The FLOW Analysis Package

a short writeup 25-10-2010

Contents

1	A Quick Start	5
	1.1 Quick On The Fly	5
	1.2 What is in the output file?	7
2	The Flow Event	9
3	The Program	11
4	Methods	13
	4.1 The Monte-Carlo Truth	14
	4.2 Scalar Product Method	15
	4.3 Generating Function Cumulant Method	16
	4.4 Q-vector Cumulant Method	17
	4.5 Lee-Yang Zero Method	18
	4.6 Lee-Yang Zero Event Plane Method	19
	4.7 Fitting the Q-vector Distribution	20
5	Summary	21

CONTENTS

4

Chapter 1

A Quick Start

The ALICE flow package¹ contains many different flow analysis methods and ways to read data.

1.1 Quick On The Fly

The macro Documentation/examples/runFlowSimple.C is a basic example of how the flow package works. In this section we explain the main pieces of that macro.

- 1. To use the flow code the flow library needs to be loaded. In AliRoot: gSystem->Load("libPWG2flowCommon"); In root additional libraries need to be loaded: gSystem->Load("libGeom"); gSystem->Load("libVMC"); gSystem->Load("libVMLIO"); gSystem->Load("libPhysics"); gSystem->Load("libPWG2flowCommon");
- 2. We need to instantiate the flow analysis methods which we want to use. In this example we will instantiate two methods: the first which calculates the flow versus the reaction plane of the Monte Carlo, which is our reference value, and second the so called Q-cumulant method.

¹http://alisoft.cern.ch/viewvc/trunk/PWG2/FLOW/?root=AliRoot .

```
AliFlowAnalysisWithMCEventPlane *mcep
= new AliFlowAnalysisWithMCEventPlane();
AliFlowAnalysisWithQCumulants *qc
= new AliFlowAnalysisWithQCumulants();
```

- 3. Each of the methods needs to initialize (e.g. to define the histograms):
 mcep->Init(); qc->Init();
- 4. To define the particles we are going to use as Reference Particles (RP's, particles used for the Q vector) and the Particles Of Interest (POI's, the particles of which we calculate the differential flow) we have to define two trackcut objects: AliFlowTrackSimpleCuts *cutsRP = new AliFlowTrackSimpleCuts(); AliFlowTrackSimpleCuts *cutsPOI = new AliFlowTrackSimpleCuts(); cutsPOI->SetPtMin(0.2); cutsPOI->SetPtMax(2.0);
- 5. Now we are ready to start the analysis. For a quick start we make an event on the fly, tag the reference particles and particles of interest and pass it to the two flow methods. for(Int_t i=0; i<nEvts; i++) {</pre> // make an event with mult particles AliFlowEventSimple* event = new AliFlowEventSimple(mult,kGenerate); // modify the tracks adding the flow value v2 event->AddV2(v2); // select the particles for the reference flow event->TagRP(cutsRP); // select the particles for differential flow event->TagPOI(cutsPOI); // do flow analysis with various methods: mcep->Make(event); qc->Make(event); } // end of for(Int_t i=0;i<nEvts;i++)</pre>
- 6. To fill the histograms which contain the final results we have to call

Finish for each method: mcep->Finish(); qc->Finish();

7. This concludes the analysis and now we can write the results into a file: TFile *outputFile = new TFile("AnalysisResults.root", "RECREATE"); mcep->WriteHistograms(); qc->WriteHistograms();

1.2 What is in the output file?

Now we have written the results into a file, but what is in there?

Chapter 2

The Flow Event

Here we describe the flowevent, flowtracks, general cuts and cuts for RPs POIs. OntheFly, AfterBurner. Filling with ESD, AOD, Ntuples, etc.

Chapter 3 The Program

Here we describe the program.

Chapter 4

Methods

Here we put an intro for the various methods.

4.1 The Monte-Carlo Truth

Here we describe the implementation of the monte-carlo truth.

4.2 Scalar Product Method

Here we describe the scalar product method and how it is implemented.

4.3 Generating Function Cumulant Method

Here we describe the generating function cumulant method and how it is implemented.

4.4 Q-vector Cumulant Method

Here we describe the Q-vector cumulant method and how it is implemented.

4.5 Lee-Yang Zero Method

Here we describe the Lee-Yang Zero method and how it is implemented.

4.6 Lee-Yang Zero Event Plane Method

Here we describe the Lee-Yang Zero Event Plane method and how it is implemented.

4.7 Fitting the Q-vector Distribution

Here we describe how the fitting of the Q-vector distribution is implemented.

Chapter 5 Summary

This sums it all up.

Bibliography

- [1] J. Y. Ollitrault, Phys. Rev. D 46 (1992) 229.
- [2] P. Danielewicz, Nucl. Phys. A **661** (1999) 82.
- [3] D. H. Rischke, Nucl. Phys. A **610** (1996) 88C.
- [4] J. Y. Ollitrault, Nucl. Phys. A 638 (1998) 195.
- [5] S. Voloshin and Y. Zhang, Z. Phys. C 70 (1996) 665.
- [6] K. H. Ackermann *et al.* [STAR Collaboration], Phys. Rev. Lett. 86 (2001) 402
- [7] C. Adler *et al.* [STAR Collaboration], Phys. Rev. Lett. **87** (2001) 182301
- [8] T.D. Lee *et al.*, New Discoveries at RHIC: Case for the Strongly Interacting Quark-Gluon Plasma. Contributions from the RBRC Workshop held May 14-15, 2004. Nucl. Phys. A **750** (2005) 1-171

Appendix I

Here we put short pieces of code.