/***************************************************************************
* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
* *
* Author: The ALICE Off-line Project. *
* Contributors are mentioned in the code where appropriate. *
* *
* Permission to use, copy, modify and distribute this software and its *
* documentation strictly for non-commercial purposes is hereby granted *
* without fee, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission notice *
* appear in the supporting documentation. The authors make no claims *
* about the suitability of this software for any purpose. It is *
* provided "as is" without express or implied warranty. *
**************************************************************************/
/*
$Log$
Revision 1.2 2001/05/14 13:47:34 morsch
Obsolete versions removed.
Revision 1.1 2001/04/06 14:09:29 morsch
Version 3 of the PMD. (Tapan K. Nayak)
Revision March 2001 new geometry for relocated PMD : Viyogi
Revision 1.8 2000/06/09 10:31:36 hristov
sqrt changed to TMath::Sqrt
Revision 1.7 1999/11/03 18:01:40 fca
Remove non orthogonal unused matrix
Revision 1.6 1999/09/29 09:24:28 fca
Introduction of the Copyright and cvs Log
*/
//
///////////////////////////////////////////////////////////////////////////////
// //
// Photon Multiplicity Detector Version 1 //
// //
//Begin_Html
/*
*/
//End_Html
// //
///////////////////////////////////////////////////////////////////////////////
////
#include "AliPMDv3.h"
#include "AliRun.h"
#include "AliMagF.h"
#include "AliMC.h"
#include "AliConst.h"
#include "iostream.h"
static Int_t kdet, ncell_sm, ncell_hole;
static Float_t zdist, zdist1;
static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
static Float_t boundary, th_base, th_air, th_pcb;
static Float_t th_lead, th_steel;
ClassImp(AliPMDv3)
//_____________________________________________________________________________
AliPMDv3::AliPMDv3()
{
//
// Default constructor
//
fMedSens=0;
}
//_____________________________________________________________________________
AliPMDv3::AliPMDv3(const char *name, const char *title)
: AliPMD(name,title)
{
//
// Standard constructor
//
fMedSens=0;
}
//_____________________________________________________________________________
void AliPMDv3::CreateGeometry()
{
//
// Create geometry for Photon Multiplicity Detector Version 3 :
// April 2, 2001
//
//Begin_Html
/*
*/
//End_Html
//Begin_Html
/*
*/
//End_Html
GetParameters();
CreateSupermodule();
CreatePMD();
}
//_____________________________________________________________________________
void AliPMDv3::CreateSupermodule()
{
//
// Creates the geometry of the cells, places them in supermodule which
// is a rhombus object.
// *** DEFINITION OF THE GEOMETRY OF THE PMD ***
// *** HEXAGONAL CELLS WITH 10 MM SQUARE EQUIVALENT
// -- Author : S. Chattopadhyay, 02/04/1999.
// Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
// hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
// in radius gives the dimension of half width of each cell wall.
// These cells are placed as 72 x 72 array in a
// rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
// to have closed packed structure.
//
// Each supermodule (ESM1 or ESM2), made of G10 is filled with following components
// EAIR --> Air gap between gas hexagonal cells and G10 backing.
// EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
// EAIR --> Air gap between gas hexagonal cells and G10 backing.
//
// ESM1 is placed in EMM1 along with EMPB (Pb converter) and EMFE (iron support)
// EMM1 made of
// ESM1 --> Normal supermodule
// EMPB --> Pb converter
// EMFE --> Fe backing
//
// ESM2 is placed in EMM2 along with EMPB (Pb converter) and EMFE (iron support)
// EMM2 made of
// ESM2 --> Special supermodule containing the cut for the hole
// EMPB --> Pb converter
// EMFE --> Fe backing
//
// EPMD
// |
// |
// -------------------------------------------------------------------
// | | | |
// EHOL EMM1 EMM2 EALM
// | |
// ---------------------- ------------------------
// | | | | | | | |
// ESM1 EMPB EMFE ESM1 ESM2 EMPB EMFE ESM2
// | |
// ------------ -------------
// | | | | | |
// EAIR EHC1 EAIR EAIR EHC2 EAIR
// | |
// ECCU ECCU
// | |
// ECAR ECAR
Int_t i, j;
Float_t xb, yb, zb;
Int_t number;
Int_t ihrotm,irotdm;
const Float_t root3_2 = TMath::Sqrt(3.) /2.;
Int_t *idtmed = fIdtmed->GetArray()-599;
AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
zdist = TMath::Abs(zdist1);
//Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
// rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
//(1mm tolerance on both side and 5mm thick G10 wall)
//
// **** CELL SIZE 20mm^2 EQUIVALENT
// Inner hexagon filled with gas (Ar+CO2)
Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
hexd2[4]= - cell_depth/2.;
hexd2[7]= cell_depth/2.;
hexd2[6]= cell_radius - cell_wall;
hexd2[9]= cell_radius - cell_wall;
gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
gMC->Gsatt("ECAR", "SEEN", 0);
// Outer hexagon made of Copper
Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
//total wall thickness=0.2*2
hexd1[4]= - cell_depth/2.;
hexd1[7]= cell_depth/2.;
hexd1[6]= cell_radius;
hexd1[9]= cell_radius;
gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
gMC->Gsatt("ECCU", "SEEN", 1);
// Rhombus shaped supermodules (defined by PARA)
// volume for SUPERMODULE
Float_t dpara_sm[6] = {12.5,12.5,0.8,30.,0.,0.};
dpara_sm[0]=(ncell_sm+0.25)*hexd1[6] ;
dpara_sm[1] = dpara_sm[0] *root3_2;
dpara_sm[2] = sm_thick/2.;
// G10 inner part of supermodule, these will be 9 in all, one being special
Float_t dpara_g10[6] = {12.5,12.5,8.,30.,0.,0.};
dpara_g10[0]= dpara_sm[0];
dpara_g10[1]= dpara_sm[1];
dpara_g10[2]= dpara_sm[2];
//
gMC->Gsvolu("ESM1","PARA", idtmed[607], dpara_g10, 6);
gMC->Gsatt("ESM1", "SEEN", 0);
//
gMC->Gsvolu("ESM2","PARA", idtmed[607], dpara_g10, 6);
gMC->Gsatt("ESM2", "SEEN", 0);
// Air residing between the PCB and the base
Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
dpara_air[0]= dpara_sm[0];
dpara_air[1]= dpara_sm[1];
dpara_air[2]= th_air/2.;
gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
gMC->Gsatt("EAIR", "SEEN", 0);
// volume for honeycomb chamber (EHC1 and EHC2)
Float_t dpara[6] = {12.5,12.5,0.4,30.,0.,0.};
dpara[0] = dpara_sm[0];
dpara[1] = dpara_sm[1];
dpara[2] = cell_depth/2.;
gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara, 6);
gMC->Gsatt("EHC1", "SEEN", 1);
gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara, 6);
gMC->Gsatt("EHC2", "SEEN", 1);
// --- place inner hex inside outer hex
gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
// Place outer hex ECCU cells inside EHC1 (72 X 72)
Int_t xrow=1;
yb = -dpara[1] + (1./root3_2)*hexd1[6];
zb = 0.;
for (j = 1; j <= ncell_sm; ++j) {
xb =-(dpara[0] + dpara[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
if(xrow >= 2){
xb = xb+(xrow-1)*hexd1[6];
}
for (i = 1; i <= ncell_sm; ++i) {
number = i+(j-1)*ncell_sm;
gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
xb += (hexd1[6]*2.);
}
xrow = xrow+1;
yb += (hexd1[6]*TMath::Sqrt(3.));
}
// Place outer hex ECCU inside EHC2
// skip cells which go into the hole in top left corner.
xrow=1;
yb = -dpara[1] + (1./root3_2)*hexd1[6];
zb = 0.;
for (j = 1; j <= ncell_sm; ++j) {
xb =-(dpara[0] + dpara[1]*0.577) + 2*hexd1[6];
if(xrow >= 2){
xb = xb+(xrow-1)*hexd1[6];
}
for (i = 1; i <= ncell_sm; ++i) {
number = i+(j-1)*ncell_sm;
if(i > ncell_hole || j <= (ncell_sm - ncell_hole))
{
gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
}
xb += (hexd1[6]*2.);
}
xrow = xrow+1;
yb += (hexd1[6]*TMath::Sqrt(3.));
}
// Place EHC1 and EAIR into ESM1; EHC2 and EAIR into ESM2
Float_t z_air1,z_air2,z_gas;
z_air1= -dpara_g10[2] + th_base + dpara_air[2];
gMC->Gspos("EAIR", 1, "ESM1", 0., 0., z_air1, 0, "ONLY");
z_gas=z_air1+dpara_air[2]+ th_pcb + dpara[2];
gMC->Gspos("EHC1", 1, "ESM1", 0., 0., z_gas, 0, "ONLY");
z_air2=z_gas+dpara[2]+ th_pcb + dpara_air[2];
gMC->Gspos("EAIR", 2, "ESM1", 0., 0., z_air2, 0, "ONLY");
z_air1= -dpara_g10[2] + th_base + dpara_air[2];
gMC->Gspos("EAIR", 1, "ESM2", 0., 0., z_air1, 0, "ONLY");
z_gas=z_air1+dpara_air[2]+ th_pcb + dpara[2];
gMC->Gspos("EHC2", 1, "ESM2", 0., 0., z_gas, 0, "ONLY");
z_air2=z_gas+dpara[2]+ th_pcb + dpara_air[2];
gMC->Gspos("EAIR", 2, "ESM2", 0., 0., z_air2, 0, "ONLY");
}
//_____________________________________________________________________________
void AliPMDv3::CreatePMD()
{
//
// Create final detector from supermodules
//
// -- Author : Y.P. VIYOGI, 07/05/1996.
// -- Modified: P.V.K.S.Baba(JU), 15-12-97.
// -- Modified: For New Geometry YPV, March 2001.
// Gaspmd, the dimension of TUBE mother volume of PMD,
Float_t gaspmd[3] = { 0.,150.,10.};
const Float_t root3_2 = TMath::Sqrt(3.)/2.;
const Float_t pi = 3.14159;
Int_t i,j;
Float_t xp, yp, zp;
Int_t num_mod;
Int_t jhrot12,jhrot13, irotdm;
Int_t *idtmed = fIdtmed->GetArray()-599;
// VOLUMES Names : begining with D for all PMD volumes,
// The names of SIZE variables begin with S and have more meaningful
// characters as shown below.
// VOLUME SIZE MEDIUM : REMARKS
// ------ ----- ------ : ---------------------------
// EPMD GASPMD AIR : INSIDE PMD and its SIZE
// *** Define the EPMD Volume and fill with air ***
gMC->Gsvolu("EPMD", "TUBE", idtmed[698], gaspmd, 3);
gMC->Gsatt("EPMD", "SEEN", 0);
AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
// dpara_emm1 array contains parameters of the imaginary volume EMM1,
// this is just a little more than the side of a supermodule.
Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
dpara_emm1[0] = sm_length/2.;
dpara_emm1[1] = dpara_emm1[0] *root3_2;
dpara_emm1[2] = dm_thick/2.;
// EMM1 : normal volume as in old cases
gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
gMC->Gsatt("EMM1", "SEEN", 1);
// EMM2 : special volume containing special supermodule
gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm1, 6);
gMC->Gsatt("EMM2", "SEEN", 1);
//
// --- DEFINE MODules, iron, and lead voLUMES
//place ESM1 into EMM1 and ESM2 into EMM2 along with EMPB and EMFE
Float_t dx = sm_length;
Float_t dy = dx * root3_2;
Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
-dx, 0., dx,
-3.*dx/2., -dx/2., dx/2.};
Float_t ysup[9] = {dy, dy, dy,
0., 0., 0.,
-dy, -dy, -dy};
//
// volume for SUPERMODULE
// Pb Convertor
Float_t dpara_pb[6] = {12.5,12.5,8.,30.,0.,0.};
dpara_pb[0] = sm_length/2.;
dpara_pb[1] = dpara_pb[0] * root3_2;
dpara_pb[2] = th_lead/2.;
gMC->Gsvolu("EMPB","PARA", idtmed[600], dpara_pb, 6);
gMC->Gsatt ("EMPB", "SEEN", 0);
// Fe Support
Float_t dpara_fe[6] = {12.5,12.5,8.,30.,0.,0.};
dpara_fe[0] = dpara_pb[0];
dpara_fe[1] = dpara_pb[1];
dpara_fe[2] = th_steel/2.;
gMC->Gsvolu("EMFE","PARA", idtmed[618], dpara_fe, 6);
gMC->Gsatt ("EMFE", "SEEN", 0);
// position supermodule ESM1 inside EMM1
Float_t z_ps,z_pb,z_fe,z_cv;
z_ps = - dpara_emm1[2] + sm_thick/2.;
gMC->Gspos("ESM1", 2, "EMM1", 0., 0., z_ps, irotdm, "ONLY");
z_pb=z_ps+sm_thick/2.+dpara_pb[2];
gMC->Gspos("EMPB", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
z_fe=z_pb+dpara_pb[2]+dpara_fe[2];
gMC->Gspos("EMFE", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
z_cv=z_fe+dpara_fe[2]+sm_thick/2.;
gMC->Gspos("ESM1", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
// position supermodule ESM2 inside EMM2
z_ps = - dpara_emm1[2] + sm_thick/2.;
gMC->Gspos("ESM2", 2, "EMM2", 0., 0., z_ps, irotdm, "ONLY");
z_pb = z_ps + sm_thick/2.+dpara_pb[2];
gMC->Gspos("EMPB", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
z_fe = z_pb + dpara_pb[2]+dpara_fe[2];
gMC->Gspos("EMFE", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
z_cv = z_fe + dpara_fe[2]+sm_thick/2.;
gMC->Gspos("ESM2", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
//
// EHOL is a tube structure made of air
Float_t d_hole[3];
d_hole[0] = 0.;
d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
d_hole[2] = dm_thick/2.;
gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
gMC->Gsatt("EHOL", "SEEN", 1);
//Al-rod as boundary of the supermodules
Float_t Al_rod[3] ;
Al_rod[0] = sm_length * 3/2.;
Al_rod[1] = boundary;
Al_rod[2] = dm_thick/2.;
gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
gMC->Gsatt ("EALM", "SEEN", 1);
Float_t xalm[3];
xalm[0]=Al_rod[0];
xalm[1]=-xalm[0]/2.;
xalm[2]=xalm[1];
Float_t yalm[3];
yalm[0]=0.;
yalm[1]=xalm[0]*root3_2;
yalm[2]=-yalm[1];
// delx = full side of the supermodule
Float_t delx=sm_length * 3.;
Float_t x1= delx*root3_2 /2.;
Float_t x4=delx/4.;
// xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
Float_t xoff = boundary * TMath::Tan(pi/6.);
Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
Float_t xpos[9], ypos[9];
Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
Int_t irotate[3] = {0, jhrot12, jhrot13};
for (j=0; j<3; ++j)
{
gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
for (i=0; i<9; ++i)
{
xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
if(fDebug) printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
num_mod = i + 1 + j*9;
printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
if(i==0){
gMC->Gsposp("EMM2", num_mod, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
}
else {
gMC->Gsposp("EMM1", num_mod, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
}
}
}
// place EHOL in the centre of EPMD
gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
// --- Place the EPMD in ALICE
xp = 0.;
yp = 0.;
zp = zdist1;
gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
}
//_____________________________________________________________________________
void AliPMDv3::DrawModule()
{
//
// Draw a shaded view of the Photon Multiplicity Detector
//
gMC->Gsatt("*", "seen", -1);
gMC->Gsatt("alic", "seen", 0);
//
// Set the visibility of the components
//
gMC->Gsatt("ECAR","seen",0);
gMC->Gsatt("ECCU","seen",1);
gMC->Gsatt("EHC1","seen",1);
gMC->Gsatt("EHC1","seen",1);
gMC->Gsatt("EHC2","seen",1);
gMC->Gsatt("EMM1","seen",1);
gMC->Gsatt("EHOL","seen",1);
gMC->Gsatt("EPMD","seen",0);
//
gMC->Gdopt("hide", "on");
gMC->Gdopt("shad", "on");
gMC->Gsatt("*", "fill", 7);
gMC->SetClipBox(".");
gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
gMC->DefaultRange();
gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
//gMC->Gdman(17, 5, "MAN");
gMC->Gdopt("hide", "off");
}
//_____________________________________________________________________________
void AliPMDv3::CreateMaterials()
{
//
// Create materials for the PMD
//
// ORIGIN : Y. P. VIYOGI
//
// --- The Argon- CO2 mixture ---
Float_t ag[2] = { 39.95 };
Float_t zg[2] = { 18. };
Float_t wg[2] = { .8,.2 };
Float_t dar = .001782; // --- Ar density in g/cm3 ---
// --- CO2 ---
Float_t ac[2] = { 12.,16. };
Float_t zc[2] = { 6.,8. };
Float_t wc[2] = { 1.,2. };
Float_t dc = .001977;
Float_t dco = .002; // --- CO2 density in g/cm3 ---
Float_t absl, radl, a, d, z;
Float_t dg;
Float_t x0ar;
//Float_t x0xe=2.4;
//Float_t dxe=0.005858;
Float_t buf[1];
Int_t nbuf;
Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
Float_t zsteel[4] = { 26.,24.,28.,14. };
Float_t wsteel[4] = { .715,.18,.1,.005 };
Int_t *idtmed = fIdtmed->GetArray()-599;
Int_t isxfld = gAlice->Field()->Integ();
Float_t sxmgmx = gAlice->Field()->Max();
// --- Define the various materials for GEANT ---
AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
x0ar = 19.55 / dar;
AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
// AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
// define gas-mixtures
char namate[21];
gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
ag[1] = a;
zg[1] = z;
dg = (dar * 4 + dco) / 5;
AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
// Define tracking media
AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
// AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
// --- Generate explicitly delta rays in the iron, aluminium and lead ---
gMC->Gstpar(idtmed[600], "LOSS", 3.);
gMC->Gstpar(idtmed[600], "DRAY", 1.);
gMC->Gstpar(idtmed[603], "LOSS", 3.);
gMC->Gstpar(idtmed[603], "DRAY", 1.);
gMC->Gstpar(idtmed[604], "LOSS", 3.);
gMC->Gstpar(idtmed[604], "DRAY", 1.);
gMC->Gstpar(idtmed[605], "LOSS", 3.);
gMC->Gstpar(idtmed[605], "DRAY", 1.);
gMC->Gstpar(idtmed[606], "LOSS", 3.);
gMC->Gstpar(idtmed[606], "DRAY", 1.);
gMC->Gstpar(idtmed[607], "LOSS", 3.);
gMC->Gstpar(idtmed[607], "DRAY", 1.);
// --- Energy cut-offs in the Pb and Al to gain time in tracking ---
// --- without affecting the hit patterns ---
gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
// --- Prevent particles stopping in the gas due to energy cut-off ---
gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
}
//_____________________________________________________________________________
void AliPMDv3::Init()
{
//
// Initialises PMD detector after it has been built
//
Int_t i;
kdet=1;
//
if(fDebug) {
printf("\n%s: ",ClassName());
for(i=0;i<35;i++) printf("*");
printf(" PMD_INIT ");
for(i=0;i<35;i++) printf("*");
printf("\n");
printf("%s: PMD simulation package (v3) initialised\n",
ClassName());
printf("%s: parameters of pmd\n",ClassName());
printf("%s: %10.2f %10.2f %10.2f %10.2f\n",ClassName(),
cell_radius,cell_wall,cell_depth,zdist1 );
printf("%s: ",ClassName());
for(i=0;i<80;i++) printf("*");
printf("\n");
}
Int_t *idtmed = fIdtmed->GetArray()-599;
fMedSens=idtmed[605-1];
}
//_____________________________________________________________________________
void AliPMDv3::StepManager()
{
//
// Called at each step in the PMD
//
Int_t copy;
Float_t hits[4], destep;
Float_t center[3] = {0,0,0};
Int_t vol[5];
//char *namep;
if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
gMC->CurrentVolID(copy);
//namep=gMC->CurrentVolName();
//printf("Current vol is %s \n",namep);
vol[0]=copy;
gMC->CurrentVolOffID(1,copy);
//namep=gMC->CurrentVolOffName(1);
//printf("Current vol 11 is %s \n",namep);
vol[1]=copy;
gMC->CurrentVolOffID(2,copy);
//namep=gMC->CurrentVolOffName(2);
//printf("Current vol 22 is %s \n",namep);
vol[2]=copy;
// if(strncmp(namep,"EHC1",4))vol[2]=1;
gMC->CurrentVolOffID(3,copy);
//namep=gMC->CurrentVolOffName(3);
//printf("Current vol 33 is %s \n",namep);
vol[3]=copy;
gMC->CurrentVolOffID(4,copy);
//namep=gMC->CurrentVolOffName(4);
//printf("Current vol 44 is %s \n",namep);
vol[4]=copy;
//printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
gMC->Gdtom(center,hits,1);
hits[3] = destep*1e9; //Number in eV
AddHit(gAlice->CurrentTrack(), vol, hits);
}
}
//------------------------------------------------------------------------
// Get parameters
void AliPMDv3::GetParameters()
{
Int_t ncell_um, num_um;
ncell_um=24;
num_um=3;
ncell_hole=12;
cell_radius=0.25;
cell_wall=0.02;
cell_depth=0.25 * 2.;
//
boundary=0.7;
ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
//
th_base=0.3;
th_air=0.1;
th_pcb=0.16;
//
sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
//
th_lead=1.5;
th_steel=0.5;
//
zdist1 = -370.;
}