/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Implementation version v1 of the PHOS particle identifier // Particle identification based on the // - RCPV: distance from CPV recpoint to EMCA recpoint. // - TOF // - PCA: Principal Components Analysis.. // The identified particle has an identification number corresponding // to a 9 bits number: // -Bit 0 to 2: bit set if RCPV > fCpvEmcDistance (each bit corresponds // to a different efficiency-purity point of the photon identification) // -Bit 3 to 5: bit set if TOF < fTimeGate (each bit corresponds // to a different efficiency-purity point of the photon identification) // -Bit 6 to 9: bit set if Principal Components are // inside an ellipse defined by fX_center, fY_center, fA, fB, fAngle // (each bit corresponds to a different efficiency-purity point of the // photon identification) // // // use case: // root [0] AliPHOSPIDv1 * p1 = new AliPHOSPIDv1("galice.root") // Warning in : object already instantiated // root [1] p1->SetIdentificationMethod("disp ellipse") // root [2] p1->ExecuteTask() // root [3] AliPHOSPIDv1 * p2 = new AliPHOSPIDv1("galice1.root","v1") // Warning in : object already instantiated // // reading headers from file galice1.root and create RecParticles with title v1 // TrackSegments and RecPoints with title "v1" are used // // set file name for the branch RecParticles // root [4] p2->ExecuteTask("deb all time") // // available options // // "deb" - prints # of reconstructed particles // // "deb all" - prints # and list of RecParticles // // "time" - prints benchmarking results // // root [5] AliPHOSPIDv1 * p3 = new AliPHOSPIDv1("galice1.root","v1","v0") // Warning in : object already instantiated // // reading headers from file galice1.root and create RecParticles with title v1 // RecPoints and TrackSegments with title "v0" are used // root [6] p3->ExecuteTask() //*-- Author: Yves Schutz (SUBATECH) & Gines Martinez (SUBATECH) & // Gustavo Conesa April 2002 // --- ROOT system --- #include "TROOT.h" #include "TTree.h" #include "TFile.h" #include "TF2.h" #include "TFormula.h" #include "TCanvas.h" #include "TFolder.h" #include "TSystem.h" #include "TBenchmark.h" #include "TMatrixD.h" #include "TPrincipal.h" #include "TSystem.h" // --- Standard library --- #include #include #include // --- AliRoot header files --- #include "AliRun.h" #include "AliGenerator.h" #include "AliPHOS.h" #include "AliPHOSPIDv1.h" #include "AliPHOSClusterizerv1.h" #include "AliPHOSTrackSegment.h" #include "AliPHOSTrackSegmentMakerv1.h" #include "AliPHOSRecParticle.h" #include "AliPHOSGeometry.h" #include "AliPHOSGetter.h" ClassImp( AliPHOSPIDv1) //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1():AliPHOSPID() { // default ctor fFileName = "" ; fFileNamePar = "" ; fFrom = "" ; fHeaderFileName = "" ; fOptFileName = "Default" ; fTrackSegmentsTitle = "" ; fRecPointsTitle = "" ; fRecParticlesTitle = "" ; fNEvent = 0 ; fClusterizer = 0 ; fTSMaker = 0 ; fRecParticlesInRun = 0 ; fX = 0 ; fP = 0 ; fParameters = 0 ; } //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1(const char * headerFile,const char * name, const char * from) : AliPHOSPID(headerFile, name) { //ctor with the indication on where to look for the track segments fHeaderFileName = GetTitle() ; fTrackSegmentsTitle = GetName() ; fRecPointsTitle = GetName() ; fRecParticlesTitle = GetName() ; TString tempo(GetName()) ; tempo.Append(":") ; tempo.Append(Version()) ; SetName(tempo) ; fRecParticlesInRun = 0 ; if ( from == 0 ) fFrom = name ; else fFrom = from ; fOptFileName = "Default" ; Init() ; } //____________________________________________________________________________ AliPHOSPIDv1::~AliPHOSPIDv1() { delete [] fX ; // Principal input delete [] fP ; // Principal components delete fParameters ; // Matrix of Parameters } //____________________________________________________________________________ const TString AliPHOSPIDv1::BranchName() const { TString branchName(GetName() ) ; branchName.Remove(branchName.Index(Version())-1) ; return branchName ; } //____________________________________________________________________________ void AliPHOSPIDv1::Init() { // Make all memory allocations that are not possible in default constructor // Add the PID task to the list of PHOS tasks if ( strcmp(GetTitle(), "") == 0 ) SetTitle("galice.root") ; SetParameters() ; // fill the parameters matrix from parameters file AliPHOSGetter * gime = AliPHOSGetter::GetInstance(GetTitle(), fFrom.Data()) ; gime->SetRecParticlesTitle(BranchName()) ; if ( gime == 0 ) { cerr << "ERROR: AliPHOSPIDv1::Init -> Could not obtain the Getter object !" << endl ; return ; } gime->PostPID(this) ; // create a folder on the white board //YSAlice/WhiteBoard/RecParticles/PHOS/recparticlesName gime->PostRecParticles(BranchName()) ; } //____________________________________________________________________________ Double_t AliPHOSPIDv1::GetCpvtoEmcDistanceCut(const Float_t Cluster_En, const TString Eff_Pur)const { // Get CpvtoEmcDistanceCut parameter depending on the cluster energy and // Purity-Efficiency point (possible options "HIGH EFFICIENCY" // "MEDIUM EFFICIENCY" "LOW EFFICIENCY" and 3 more options changing // EFFICIENCY by PURITY) Int_t cluster = -1 ; Int_t eff_pur = -1 ; // Check the cluster energy range if((Cluster_En > 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"<PHOSGeometry() ; TVector3 vecEmc ; TVector3 vecCpv ; if(cpv){ emc->GetLocalPosition(vecEmc) ; cpv->GetLocalPosition(vecCpv) ; if(emc->GetPHOSMod() == cpv->GetPHOSMod()){ // Correct to difference in CPV and EMC position due to different distance to center. // we assume, that particle moves from center Float_t dCPV = geom->GetIPtoOuterCoverDistance(); Float_t dEMC = geom->GetIPtoCrystalSurface() ; dEMC = dEMC / dCPV ; vecCpv = dEMC * vecCpv - vecEmc ; if (Axis == "X") return vecCpv.X(); if (Axis == "Y") return vecCpv.Y(); if (Axis == "Z") return vecCpv.Z(); if (Axis == "R") return vecCpv.Mag(); } return 100000000 ; } return 100000000 ; } //____________________________________________________________________________ Int_t AliPHOSPIDv1::GetPrincipalSign(Double_t* P, Int_t cluster, Int_t eff_pur )const { //This method gives if the PCA of the particle are inside a defined ellipse // Get the parameters that define the ellipse stored in the // fParameters matrix. Double_t X_center = (*fParameters)(cluster+6,eff_pur) ; Double_t Y_center = (*fParameters)(cluster+9,eff_pur) ; Double_t A = (*fParameters)(cluster+12,eff_pur) ; Double_t B = (*fParameters)(cluster+15,eff_pur) ; Double_t Angle = (*fParameters)(cluster+18,eff_pur) ; Int_t prinsign; Double_t Dx = 0. ; Double_t Delta = 0. ; Double_t Y = 0. ; Double_t Y_1 = 0. ; Double_t Y_2 = 0. ; Double_t Pi = TMath::Pi() ; Double_t Cos_Theta = TMath::Cos(Pi*Angle/180.) ; Double_t Sin_Theta = TMath::Sin(Pi*Angle/180.) ; Dx = P[0] - X_center ; Delta = 4.*A*A*A*B* (A*A*Cos_Theta*Cos_Theta + B*B*Sin_Theta*Sin_Theta - Dx*Dx) ; if (Delta < 0.) {prinsign=0;} else if (Delta == 0.) { Y = Cos_Theta*Sin_Theta*(A*A - B*B)*Dx / (A*A*Cos_Theta*Cos_Theta + B*B*Sin_Theta*Sin_Theta) ; Y += Y_center ; if(P[1]==Y ) {prinsign=1;} else {prinsign=0;} } else { Y_1 = (Cos_Theta*Sin_Theta*(A*A - B*B) *Dx + TMath::Sqrt(Delta)/2.)/(A*A*Cos_Theta*Cos_Theta + B*B*Sin_Theta*Sin_Theta) ; Y_2 = (Cos_Theta*Sin_Theta*(A*A - B*B) *Dx - TMath::Sqrt(Delta)/2.)/(A*A*Cos_Theta*Cos_Theta + B*B*Sin_Theta*Sin_Theta) ; Y_1 += Y_center ; Y_2 += Y_center ; if ((P[1]<=Y_1) && (P[1]>=Y_2)) {prinsign=1;} else {prinsign=0;} } return prinsign; } //____________________________________________________________________________ void AliPHOSPIDv1::SetPrincipalFileOptions(TString OptFileName) { if(OptFileName.Contains("Small energy range")||OptFileName.Contains("Default")){ fFileName = "$ALICE_ROOT/PHOS/PCA8pa15_0.5-5.root" ; fFileNamePar = gSystem->ExpandPathName("$ALICE_ROOT/PHOS/Parameters_0.5_5.dat"); } if(OptFileName.Contains("Wide energy range")){ fFileName = "$ALICE_ROOT/PHOS/PCA8pa15_0.5-100.root" ; fFileNamePar = gSystem->ExpandPathName("$ALICE_ROOT/PHOS/Parameters_0.5_100.dat"); } } //____________________________________________________________________________ void AliPHOSPIDv1::SetEllipseParameters(Float_t Cluster_En, TString Eff_Pur, Float_t x, Float_t y,Float_t a, Float_t b,Float_t angle) { // Set all ellipse parameters depending on the cluster energy and // Purity-Efficiency point (possible options "HIGH EFFICIENCY" // "MEDIUM EFFICIENCY" "LOW EFFICIENCY" and 3 more options changing // EFFICIENCY by PURITY) Int_t cluster = -1 ; Int_t eff_pur = -1 ; if((Cluster_En > 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster= 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"< (f.Get("principal")) ; f.Close() ; // Initialization of the Parameters matrix. In the File Parameters.dat // are all the parameters. These are introduced in a matrix of 21x3 elements. // All the parameters defined in this file are, in order of row (there are // 3 rows per parameter): CpvtoEmcDistanceCut, TimeGate (and the ellipse // parameters), X_center, Y_center, a, b, angle. Each row of a given parameter // depends on the cluster energy range (0.3-1,1-2, >2 ) // Each column designes the parameters for a point in the Efficiency-Purity // of the photon identification P1(0.959,0.625), P2(0.919,0.835), P3(0.833,0.901). fParameters = new TMatrixD(21,3) ; ifstream paramFile(fFileNamePar, ios::in) ; Int_t i,j ; for(i = 0; i< 21; i++){ for(j = 0; j< 3; j++){ paramFile >> (*fParameters)(i,j) ; } } paramFile.close(); } //_____________________________________________________________________________ void AliPHOSPIDv1::SetTimeGate(Float_t Cluster_En, TString Eff_Pur, Float_t gate) { // Set the parameter TimeGate depending on the cluster energy and // Purity-Efficiency point (possible options "HIGH EFFICIENCY" // "MEDIUM EFFICIENCY" "LOW EFFICIENCY" and 3 more options changing // EFFICIENCY by PURITY) Int_t cluster = -1 ; Int_t eff_pur = -1 ; if((Cluster_En > 0.3)&&(Cluster_En <= 1.0)) cluster = 0 ; if((Cluster_En > 1.0)&&(Cluster_En <= 2.0)) cluster = 1 ; if( Cluster_En > 2.0) cluster = 2 ; if(Eff_Pur.Contains("HIGH EFFICIENCY") ||Eff_Pur.Contains("LOW PURITY") ) eff_pur = 0 ; if(Eff_Pur.Contains("MEDIUM EFFICIENCY") ||Eff_Pur.Contains("MEDIUM PURITY") ) eff_pur = 1 ; if(Eff_Pur.Contains("LOW EFFICIENCY")||Eff_Pur.Contains("HIGH PURITY") ) eff_pur = 2 ; if(cluster ==-1){ cout<<"Invalid Cluster Energy option"<Start("PHOSPID"); if(strstr(option,"print")) { Print("") ; return ; } //cout << gDirectory->GetName() << endl ; gAlice->GetEvent(0) ; //check, if the branch with name of this" already exits? TObjArray * lob = (TObjArray*)gAlice->TreeR()->GetListOfBranches() ; TIter next(lob) ; TBranch * branch = 0 ; Bool_t phospidfound = kFALSE, pidfound = kFALSE ; TString taskName(GetName()) ; taskName.Remove(taskName.Index(Version())-1) ; while ( (branch = (TBranch*)next()) && (!phospidfound || !pidfound) ) { if ( (strcmp(branch->GetName(), "PHOSPID")==0) && (strcmp(branch->GetTitle(), taskName.Data())==0) ) phospidfound = kTRUE ; else if ( (strcmp(branch->GetName(), "AliPHOSPID")==0) && (strcmp(branch->GetTitle(), taskName.Data())==0) ) pidfound = kTRUE ; } if ( phospidfound || pidfound ) { cerr << "WARNING: AliPHOSPIDv1::Exec -> RecParticles and/or PIDtMaker branch with name " << taskName.Data() << " already exits" << endl ; return ; } Int_t nevents = (Int_t) gAlice->TreeE()->GetEntries() ; Int_t ievent ; AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; for(ievent = 0; ievent < nevents; ievent++){ gime->Event(ievent,"R") ; MakeRecParticles() ; WriteRecParticles(ievent); if(strstr(option,"deb")) PrintRecParticles(option) ; //increment the total number of rec particles per run fRecParticlesInRun += gime->RecParticles(BranchName())->GetEntriesFast() ; } if(strstr(option,"tim")){ gBenchmark->Stop("PHOSPID"); cout << "AliPHOSPID:" << endl ; cout << " took " << gBenchmark->GetCpuTime("PHOSPID") << " seconds for PID " << gBenchmark->GetCpuTime("PHOSPID")/nevents << " seconds per event " << endl ; cout << endl ; } } //____________________________________________________________________________ void AliPHOSPIDv1::MakeRecParticles(){ // Makes a RecParticle out of a TrackSegment AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; TObjArray * emcRecPoints = gime->EmcRecPoints(fFrom) ; TObjArray * cpvRecPoints = gime->CpvRecPoints(fFrom) ; TClonesArray * trackSegments = gime->TrackSegments(fFrom) ; if ( !emcRecPoints || !cpvRecPoints || !trackSegments ) { cerr << "ERROR: AliPHOSPIDv1::MakeRecParticles -> RecPoints or TrackSegments with name " << fFrom << " not found ! " << endl ; abort() ; } TClonesArray * recParticles = gime->RecParticles(BranchName()) ; recParticles->Clear(); TIter next(trackSegments) ; AliPHOSTrackSegment * ts ; Int_t index = 0 ; AliPHOSRecParticle * rp ; while ( (ts = (AliPHOSTrackSegment *)next()) ) { new( (*recParticles)[index] ) AliPHOSRecParticle() ; rp = (AliPHOSRecParticle *)recParticles->At(index) ; rp->SetTraskSegment(index) ; rp->SetIndexInList(index) ; AliPHOSEmcRecPoint * emc = 0 ; if(ts->GetEmcIndex()>=0) emc = (AliPHOSEmcRecPoint *) emcRecPoints->At(ts->GetEmcIndex()) ; AliPHOSRecPoint * cpv = 0 ; if(ts->GetCpvIndex()>=0) cpv = (AliPHOSRecPoint *) cpvRecPoints->At(ts->GetCpvIndex()) ; //set momentum and energy first Float_t e = emc->GetEnergy() ; TVector3 dir = GetMomentumDirection(emc,cpv) ; dir.SetMag(e) ; rp->SetMomentum(dir.X(),dir.Y(),dir.Z(),e) ; rp->SetCalcMass(0); // Now set type (reconstructed) of the particle // Choose the cluster energy range Int_t cluster = 0 ; // Ellipse and rcpv cut in function of the cluster energy if((e > 0.3)&&(e <= 1.0)) cluster = 0 ; if((e > 1.0)&&(e <= 2.0)) cluster = 1 ; if( e > 2.0) cluster = 2 ; // Loop of Efficiency-Purity (the 3 points of purity or efficiency are taken // into account to set the particle identification) for(Int_t eff_pur = 0; eff_pur < 3 ; eff_pur++){ // Looking at the CPV detector. If RCPV greater than CpvEmcDistance, 1st, // 2nd or 3rd bit (depending on the efficiency-purity point )is set to 1 . if(GetDistance(emc, cpv, "R") > (*fParameters)(cluster,eff_pur) ) rp->SetPIDBit(eff_pur) ; // Looking the TOF. If TOF smaller than gate, 4th, 5th or 6th // bit (depending on the efficiency-purity point )is set to 1 if(emc->GetTime()< (*fParameters)(cluster+3,eff_pur)) rp->SetPIDBit(eff_pur+3) ; // Looking PCA. Define and calculate the data (X), introduce in the function // X2P that gives the components (P). Float_t fSpher = 0. ; Float_t fEmaxdtotal = 0. ; Float_t lambda[2] ; emc->GetElipsAxis(lambda) ; if((lambda[0]+lambda[1])!=0) fSpher=fabs(lambda[0]-lambda[1])/(lambda[0]+lambda[1]); fEmaxdtotal=emc->GetMaximalEnergy()/emc->GetEnergy(); fX[0] = lambda[0] ; fX[1] = lambda[1] ; fX[2] = emc->GetDispersion() ; fX[3] = fSpher ; fX[4] = emc->GetMultiplicity() ; fX[5] = fEmaxdtotal ; fX[6] = emc->GetCoreEnergy() ; fPrincipal->X2P(fX,fP); //If we are inside the ellipse, 7th, 8th or 9th // bit (depending on the efficiency-purity point )is set to 1 if(GetPrincipalSign(fP,cluster,eff_pur) == 1) rp->SetPIDBit(eff_pur+6) ; } rp->Name(); //If photon sets the particle pdg name to gamma rp->SetProductionVertex(0,0,0,0); rp->SetFirstMother(-1); rp->SetLastMother(-1); rp->SetFirstDaughter(-1); rp->SetLastDaughter(-1); rp->SetPolarisation(0,0,0); index++ ; } } //____________________________________________________________________________ void AliPHOSPIDv1:: Print() { // Print the parameters used for the particle type identification cout << "=============== AliPHOSPID1 ================" << endl ; cout << "Making PID "<< endl ; cout << " Headers file: " << fHeaderFileName.Data() << endl ; cout << " RecPoints branch title: " << fRecPointsTitle.Data() << endl ; cout << " TrackSegments Branch title: " << fTrackSegmentsTitle.Data() << endl ; cout << " RecParticles Branch title " << fRecParticlesTitle.Data() << endl; cout << " Matrix of Parameters: "<Print() ; cout << "============================================" << endl ; } //____________________________________________________________________________ void AliPHOSPIDv1::WriteRecParticles(Int_t event) { AliPHOSGetter *gime = AliPHOSGetter::GetInstance() ; TClonesArray * recParticles = gime->RecParticles(BranchName()) ; recParticles->Expand(recParticles->GetEntriesFast() ) ; //Make branch in TreeR for RecParticles char * filename = 0; if(gSystem->Getenv("CONFIG_SPLIT_FILE")!=0){ //generating file name filename = new char[strlen(gAlice->GetBaseFile())+20] ; sprintf(filename,"%s/PHOS.Reco.root",gAlice->GetBaseFile()) ; } TDirectory *cwd = gDirectory; //First rp Int_t bufferSize = 32000 ; TBranch * rpBranch = gAlice->TreeR()->Branch("PHOSRP",&recParticles,bufferSize); rpBranch->SetTitle(fRecParticlesTitle); if (filename) { rpBranch->SetFile(filename); TIter next( rpBranch->GetListOfBranches()); TBranch * sb ; while ((sb=(TBranch*)next())) { sb->SetFile(filename); } cwd->cd(); } //second, pid Int_t splitlevel = 0 ; AliPHOSPIDv1 * pid = this ; TBranch * pidBranch = gAlice->TreeR()->Branch("AliPHOSPID","AliPHOSPIDv1",&pid,bufferSize,splitlevel); pidBranch->SetTitle(fRecParticlesTitle.Data()); if (filename) { pidBranch->SetFile(filename); TIter next( pidBranch->GetListOfBranches()); TBranch * sb ; while ((sb=(TBranch*)next())) { sb->SetFile(filename); } cwd->cd(); } rpBranch->Fill() ; pidBranch->Fill() ; gAlice->TreeR()->Write(0,kOverwrite) ; delete [] filename ; } //____________________________________________________________________________ TVector3 AliPHOSPIDv1::GetMomentumDirection(AliPHOSEmcRecPoint * emc, AliPHOSRecPoint * cpv)const { // Calculates the momentum direction: // 1. if only a EMC RecPoint, direction is given by IP and this RecPoint // 2. if a EMC RecPoint and CPV RecPoint, direction is given by the line through the 2 recpoints // However because of the poor position resolution of PPSD the direction is always taken as if we were // in case 1. TVector3 dir(0,0,0) ; TVector3 emcglobalpos ; TMatrix dummy ; emc->GetGlobalPosition(emcglobalpos, dummy) ; dir = emcglobalpos ; dir.SetZ( -dir.Z() ) ; // why ? dir.SetMag(1.) ; //account correction to the position of IP Float_t xo,yo,zo ; //Coordinates of the origin gAlice->Generator()->GetOrigin(xo,yo,zo) ; TVector3 origin(xo,yo,zo); dir = dir - origin ; return dir ; } //____________________________________________________________________________ void AliPHOSPIDv1::PrintRecParticles(Option_t * option) { // Print table of reconstructed particles AliPHOSGetter *gime = AliPHOSGetter::GetInstance() ; TClonesArray * recParticles = gime->RecParticles(BranchName()) ; cout << "AliPHOSPIDv1: event "<GetEvNumber() << endl ; cout << " found " << recParticles->GetEntriesFast() << " RecParticles " << endl ; if(strstr(option,"all")) { // printing found TS cout << " PARTICLE " << " Index " << endl ; Int_t index ; for (index = 0 ; index < recParticles->GetEntries() ; index++) { AliPHOSRecParticle * rp = (AliPHOSRecParticle * ) recParticles->At(index) ; cout << setw(10) << rp->Name() << " " << setw(5) << rp->GetIndexInList() << " " <GetType() << endl; } cout << "-------------------------------------------" << endl ; } }