMC1Dm; y1psave=kYMC1Dp; const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); tpar1save=tpar[1]; y1msave=kYMC1Em; y1psave=kYMC1Ep; const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning first plane in ALICE gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); // End of geometry definition for the first plane of station 1 // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 const Float_t kZ12=zpos2/zpos1; // Definition of prototype for chambers in the second plane of station 1 tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC2A=kXMC1A*kZ12; const Float_t kYMC2Am=0.; const Float_t kYMC2Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; tpar[1] = kYMC1MIN*kZ12; gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; const Float_t kXMC2B=kXMC1B*kZ12; const Float_t kYMC2Bp=kYMC1Bp*kZ12; const Float_t kYMC2Bm=kYMC1Bm*kZ12; gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar[0] = (kXMC1MAX/2)*kZ12; tpar[1] = (kYMC1MAX/2)*kZ12; const Float_t kXMC2C=kXMC1C*kZ12; const Float_t kYMC2Cp=kYMC1Cp*kZ12; const Float_t kYMC2Cm=kYMC1Cm*kZ12; gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar[0] = (kXMC1MAX/2.)*kZ12; tpar[1] = kYMC1MIN*kZ12; const Float_t kXMC2D=kXMC1D*kZ12; const Float_t kYMC2Dp=kYMC1Dp*kZ12; const Float_t kYMC2Dm=kYMC1Dm*kZ12; gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); const Float_t kYMC2Ep=kYMC1Ep*kZ12; const Float_t kYMC2Em=kYMC1Em*kZ12; gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); const Float_t kYMC2Fp=kYMC1Fp*kZ12; const Float_t kYMC2Fm=kYMC1Fm*kZ12; gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning second plane of station 1 in ALICE gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); // End of geometry definition for the second plane of station 1 // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 // 03/00 // zpos3 and zpos4 are now the middle of the first and second // plane of station 2 : // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm // // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) // rem : the total thickness accounts for 1 mm of al on both // side of the RPCs (see zpos3 and zpos4), as previously iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; iChamber2 =(AliMUONChamber*) (*fChambers)[13]; Float_t zpos3=iChamber1->Z(); Float_t zpos4=iChamber2->Z(); // Mother volume definition tpar[0] = iChamber->RInner(); tpar[1] = iChamber->ROuter(); tpar[2] = 4.0; gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); // Definition of the flange between the beam shielding and the RPC // ???? interface shielding tpar[0]= kRMIN2; tpar[1]= kRMAX2; tpar[2]= 4.0; gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 const Float_t kZ13=zpos3/zpos1; // Definition of prototype for chambers in the first plane of station 2 tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC3A=kXMC1A*kZ13; const Float_t kYMC3Am=0.; const Float_t kYMC3Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; tpar[1] = kYMC1MIN*kZ13; gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; const Float_t kXMC3B=kXMC1B*kZ13; const Float_t kYMC3Bp=kYMC1Bp*kZ13; const Float_t kYMC3Bm=kYMC1Bm*kZ13; gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar[0] = (kXMC1MAX/2)*kZ13; tpar[1] = (kYMC1MAX/2)*kZ13; const Float_t kXMC3C=kXMC1C*kZ13; const Float_t kYMC3Cp=kYMC1Cp*kZ13; const Float_t kYMC3Cm=kYMC1Cm*kZ13; gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar[0] = (kXMC1MAX/2.)*kZ13; tpar[1] = kYMC1MIN*kZ13; const Float_t kXMC3D=kXMC1D*kZ13; const Float_t kYMC3Dp=kYMC1Dp*kZ13; const Float_t kYMC3Dm=kYMC1Dm*kZ13; gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); const Float_t kYMC3Ep=kYMC1Ep*kZ13; const Float_t kYMC3Em=kYMC1Em*kZ13; gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); const Float_t kYMC3Fp=kYMC1Fp*kZ13; const Float_t kYMC3Fm=kYMC1Fm*kZ13; gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning first plane of station 2 in ALICE gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); // End of geometry definition for the first plane of station 2 // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 const Float_t kZ14=zpos4/zpos1; // Definition of prototype for chambers in the second plane of station 2 tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC4A=kXMC1A*kZ14; const Float_t kYMC4Am=0.; const Float_t kYMC4Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; tpar[1] = kYMC1MIN*kZ14; gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; const Float_t kXMC4B=kXMC1B*kZ14; const Float_t kYMC4Bp=kYMC1Bp*kZ14; const Float_t kYMC4Bm=kYMC1Bm*kZ14; gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar[0] =(kXMC1MAX/2)*kZ14; tpar[1] = (kYMC1MAX/2)*kZ14; const Float_t kXMC4C=kXMC1C*kZ14; const Float_t kYMC4Cp=kYMC1Cp*kZ14; const Float_t kYMC4Cm=kYMC1Cm*kZ14; gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar[0] = (kXMC1MAX/2.)*kZ14; tpar[1] = kYMC1MIN*kZ14; const Float_t kXMC4D=kXMC1D*kZ14; const Float_t kYMC4Dp=kYMC1Dp*kZ14; const Float_t kYMC4Dm=kYMC1Dm*kZ14; gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); const Float_t kYMC4Ep=kYMC1Ep*kZ14; const Float_t kYMC4Em=kYMC1Em*kZ14; gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); const Float_t kYMC4Fp=kYMC1Fp*kZ14; const Float_t kYMC4Fm=kYMC1Fm*kZ14; gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning second plane of station 2 in ALICE gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); // End of geometry definition for the second plane of station 2 // End of trigger geometry definition } //___________________________________________ void AliMUONv1::CreateMaterials() { // *** DEFINITION OF AVAILABLE MUON MATERIALS *** // // Ar-CO2 gas Float_t ag1[3] = { 39.95,12.01,16. }; Float_t zg1[3] = { 18.,6.,8. }; Float_t wg1[3] = { .8,.0667,.13333 }; Float_t dg1 = .001821; // // Ar-buthane-freon gas -- trigger chambers Float_t atr1[4] = { 39.95,12.01,1.01,19. }; Float_t ztr1[4] = { 18.,6.,1.,9. }; Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; Float_t dtr1 = .002599; // // Ar-CO2 gas Float_t agas[3] = { 39.95,12.01,16. }; Float_t zgas[3] = { 18.,6.,8. }; Float_t wgas[3] = { .74,.086684,.173316 }; Float_t dgas = .0018327; // // Ar-Isobutane gas (80%+20%) -- tracking Float_t ag[3] = { 39.95,12.01,1.01 }; Float_t zg[3] = { 18.,6.,1. }; Float_t wg[3] = { .8,.057,.143 }; Float_t dg = .0019596; // // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; Float_t dtrig = .0031463; // // bakelite Float_t abak[3] = {12.01 , 1.01 , 16.}; Float_t zbak[3] = {6. , 1. , 8.}; Float_t wbak[3] = {6. , 6. , 1.}; Float_t dbak = 1.4; Float_t epsil, stmin, deemax, tmaxfd, stemax; Int_t iSXFLD = gAlice->Field()->Integ(); Float_t sXMGMX = gAlice->Field()->Max(); // // --- Define the various materials for GEANT --- AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); // materials for slat: // Sensitive area: gas (already defined) // PCB: copper // insulating material and frame: vetronite // walls: carbon, rohacell, carbon Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; Float_t zglass[5]={ 6., 14., 8., 5., 11.}; Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; Float_t dglass=1.74; // rohacell: C9 H13 N1 O2 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; Float_t zrohac[4] = { 6., 1., 7., 8.}; Float_t wrohac[4] = { 9., 13., 1., 2.}; Float_t drohac = 0.03; AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); epsil = .001; // Tracking precision, stemax = -1.; // Maximum displacement for multiple scat tmaxfd = -20.; // Maximum angle due to field deflection deemax = -.3; // Maximum fractional energy loss, DLS stmin = -.8; // // Air AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); // // Aluminum AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); // // Ar-isoC4H10 gas AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, fMaxDestepGas, epsil, stmin); // // Ar-Isobuthane-Forane-SF6 gas AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, fMaxDestepAlu, epsil, stmin); // tracking media for slats: check the parameters!! AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); } //___________________________________________ void AliMUONv1::Init() { // // Initialize Tracking Chambers // printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); Int_t i; for (i=0; iInit(); } // // Set the chamber (sensitive region) GEANT identifier AliMC* gMC = AliMC::GetMC(); ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); //cp printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); for (i=0; iInit(i); } printf(" Finished Init for Trigger Circuits\n\n\n"); //cp } //___________________________________________ void AliMUONv1::StepManager() { Int_t copy, id; static Int_t idvol; static Int_t vol[2]; Int_t ipart; TLorentzVector pos; TLorentzVector mom; Float_t theta,phi; Float_t destep, step; static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; const Float_t kBig=1.e10; // modifs perso static Float_t hits[15]; TClonesArray &lhits = *fHits; // // Set maximum step size for gas // numed=gMC->GetMedium(); // // Only charged tracks if( !(gMC->TrackCharge()) ) return; // // Only gas gap inside chamber // Tag chambers and record hits when track enters idvol=-1; id=gMC->CurrentVolID(copy); for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ vol[0]=i; idvol=i-1; } } if (idvol == -1) return; // // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->TrackPosition(pos); gMC->TrackMomentum(mom); ipart = gMC->TrackPid(); //Int_t ipart1 = gMC->IdFromPDG(ipart); //printf("ich, ipart %d %d \n",vol[0],ipart1); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); // // record hits when track enters ... if( gMC->IsTrackEntering()) { gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); Double_t tx=mom[0]/pmom; Double_t ty=mom[1]/pmom; Double_t tz=mom[2]/pmom; Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) ->ResponseModel() ->Pitch()/tz; theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; hits[0] = Float_t(ipart); // Geant3 particle type hits[1] = pos[0]+s*tx; // X-position for hit hits[2] = pos[1]+s*ty; // Y-position for hit hits[3] = pos[2]+s*tz; // Z-position for hit hits[4] = theta; // theta angle of incidence hits[5] = phi; // phi angle of incidence hits[8] = (Float_t) fNPadHits; // first padhit hits[9] = -1; // last pad hit // modifs perso hits[10] = mom[3]; // hit momentum P hits[11] = mom[0]; // Px/P hits[12] = mom[1]; // Py/P hits[13] = mom[2]; // Pz/P // fin modifs perso tof=gMC->TrackTime(); hits[14] = tof; // Time of flight // phi angle of incidence tlength = 0; eloss = 0; eloss2 = 0; xhit = pos[0]; yhit = pos[1]; zhit = pos[2]; // Only if not trigger chamber if(idvol<10) { // // Initialize hit position (cursor) in the segmentation model ((AliMUONChamber*) (*fChambers)[idvol]) ->SigGenInit(pos[0], pos[1], pos[2]); } else { //geant3->Gpcxyz(); //printf("In the Trigger Chamber #%d\n",idvol-9); } } eloss2+=destep; // // Calculate the charge induced on a pad (disintegration) in case // // Mip left chamber ... if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ gMC->SetMaxStep(kBig); eloss += destep; tlength += step; Float_t x0,y0,z0; Float_t localPos[3]; Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; gMC->Gmtod(globalPos,localPos,1); if(idvol<10) { // tracking chambers x0 = 0.5*(xhit+pos[0]); y0 = 0.5*(yhit+pos[1]); z0 = 0.5*(zhit+pos[2]); // z0 = localPos[2]; } else { // trigger chambers x0=xhit; y0=yhit; // z0=yhit; z0=0.; } if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); hits[6]=tlength; hits[7]=eloss2; if (fNPadHits > (Int_t)hits[8]) { hits[8]= hits[8]+1; hits[9]= (Float_t) fNPadHits; } new(lhits[fNhits++]) AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); eloss = 0; // // Check additional signal generation conditions // defined by the segmentation // model (boundary crossing conditions) } else if (((AliMUONChamber*) (*fChambers)[idvol]) ->SigGenCond(pos[0], pos[1], pos[2])) { ((AliMUONChamber*) (*fChambers)[idvol]) ->SigGenInit(pos[0], pos[1], pos[2]); Float_t localPos[3]; Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; gMC->Gmtod(globalPos,localPos,1); if (eloss > 0 && idvol < 10) MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); xhit = pos[0]; yhit = pos[1]; zhit = pos[2]; eloss = destep; tlength += step ; // // nothing special happened, add up energy loss } else { eloss += destep; tlength += step ; } }