/************************************************************************** * Copyright(c) 1998-2009, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //----------------------------------------------------------------- // AliAnalysisTaskPerformanceStrange class // This task is for a performance study of V0 identification. // It works with MC info and ESD tree. // Author: H.Ricaud, H.Ricaud@gsi.de //----------------------------------------------------------------- #include #include #include #include "TChain.h" #include "TTree.h" #include "TH1F.h" #include "TH2F.h" //#include "TH3F.h" #include "TF1.h" #include "TList.h" #include "TMath.h" #include "TCanvas.h" #include "AliAnalysisManager.h" #include "AliPhysicsSelection.h" #include "AliBackgroundSelection.h" #include "AliESDVertex.h" #include "AliESDEvent.h" #include "AliESDInputHandler.h" #include "AliESDtrack.h" #include "AliESDv0.h" #include "AliESDtrackCuts.h" #include "AliESDpid.h" #include "AliMultiplicity.h" #include "AliAODEvent.h" #include "AliAODVertex.h" #include "AliAODTrack.h" #include "AliAODv0.h" #include "AliAODMCHeader.h" #include "AliAODInputHandler.h" //#include "AliV0vertexer.h" #include "AliAODMCParticle.h" #include "AliMCEventHandler.h" #include "AliMCEvent.h" #include "AliStack.h" #include "AliGenEventHeader.h" #include "AliLog.h" #include "AliKFVertex.h" #include "AliVertexerTracks.h" #include "AliAnalysisTaskPerformanceStrange.h" #include "AliAnalysisCentralitySelector.h" ClassImp(AliAnalysisTaskPerformanceStrange) //________________________________________________________________________ AliAnalysisTaskPerformanceStrange::AliAnalysisTaskPerformanceStrange() : AliAnalysisTaskSE("TaskStrange"), fAnalysisMC(0), fAnalysisType("infoType"), fCollidingSystems(0), fUsePID("infoPID"), fUseCut("infoCut"), fESD(0), fListHist(0), fCentrSelector(0), fHistMCPrimaryVertexX(0), fHistMCPrimaryVertexY(0), fHistMCPrimaryVertexZ(0), fHistMCMultiplicityPrimary(0), fHistMCMultiplicityTracks(0), fHistMCtracksProdRadiusK0s(0), fHistMCtracksProdRadiusLambda(0), fHistMCtracksProdRadiusAntiLambda(0), fHistMCtracksDecayRadiusK0s(0), fHistMCtracksDecayRadiusLambda(0), fHistMCtracksDecayRadiusAntiLambda(0), fHistMCPtAllK0s(0), fHistMCPtAllLambda(0), fHistMCPtAllAntiLambda(0), fHistMCProdRadiusK0s(0), fHistMCProdRadiusLambda(0), fHistMCProdRadiusAntiLambda(0), fHistMCRapK0s(0), fHistMCRapInPtRangeK0s(0), fHistMCRapLambda(0), fHistMCRapInPtRangeLambda(0), fHistMCRapAntiLambda(0), fHistMCRapInPtRangeAntiLambda(0), fHistMCRapXi(0), fHistMCRapInPtRangeXi(0), fHistMCRapPhi(0), fHistMCRapInPtRangePhi(0), //////////////////////////////////////// fHistMCPtK0s(0), fHistMCPtLambda(0), /////////////////////////////////////////// fHistMCPtLambdaFromSigma(0), fHistMCPtAntiLambdaFromSigma(0), fHistNTimesRecK0s(0), // fHistNTimesRecK0sMI(0), fHistNTimesRecLambda(0), // fHistNTimesRecLambdaMI(0), fHistNTimesRecAntiLambda(0), // fHistNTimesRecAntiLambdaMI(0), fHistNTimesRecK0sVsPt(0), // fHistNTimesRecK0sVsPtMI(0), fHistNTimesRecLambdaVsPt(0), // fHistNTimesRecLambdaVsPtMI(0), fHistNTimesRecAntiLambdaVsPt(0), // fHistNTimesRecAntiLambdaVsPtMI(0), fHistNumberEvents(0), fHistTrackPerEvent(0), fHistTrackletPerEvent(0), fHistMCDaughterTrack(0), fHistSPDPrimaryVertexZ(0), fHistPrimaryVertexX(0), fHistPrimaryVertexY(0), fHistPrimaryVertexZ(0), fHistPrimaryVertexResX(0), fHistPrimaryVertexResY(0), fHistPrimaryVertexResZ(0), fHistPrimaryVertexPosXV0events(0), fHistPrimaryVertexPosYV0events(0), fHistPrimaryVertexPosZV0events(0), fHistDaughterPt(0), fHistDcaPosToPrimVertex(0), fHistDcaNegToPrimVertex(0), fHistDcaPosToPrimVertexZoom(0), fHistDcaNegToPrimVertexZoom(0), fHistRadiusV0(0), fHistDecayLengthV0(0), fHistDcaV0Daughters(0), fHistChi2(0), fHistCosPointAngle(0), fHistCosPointAngleZoom(0), fHistProdRadius(0), // fHistProdRadiusMI(0), fHistV0Multiplicity(0), // fHistV0MultiplicityMI(0), fHistChi2KFBeforeCutK0s(0), fHistChi2KFBeforeCutLambda(0), fHistChi2KFBeforeCutAntiLambda(0), fHistChi2KFAfterCutK0s(0), fHistChi2KFAfterCutLambda(0), fHistChi2KFAfterCutAntiLambda(0), fHistMassK0(0), // fHistMassK0MI(0), fHistMassLambda(0), // fHistMassLambdaMI(0), fHistMassAntiLambda(0), // fHistMassAntiLambdaMI(0), fHistMassVsRadiusK0(0), // fHistMassVsRadiusK0MI(0), fHistMassVsRadiusLambda(0), // fHistMassVsRadiusLambdaMI(0), fHistMassVsRadiusAntiLambda(0), // fHistMassVsRadiusAntiLambdaMI(0), /////////////////////////////////////// fHistPtVsMassK0(0), // fHistPtVsMassK0MI(0), fHistPtVsMassLambda(0), //////////////////////////////////////// fHistPzPtBeforeK0s(0), fHistPzPtAfterK0s(0), fHistPzPtBeforeLambda(0), fHistPzPtAfterLambda(0), ////////////////////////////////////////// // fHistPtVsMassLambdaMI(0), // fHistPtVsMassAntiLambda(0), // fHistPtVsMassAntiLambdaMI(0), // fHistMultVsPtVsMassK0(0), // fHistMultVsPtVsMassLambda(0), // fHistMultVsPtVsMassAntiLambda(0), fHistArmenterosPodolanski(0), // fHistArmenterosPodolanskiMI(0), fHistNsigmaPosPionAntiLambda(0), fHistNsigmaNegProtonAntiLambda(0), fHistNsigmaPosProtonLambda(0), fHistNsigmaNegPionLambda(0), fHistNsigmaPosPionK0(0), fHistNsigmaNegPionK0(0), fHistAsMcRapK0(0), // fHistAsMcRapK0MI(0), fHistAsMcRapLambda(0), // fHistAsMcRapLambdaMI(0), fHistAsMcRapAntiLambda(0), // fHistAsMcRapAntiLambdaMI(0), ///////////////////////////////////////////// fHistAsMcPtK0(0), // fHistAsMcPtK0MI(0), fHistAsMcPtLambda(0), ////////////////////////////////////////////// // fHistAsMcPtAntiLambdaMI(0), fHistAsMcPtZoomK0(0), // fHistAsMcPtZoomK0MI(0), fHistAsMcPtZoomLambda(0), // fHistAsMcPtZoomLambdaMI(0), fHistAsMcProdRadiusK0(0), // fHistAsMcProdRadiusK0MI(0), fHistAsMcProdRadiusLambda(0), // fHistAsMcProdRadiusLambdaMI(0), fHistAsMcProdRadiusAntiLambda(0), // fHistAsMcProdRadiusAntiLambdaMI(0), fHistAsMcProdRadiusXvsYK0s(0), // fHistAsMcProdRadiusXvsYK0sMI(0), fHistAsMcProdRadiusXvsYLambda(0), // fHistAsMcProdRadiusXvsYLambdaMI(0), fHistAsMcProdRadiusXvsYAntiLambda(0), // fHistAsMcProdRadiusXvsYAntiLambdaMI(0), fHistPidMcMassK0(0), // fHistPidMcMassK0MI(0), fHistPidMcMassLambda(0), // fHistPidMcMassLambdaMI(0), fHistPidMcMassAntiLambda(0), // fHistPidMcMassAntiLambdaMI(0), fHistAsMcMassK0(0), // fHistAsMcMassK0MI(0), fHistAsMcMassLambda(0), // fHistAsMcMassLambdaMI(0), fHistAsMcMassAntiLambda(0), // fHistAsMcMassAntiLambdaMI(0), fHistAsMcPtVsMassK0(0), // fHistAsMcPtVsMassK0MI(0), fHistAsMcPtVsMassLambda(0), // fHistAsMcPtVsMassLambdaMI(0), fHistAsMcPtVsMassAntiLambda(0), // fHistAsMcPtVsMassAntiLambdaMI(0), fHistAsMcMassVsRadiusK0(0), // fHistAsMcMassVsRadiusK0MI(0), fHistAsMcMassVsRadiusLambda(0), // fHistAsMcMassVsRadiusLambdaMI(0), fHistAsMcMassVsRadiusAntiLambda(0), // fHistAsMcMassVsRadiusAntiLambdaMI(0), fHistAsMcResxK0(0), fHistAsMcResyK0(0), fHistAsMcReszK0(0), fHistAsMcResrVsRadiusK0(0), fHistAsMcReszVsRadiusK0(0), // fHistAsMcResxK0MI(0), // fHistAsMcResyK0MI(0), // fHistAsMcReszK0MI(0), // fHistAsMcResrVsRadiusK0MI(0), // fHistAsMcReszVsRadiusK0MI(0), fHistAsMcResxLambda(0), fHistAsMcResyLambda(0), fHistAsMcReszLambda(0), fHistAsMcResrVsRadiusLambda(0), fHistAsMcReszVsRadiusLambda(0), // fHistAsMcResxLambdaMI(0), // fHistAsMcResyLambdaMI(0), // fHistAsMcReszLambdaMI(0), // fHistAsMcResrVsRadiusLambdaMI(0), // fHistAsMcReszVsRadiusLambdaMI(0), fHistAsMcResxAntiLambda(0), fHistAsMcResyAntiLambda(0), fHistAsMcReszAntiLambda(0), fHistAsMcResrVsRadiusAntiLambda(0), fHistAsMcReszVsRadiusAntiLambda(0), // fHistAsMcResxAntiLambdaMI(0), // fHistAsMcResyAntiLambdaMI(0), // fHistAsMcReszAntiLambdaMI(0), // fHistAsMcResrVsRadiusAntiLambdaMI(0), // fHistAsMcReszVsRadiusAntiLambdaMI(0), fHistAsMcResPtK0(0), // fHistAsMcResPtK0MI(0), fHistAsMcResPtLambda(0), // fHistAsMcResPtLambdaMI(0), fHistAsMcResPtAntiLambda(0), // fHistAsMcResPtAntiLambdaMI(0), fHistAsMcResPtVsRapK0(0), // fHistAsMcResPtVsRapK0MI(0), fHistAsMcResPtVsRapLambda(0), // fHistAsMcResPtVsRapLambdaMI(0), fHistAsMcResPtVsRapAntiLambda(0), // fHistAsMcResPtVsRapAntiLambdaMI(0), fHistAsMcResPtVsPtK0(0), // fHistAsMcResPtVsPtK0MI(0), fHistAsMcResPtVsPtLambda(0), // fHistAsMcResPtVsPtLambdaMI(0), fHistAsMcResPtVsPtAntiLambda(0), // fHistAsMcResPtVsPtAntiLambdaMI(0), fHistAsMcMotherPdgCodeK0s(0), // fHistAsMcMotherPdgCodeK0sMI(0), fHistAsMcMotherPdgCodeLambda(0), // fHistAsMcMotherPdgCodeLambdaMI(0), fHistAsMcMotherPdgCodeAntiLambda(0), // fHistAsMcMotherPdgCodeAntiLambdaMI(0), fHistAsMcPtLambdaFromSigma(0), // fHistAsMcPtLambdaFromSigmaMI(0), fHistAsMcPtAntiLambdaFromSigma(0), // fHistAsMcPtAntiLambdaFromSigmaMI(0), fHistAsMcSecondaryPtVsRapK0s(0), // fHistAsMcSecondaryPtVsRapK0sMI(0), fHistAsMcSecondaryPtVsRapLambda(0), // fHistAsMcSecondaryPtVsRapLambdaMI(0), fHistAsMcSecondaryPtVsRapAntiLambda(0), // fHistAsMcSecondaryPtVsRapAntiLambdaMI(0), fHistAsMcSecondaryProdRadiusK0s(0), // fHistAsMcSecondaryProdRadiusK0sMI(0), fHistAsMcSecondaryProdRadiusLambda(0), // fHistAsMcSecondaryProdRadiusLambdaMI(0), fHistAsMcSecondaryProdRadiusAntiLambda(0), // fHistAsMcSecondaryProdRadiusAntiLambdaMI(0), fHistAsMcSecondaryProdRadiusXvsYK0s(0), // fHistAsMcSecondaryProdRadiusXvsYK0sMI(0), fHistAsMcSecondaryProdRadiusXvsYLambda(0), // fHistAsMcSecondaryProdRadiusXvsYLambdaMI(0), fHistAsMcSecondaryProdRadiusXvsYAntiLambda(0), // fHistAsMcSecondaryProdRadiusXvsYAntiLambdaMI(0), fHistAsMcSecondaryMotherPdgCodeK0s(0), // fHistAsMcSecondaryMotherPdgCodeK0sMI(0), fHistAsMcSecondaryMotherPdgCodeLambda(0), // fHistAsMcSecondaryMotherPdgCodeLambdaMI(0), fHistAsMcSecondaryMotherPdgCodeAntiLambda(0), // fHistAsMcSecondaryMotherPdgCodeAntiLambdaMI(0), fHistAsMcSecondaryPtLambdaFromSigma(0), // fHistAsMcSecondaryPtLambdaFromSigmaMI(0), fHistAsMcSecondaryPtAntiLambdaFromSigma(0) // fHistAsMcSecondaryPtAntiLambdaFromSigmaMI(0) { // Constructor // New V0 cuts /* fCuts[0]=33; // max allowed chi2 fCuts[1]=0.05; // min allowed impact parameter for the 1st daughter fCuts[2]=0.05; // min allowed impact parameter for the 2nd daughter fCuts[3]=0.5; // max allowed DCA between the daughter tracks fCuts[4]=0.00; // max allowed cosine of V0's pointing angle fCuts[5]=0.2; // min radius of the fiducial volume fCuts[6]=100; // max radius of the fiducial volume */ } //________________________________________________________________________ AliAnalysisTaskPerformanceStrange::AliAnalysisTaskPerformanceStrange(const char *name) : AliAnalysisTaskSE(name), fAnalysisMC(0), fAnalysisType("infoType"), fCollidingSystems(0), fUsePID("infoPID"), fUseCut("infocut"), fESD(0), fListHist(),fCentrSelector(0), fHistMCPrimaryVertexX(0), fHistMCPrimaryVertexY(0), fHistMCPrimaryVertexZ(0), fHistMCMultiplicityPrimary(0), fHistMCMultiplicityTracks(0), fHistMCtracksProdRadiusK0s(0), fHistMCtracksProdRadiusLambda(0), fHistMCtracksProdRadiusAntiLambda(0), fHistMCtracksDecayRadiusK0s(0), fHistMCtracksDecayRadiusLambda(0), fHistMCtracksDecayRadiusAntiLambda(0), fHistMCPtAllK0s(0), fHistMCPtAllLambda(0), fHistMCPtAllAntiLambda(0), fHistMCProdRadiusK0s(0), fHistMCProdRadiusLambda(0), fHistMCProdRadiusAntiLambda(0), fHistMCRapK0s(0), fHistMCRapInPtRangeK0s(0), fHistMCRapLambda(0), fHistMCRapInPtRangeLambda(0), fHistMCRapAntiLambda(0), fHistMCRapInPtRangeAntiLambda(0), fHistMCRapXi(0), fHistMCRapInPtRangeXi(0), fHistMCRapPhi(0), fHistMCRapInPtRangePhi(0), //////////////////////////////////////////////// fHistMCPtK0s(0), fHistMCPtLambda(0), ///////////////////////////////////////////////// fHistMCPtLambdaFromSigma(0), fHistMCPtAntiLambdaFromSigma(0), fHistNTimesRecK0s(0), // fHistNTimesRecK0sMI(0), fHistNTimesRecLambda(0), // fHistNTimesRecLambdaMI(0), fHistNTimesRecAntiLambda(0), // fHistNTimesRecAntiLambdaMI(0), fHistNTimesRecK0sVsPt(0), // fHistNTimesRecK0sVsPtMI(0), fHistNTimesRecLambdaVsPt(0), // fHistNTimesRecLambdaVsPtMI(0), fHistNTimesRecAntiLambdaVsPt(0), // fHistNTimesRecAntiLambdaVsPtMI(0), fHistNumberEvents(0), fHistTrackPerEvent(0), fHistTrackletPerEvent(0), fHistMCDaughterTrack(0), fHistSPDPrimaryVertexZ(0), fHistPrimaryVertexX(0), fHistPrimaryVertexY(0), fHistPrimaryVertexZ(0), fHistPrimaryVertexResX(0), fHistPrimaryVertexResY(0), fHistPrimaryVertexResZ(0), fHistPrimaryVertexPosXV0events(0), fHistPrimaryVertexPosYV0events(0), fHistPrimaryVertexPosZV0events(0), fHistDaughterPt(0), fHistDcaPosToPrimVertex(0), fHistDcaNegToPrimVertex(0), fHistDcaPosToPrimVertexZoom(0), fHistDcaNegToPrimVertexZoom(0), fHistRadiusV0(0), fHistDecayLengthV0(0), fHistDcaV0Daughters(0), fHistChi2(0), fHistCosPointAngle(0), fHistCosPointAngleZoom(0), fHistProdRadius(0), // fHistProdRadiusMI(0), fHistV0Multiplicity(0), // fHistV0MultiplicityMI(0), fHistChi2KFBeforeCutK0s(0), fHistChi2KFBeforeCutLambda(0), fHistChi2KFBeforeCutAntiLambda(0), fHistChi2KFAfterCutK0s(0), fHistChi2KFAfterCutLambda(0), fHistChi2KFAfterCutAntiLambda(0), fHistMassK0(0), // fHistMassK0MI(0), fHistMassLambda(0), // fHistMassLambdaMI(0), fHistMassAntiLambda(0), // fHistMassAntiLambdaMI(0), fHistMassVsRadiusK0(0), // fHistMassVsRadiusK0MI(0), fHistMassVsRadiusLambda(0), // fHistMassVsRadiusLambdaMI(0), fHistMassVsRadiusAntiLambda(0), // fHistMassVsRadiusAntiLambdaMI(0), ///////////////////////////////////////////// fHistPtVsMassK0(0), // fHistPtVsMassK0MI(0), fHistPtVsMassLambda(0), // fHistPtVsMassLambdaMI(0), /////////////////////////////////////////////////// fHistPzPtBeforeK0s(0), fHistPzPtAfterK0s(0), fHistPzPtBeforeLambda(0), fHistPzPtAfterLambda(0), ////////////////////////////////////////// // fHistMultVsPtVsMassK0(0), // fHistMultVsPtVsMassLambda(0), // fHistMultVsPtVsMassAntiLambda(0), fHistArmenterosPodolanski(0), // fHistArmenterosPodolanskiMI(0), fHistNsigmaPosPionAntiLambda(0), fHistNsigmaNegProtonAntiLambda(0), fHistNsigmaPosProtonLambda(0), fHistNsigmaNegPionLambda(0), fHistNsigmaPosPionK0(0), fHistNsigmaNegPionK0(0), fHistAsMcRapK0(0), // fHistAsMcRapK0MI(0), fHistAsMcRapLambda(0), // fHistAsMcRapLambdaMI(0), fHistAsMcRapAntiLambda(0), // fHistAsMcRapAntiLambdaMI(0), /////////////////////////////////// fHistAsMcPtK0(0), // fHistAsMcPtK0MI(0), fHistAsMcPtLambda(0), ///////////////////////////////////// // fHistAsMcPtAntiLambdaMI(0), fHistAsMcPtZoomK0(0), // fHistAsMcPtZoomK0MI(0), fHistAsMcPtZoomLambda(0), // fHistAsMcPtZoomLambdaMI(0), fHistAsMcProdRadiusK0(0), // fHistAsMcProdRadiusK0MI(0), fHistAsMcProdRadiusLambda(0), // fHistAsMcProdRadiusLambdaMI(0), fHistAsMcProdRadiusAntiLambda(0), // fHistAsMcProdRadiusAntiLambdaMI(0), fHistAsMcProdRadiusXvsYK0s(0), // fHistAsMcProdRadiusXvsYK0sMI(0), fHistAsMcProdRadiusXvsYLambda(0), // fHistAsMcProdRadiusXvsYLambdaMI(0), fHistAsMcProdRadiusXvsYAntiLambda(0), // fHistAsMcProdRadiusXvsYAntiLambdaMI(0), fHistPidMcMassK0(0), // fHistPidMcMassK0MI(0), fHistPidMcMassLambda(0), // fHistPidMcMassLambdaMI(0), fHistPidMcMassAntiLambda(0), // fHistPidMcMassAntiLambdaMI(0), fHistAsMcMassK0(0), // fHistAsMcMassK0MI(0), fHistAsMcMassLambda(0), // fHistAsMcMassLambdaMI(0), fHistAsMcMassAntiLambda(0), // fHistAsMcMassAntiLambdaMI(0), fHistAsMcPtVsMassK0(0), // fHistAsMcPtVsMassK0MI(0), fHistAsMcPtVsMassLambda(0), // fHistAsMcPtVsMassLambdaMI(0), fHistAsMcPtVsMassAntiLambda(0), // fHistAsMcPtVsMassAntiLambdaMI(0), fHistAsMcMassVsRadiusK0(0), // fHistAsMcMassVsRadiusK0MI(0), fHistAsMcMassVsRadiusLambda(0), // fHistAsMcMassVsRadiusLambdaMI(0), fHistAsMcMassVsRadiusAntiLambda(0), // fHistAsMcMassVsRadiusAntiLambdaMI(0), fHistAsMcResxK0(0), fHistAsMcResyK0(0), fHistAsMcReszK0(0), fHistAsMcResrVsRadiusK0(0), fHistAsMcReszVsRadiusK0(0), // fHistAsMcResxK0MI(0), // fHistAsMcResyK0MI(0), // fHistAsMcReszK0MI(0), // fHistAsMcResrVsRadiusK0MI(0), // fHistAsMcReszVsRadiusK0MI(0), fHistAsMcResxLambda(0), fHistAsMcResyLambda(0), fHistAsMcReszLambda(0), fHistAsMcResrVsRadiusLambda(0), fHistAsMcReszVsRadiusLambda(0), // fHistAsMcResxLambdaMI(0), // fHistAsMcResyLambdaMI(0), // fHistAsMcReszLambdaMI(0), // fHistAsMcResrVsRadiusLambdaMI(0), // fHistAsMcReszVsRadiusLambdaMI(0), fHistAsMcResxAntiLambda(0), fHistAsMcResyAntiLambda(0), fHistAsMcReszAntiLambda(0), fHistAsMcResrVsRadiusAntiLambda(0), fHistAsMcReszVsRadiusAntiLambda(0), // fHistAsMcResxAntiLambdaMI(0), // fHistAsMcResyAntiLambdaMI(0), // fHistAsMcReszAntiLambdaMI(0), // fHistAsMcResrVsRadiusAntiLambdaMI(0), // fHistAsMcReszVsRadiusAntiLambdaMI(0), fHistAsMcResPtK0(0), // fHistAsMcResPtK0MI(0), fHistAsMcResPtLambda(0), // fHistAsMcResPtLambdaMI(0), fHistAsMcResPtAntiLambda(0), // fHistAsMcResPtAntiLambdaMI(0), fHistAsMcResPtVsRapK0(0), // fHistAsMcResPtVsRapK0MI(0), fHistAsMcResPtVsRapLambda(0), // fHistAsMcResPtVsRapLambdaMI(0), fHistAsMcResPtVsRapAntiLambda(0), // fHistAsMcResPtVsRapAntiLambdaMI(0), fHistAsMcResPtVsPtK0(0), // fHistAsMcResPtVsPtK0MI(0), fHistAsMcResPtVsPtLambda(0), // fHistAsMcResPtVsPtLambdaMI(0), fHistAsMcResPtVsPtAntiLambda(0), // fHistAsMcResPtVsPtAntiLambdaMI(0), fHistAsMcMotherPdgCodeK0s(0), // fHistAsMcMotherPdgCodeK0sMI(0), fHistAsMcMotherPdgCodeLambda(0), // fHistAsMcMotherPdgCodeLambdaMI(0), fHistAsMcMotherPdgCodeAntiLambda(0), // fHistAsMcMotherPdgCodeAntiLambdaMI(0), fHistAsMcPtLambdaFromSigma(0), // fHistAsMcPtLambdaFromSigmaMI(0), fHistAsMcPtAntiLambdaFromSigma(0), // fHistAsMcPtAntiLambdaFromSigmaMI(0), fHistAsMcSecondaryPtVsRapK0s(0), // fHistAsMcSecondaryPtVsRapK0sMI(0), fHistAsMcSecondaryPtVsRapLambda(0), // fHistAsMcSecondaryPtVsRapLambdaMI(0), fHistAsMcSecondaryPtVsRapAntiLambda(0), // fHistAsMcSecondaryPtVsRapAntiLambdaMI(0), fHistAsMcSecondaryProdRadiusK0s(0), // fHistAsMcSecondaryProdRadiusK0sMI(0), fHistAsMcSecondaryProdRadiusLambda(0), // fHistAsMcSecondaryProdRadiusLambdaMI(0), fHistAsMcSecondaryProdRadiusAntiLambda(0), // fHistAsMcSecondaryProdRadiusAntiLambdaMI(0), fHistAsMcSecondaryProdRadiusXvsYK0s(0), // fHistAsMcSecondaryProdRadiusXvsYK0sMI(0), fHistAsMcSecondaryProdRadiusXvsYLambda(0), // fHistAsMcSecondaryProdRadiusXvsYLambdaMI(0), fHistAsMcSecondaryProdRadiusXvsYAntiLambda(0), // fHistAsMcSecondaryProdRadiusXvsYAntiLambdaMI(0), fHistAsMcSecondaryMotherPdgCodeK0s(0), // fHistAsMcSecondaryMotherPdgCodeK0sMI(0), fHistAsMcSecondaryMotherPdgCodeLambda(0), // fHistAsMcSecondaryMotherPdgCodeLambdaMI(0), fHistAsMcSecondaryMotherPdgCodeAntiLambda(0), // fHistAsMcSecondaryMotherPdgCodeAntiLambdaMI(0), fHistAsMcSecondaryPtLambdaFromSigma(0), // fHistAsMcSecondaryPtLambdaFromSigmaMI(0), fHistAsMcSecondaryPtAntiLambdaFromSigma(0) // fHistAsMcSecondaryPtAntiLambdaFromSigmaMI(0) { // Constructor //New V0 cuts /* fCuts[0]=33; // max allowed chi2 fCuts[1]=0.05; // min allowed impact parameter for the 1st daughter fCuts[2]=0.05; // min allowed impact parameter for the 2nd daughter fCuts[3]=0.5; // max allowed DCA between the daughter tracks fCuts[4]=0.00; // max allowed cosine of V0's pointing angle fCuts[5]=0.2; // min radius of the fiducial volume fCuts[6]=100; // max radius of the fiducial volume */ // Define output slots only here // Output slot #1 writes into a TList container DefineOutput(1, TList::Class()); DefineOutput(2, AliAnalysisCentralitySelector::Class()); } //________________________________________________________________________ void AliAnalysisTaskPerformanceStrange::UserCreateOutputObjects() { //****************** // Create histograms //******************* fListHist = new TList(); fListHist->SetOwner(); // Bo: tbd: condition before allocation (i.e. if (!fHistMCMultiplicityPrimary){...} for each histo... //*************** // MC histograms //*************** // Primary Vertex: fHistMCPrimaryVertexX = new TH1F("h1MCPrimaryVertexX", "MC Primary Vertex Position X;Primary Vertex Position X (cm);Events",100,-0.5,0.5); fListHist->Add(fHistMCPrimaryVertexX); fHistMCPrimaryVertexY = new TH1F("h1MCPrimaryVertexY", "MC Primary Vertex Position Y;Primary Vertex Position Y (cm);Events",100,-0.5,0.5); fListHist->Add(fHistMCPrimaryVertexY); fHistMCPrimaryVertexZ = new TH1F("h1MCPrimaryVertexZ", "MC Primary Vertex Position Z;Primary Vertex Position Z (cm);Events",200,-20,20); fListHist->Add(fHistMCPrimaryVertexZ); // Multiplicity fHistMCMultiplicityPrimary = new TH1F("h1MCMultiplicityPrimary", "MC Primary Particles;NPrimary;Count", 201, -0.5, 200.5); fListHist->Add(fHistMCMultiplicityPrimary); fHistMCMultiplicityTracks = new TH1F("h1MCMultiplicityTracks", "MC Tracks;Ntracks;Count", 201, -0.5, 200.5); fListHist->Add(fHistMCMultiplicityTracks); // Production Radius of non-primary particles: fHistMCtracksProdRadiusK0s = new TH2F("h2MCtracksProdRadiusK0s","Non-primary MC K^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); fListHist->Add(fHistMCtracksProdRadiusK0s); fHistMCtracksProdRadiusLambda = new TH2F("h2MCtracksProdRadiusLambda","Non-primary MC #Lambda^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); fListHist->Add(fHistMCtracksProdRadiusLambda); fHistMCtracksProdRadiusAntiLambda = new TH2F("h2MCtracksProdRadiusAntiLambda","Non-primary MC #bar{#Lambda}^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); fListHist->Add(fHistMCtracksProdRadiusAntiLambda); // Decay Radius of non-primary particles: fHistMCtracksDecayRadiusK0s = new TH1F("h1MCtracksDecayRadiusK0s","Non-primary MC K^{0} Decay Radius;r (cm)",101,-1,100); fListHist->Add(fHistMCtracksDecayRadiusK0s); fHistMCtracksDecayRadiusLambda = new TH1F("h1MCtracksDecayRadiusLambda","Non-primary MC #Lambda^{0} Decay Radius;r (cm)",101,-1,100); fListHist->Add(fHistMCtracksDecayRadiusLambda); fHistMCtracksDecayRadiusAntiLambda = new TH1F("h1MCtracksDecayRadiusAntiLambda","Non-primary #bar{#Lambda}^{0} Decay Radius;r (cm)",100,1,101); fListHist->Add(fHistMCtracksDecayRadiusAntiLambda); // Pt Distribution of non-primary particles: fHistMCPtAllK0s = new TH1F("h1MCPtAllK0s", "Non-primary MC K^{0};p_{t} (GeV/c);Counts",240,0,12); fListHist->Add(fHistMCPtAllK0s); fHistMCPtAllLambda = new TH1F("h1MCPtAllLambda", "Non-primary MC #Lambda^{0};p_{t} (GeV/c);Counts",240,0,12); fListHist->Add(fHistMCPtAllLambda); fHistMCPtAllAntiLambda = new TH1F("h1MCPtAllAntiLambda", "Non-primary MC #bar{#Lambda}^{0};p_{t} (GeV/c);Counts",240,0,12); fListHist->Add(fHistMCPtAllAntiLambda); // Production Radius fHistMCProdRadiusK0s = new TH1F("h1MCProdRadiusK0s", "MC K^{0} Production Radius;r (cm);Count", 400, -2, 2); fListHist->Add(fHistMCProdRadiusK0s); fHistMCProdRadiusLambda = new TH1F("h1MCProdRadiusLambda", "MC #Lambda^{0} Production Radius;r (cm);Count", 400, -2, 2); fListHist->Add(fHistMCProdRadiusLambda); fHistMCProdRadiusAntiLambda = new TH1F("h1MCProdRadiusAntiLambda", "MC #bar{#Lambda}^{0} Production Radius;r (cm);Count", 400, -2, 2); fListHist->Add(fHistMCProdRadiusAntiLambda); // Rapidity distribution: fHistMCRapK0s = new TH1F("h1MCRapK0s", "K^{0};y",160,-4,4); fListHist->Add(fHistMCRapK0s); fHistMCRapInPtRangeK0s = new TH1F("h1MCRapInPtRangeK0s", "K^{0};y",160,-4,4); fListHist->Add(fHistMCRapInPtRangeK0s); fHistMCRapLambda = new TH1F("h1MCRapLambda", "#Lambda;y",160,-4,4); fListHist->Add(fHistMCRapLambda); fHistMCRapInPtRangeLambda = new TH1F("h1MCRapInPtRangeLambda", "#Lambda;y",160,-4,4); fListHist->Add(fHistMCRapInPtRangeLambda); fHistMCRapAntiLambda = new TH1F("h1MCRapAntiLambda", "#bar{#Lambda};y",160,-4,4); fListHist->Add(fHistMCRapAntiLambda); fHistMCRapInPtRangeAntiLambda = new TH1F("h1MCRapInPtRangeAntiLambda", "#bar{#Lambda};y",160,-4,4); fListHist->Add(fHistMCRapInPtRangeAntiLambda); fHistMCRapXi = new TH1F("h1MCRapXi", "Xi;y",160,-4,4); fListHist->Add(fHistMCRapXi); fHistMCRapInPtRangeXi = new TH1F("h1MCRapInPtRangeXi", "Xi;y",160,-4,4); fListHist->Add(fHistMCRapInPtRangeXi); fHistMCRapPhi = new TH1F("h1MCRapPhi", "Phi;y",160,-4,4); fListHist->Add(fHistMCRapPhi); fHistMCRapInPtRangePhi = new TH1F("h1MCRapInPtRangePhi", "Phi;y",160,-4,4); fListHist->Add(fHistMCRapInPtRangePhi); // Pt distribution: fHistMCPtK0s = new TH1F("h1MCPtK0s", "K^{0};p_{t} (GeV/c)",240,0,12); fListHist->Add(fHistMCPtK0s); fHistMCPtLambda = new TH1F("h1MCPtLambda", "#Lambda^{0};p_{t} (GeV/c)",240,0,12); fListHist->Add(fHistMCPtLambda); // Pt distribution of Lambda coming from Sigma decay fHistMCPtLambdaFromSigma = new TH1F("h1MCPtLambdaFromSigma", "#Lambda^{0};p_{t} (GeV/c)",240,0,12); fListHist->Add(fHistMCPtLambdaFromSigma); fHistMCPtAntiLambdaFromSigma = new TH1F("h1MCPtAntiLambdaFromSigma", "#Lambda^{0};p_{t} (GeV/c)",240,0,12); fListHist->Add(fHistMCPtAntiLambdaFromSigma); // Multiple reconstruction studies fHistNTimesRecK0s = new TH1F("h1NTimesRecK0s","number of times a K0s is reconstructed in -1Add(fHistNTimesRecK0s); // fHistNTimesRecK0sMI = new TH1F("h1NTimesRecK0sMI","number of times a K0s MI is reconstructed in -1Add(fHistNTimesRecK0sMI); fHistNTimesRecLambda = new TH1F("h1NTimesRecLambda","number of times a Lambda is reconstructed in -1Add(fHistNTimesRecLambda); // fHistNTimesRecLambdaMI = new TH1F("h1NTimesRecLambdaMI","number of times a Lambda MI is reconstructed in -1Add(fHistNTimesRecLambdaMI); fHistNTimesRecAntiLambda = new TH1F("h1NTimesRecAntiLambda","number of times an AntiLambda is reconstructed in -1Add(fHistNTimesRecAntiLambda); // fHistNTimesRecAntiLambdaMI = new TH1F("h1NTimesRecAntiLambdaMI","number of times an AntiLambda MI is reconstructed in -1Add(fHistNTimesRecAntiLambdaMI); fHistNTimesRecK0sVsPt = new TH2F("h2NTimesRecK0sVsPt","NTimes versus Pt, K^{0} in -1Add(fHistNTimesRecK0sVsPt); // fHistNTimesRecK0sVsPtMI = new TH2F("h2NTimesRecK0sVsPtMI","NTimes versus Pt, K^{0}, on-the-fly finder, in -1Add(fHistNTimesRecK0sVsPtMI); fHistNTimesRecLambdaVsPt = new TH2F("h2NTimesRecLambdaVsPt","NTimes versus Pt, #Lambda^{0} in -1Add(fHistNTimesRecLambdaVsPt); // fHistNTimesRecLambdaVsPtMI = new TH2F("h2NTimesRecLambdaVsPtMI","NTimes versus Pt, #Lambda^{0} on-the-fly finder in -1Add(fHistNTimesRecLambdaVsPtMI); fHistNTimesRecAntiLambdaVsPt = new TH2F("h2NTimesRecAntiLambdaVsPt","NTimes versus Pt, #bar{#Lambda}^{0} in -1Add(fHistNTimesRecAntiLambdaVsPt); // fHistNTimesRecAntiLambdaVsPtMI= new TH2F("h2NTimesRecAntiLambdaVsPtMI","NTimes versus Pt, #bar{#Lambda}^{0}, on-the-fly finder in -1Add(fHistNTimesRecAntiLambdaVsPtMI); //*********************************** // Reconstructed particles histograms //*********************************** // Number of events; fHistNumberEvents = new TH1F("h1NumberEvents", "Number of events; index;Number of Events",10,0,10); fListHist->Add(fHistNumberEvents); // multiplicity fHistTrackPerEvent = new TH1F("h1TrackPerEvent", "Tracks per event;Number of Tracks;Number of Events",1000,0,1000); fListHist->Add(fHistTrackPerEvent); fHistTrackletPerEvent = new TH1F("h1TrackletPerEvent", "Number of tracklets;Number of tracklets per events;Number of events",1000,0,1000); fListHist->Add(fHistTrackletPerEvent); fHistMCDaughterTrack = new TH1F("h1MCDaughterTrack","Distribution of mc id for daughters;id tags;Counts",15,0,15); fListHist->Add(fHistMCDaughterTrack); // Primary Vertex: fHistSPDPrimaryVertexZ = new TH1F("h1SPDPrimaryVertexZ", "SPD Primary Vertex Position Z;Primary Vertex Position Z (cm);Events",200,-20,20); fListHist->Add(fHistSPDPrimaryVertexZ); fHistPrimaryVertexX = new TH1F("h1PrimaryVertexX", "Primary Vertex Position X;Primary Vertex Position X (cm);Events",100,-0.5,0.5); fListHist->Add(fHistPrimaryVertexX); fHistPrimaryVertexY = new TH1F("h1PrimaryVertexY", "Primary Vertex Position Y;Primary Vertex Position Y (cm);Events",100,-0.5,0.5); fListHist->Add(fHistPrimaryVertexY); fHistPrimaryVertexZ = new TH1F("h1PrimaryVertexZ", "Primary Vertex Position Z;Primary Vertex Position Z (cm);Events",200,-20,20); fListHist->Add(fHistPrimaryVertexZ); // Primary vertex resolution fHistPrimaryVertexResX = new TH1F("h1PrimaryVertexResX", "Primary Vertex Resolution X;Primary Vertex Resolution X (cm);Events",100,-0.25,0.25); fListHist->Add(fHistPrimaryVertexResX); fHistPrimaryVertexResY = new TH1F("h1PrimaryVertexResY", "Primary Vertex Resolution Y;Primary Vertex Resolution Y (cm);Events",100,-0.25,0.25); fListHist->Add(fHistPrimaryVertexResY); fHistPrimaryVertexResZ = new TH1F("h1PrimaryVertexResZ", "Primary Vertex Resolution Z;Primary Vertex Resolution Z (cm);Events",200,-0.25,0.25); fListHist->Add(fHistPrimaryVertexResZ); // Primary Vertex in events with V0 candidates: fHistPrimaryVertexPosXV0events = new TH1F("h1PrimaryVertexPosXV0events", "Primary Vertex Position X;Primary Vertex Position X (cm);Events",100,-0.5,0.5); fListHist->Add(fHistPrimaryVertexPosXV0events); fHistPrimaryVertexPosYV0events = new TH1F("h1PrimaryVertexPosYV0events", "Primary Vertex Position Y;Primary Vertex Position Y (cm);Events",100,-0.5,0.5); fListHist->Add(fHistPrimaryVertexPosYV0events); fHistPrimaryVertexPosZV0events = new TH1F("h1PrimaryVertexPosZV0events", "Primary Vertex Position Z;Primary Vertex Position Z (cm);Events",200,-20.0,20.0); fListHist->Add(fHistPrimaryVertexPosZV0events); // Daughters Pt: fHistDaughterPt = new TH2F("h2DaughterPt", "Daughter Pt;Positive Daughter Pt; Negative Daughter Pt",200,0,2,200,0,2); fListHist->Add(fHistDaughterPt); // Cut checks: fHistDcaPosToPrimVertex = new TH2F("h2DcaPosToPrimVertex", "Positive V0 daughter;dca(cm);Status",500,0,5,2,-0.5,1.5); fListHist->Add(fHistDcaPosToPrimVertex); fHistDcaNegToPrimVertex = new TH2F("h2DcaNegToPrimVertex", "Negative V0 daughter;dca(cm);Status",500,0,5,2,-0.5,1.5); fListHist->Add(fHistDcaNegToPrimVertex); fHistDcaPosToPrimVertexZoom = new TH2F("h2DcaPosToPrimVertexZoom", "Positive V0 daughter;dca(cm);Status",100,0,0.1,2,-0.5,1.5); fListHist->Add(fHistDcaPosToPrimVertexZoom); fHistDcaNegToPrimVertexZoom = new TH2F("h2DcaNegToPrimVertexZoom", "Negative V0 daughter;dca(cm);Status",100,0,0.1,2,-0.5,1.5); fListHist->Add(fHistDcaNegToPrimVertexZoom); fHistRadiusV0 = new TH2F("h2RadiusV0", "Radius;Radius(cm);Status",1200,0,120,2,-0.5,1.5); fListHist->Add(fHistRadiusV0); fHistDecayLengthV0 = new TH2F("h2DecayLengthV0", "V0s decay Length;decay length(cm);Status", 240, 0, 120,2,-0.5,1.5); fListHist->Add(fHistDecayLengthV0); fHistDcaV0Daughters = new TH2F("h2DcaV0Daughters", "DCA between daughters;dca(cm);Status", 160, 0, 4,2,-0.5,1.5); fListHist->Add(fHistDcaV0Daughters); fHistChi2 = new TH2F("h2Chi2", "V0s chi2;chi2;Status", 33, 0, 33,2,-0.5,1.5); fListHist->Add(fHistChi2); fHistCosPointAngle = new TH2F("h2CosPointAngle", "Cosine of V0's pointing angle", 100,0,1,2,-0.5,1.5); fListHist->Add(fHistCosPointAngle); fHistCosPointAngleZoom = new TH2F("h2CosPointAngleZoom", "Cosine of V0's pointing angle", 100,0.9,1,2,-0.5,1.5); fListHist->Add(fHistCosPointAngleZoom); fHistProdRadius = new TH2F("h2ProdRadius", "Production position;x (cm);y (cm)", 100,-50,50,100,-50,50); fListHist->Add(fHistProdRadius); // fHistProdRadiusMI = new TH2F("h2ProdRadiusMI", "Production position, V0s MI;x (cm);y (cm)", 100,-50,50,100,-50,50); // fListHist->Add(fHistProdRadiusMI); // V0 Multiplicity if (!fHistV0Multiplicity) { if (fCollidingSystems) fHistV0Multiplicity = new TH1F("fHistV0Multiplicity", "Multiplicity distribution;Number of Offline V0s;Events", 200, 0, 40000); else fHistV0Multiplicity = new TH1F("fHistV0Multiplicity", "Multiplicity distribution;Number of Offline V0s;Events", 10, 0, 10); fListHist->Add(fHistV0Multiplicity); } /* if (!fHistV0MultiplicityMI) { if (fCollidingSystems) fHistV0MultiplicityMI = new TH1F("fHistV0MultiplicityMI", "Multiplicity distribution;Number of On-the-fly V0s;Events", 200, 0, 40000); else fHistV0MultiplicityMI = new TH1F("fHistV0MultiplicityMI", "Multiplicity distribution;Number of On-the-fly V0s;Events", 10, 0, 10); fListHist->Add(fHistV0MultiplicityMI); } */ // AliKF Chi2 fHistChi2KFBeforeCutK0s = new TH2F("h1Chi2KFBeforeCutK0s", "K^{0} candidates;#Chi^{2});Counts", 250, 0, 50, 2,-0.5,1.5); fListHist->Add(fHistChi2KFBeforeCutK0s); fHistChi2KFBeforeCutLambda = new TH2F("h1Chi2KFBeforeCutLambda", "#Lambda^{0} candidates;#Chi^{2};Counts", 250, 0, 50, 2,-0.5,1.5); fListHist->Add(fHistChi2KFBeforeCutLambda); fHistChi2KFBeforeCutAntiLambda = new TH2F("h1Chi2KFBeforeCutAntiLambda", "#bar{#Lambda}^{0} candidates;#Chi^{2};Counts", 250, 0, 50, 2,-0.5,1.5); fListHist->Add(fHistChi2KFBeforeCutAntiLambda); fHistChi2KFAfterCutK0s = new TH2F("h1Chi2KFAfterCutK0s", "K^{0} candidates;#Chi^{2});Counts", 250, 0, 50, 2,-0.5,1.5); fListHist->Add(fHistChi2KFAfterCutK0s); fHistChi2KFAfterCutLambda = new TH2F("h1Chi2KFAfterCutLambda", "#Lambda^{0} candidates;#Chi^{2};Counts", 250, 0, 50, 2,-0.5,1.5); fListHist->Add(fHistChi2KFAfterCutLambda); fHistChi2KFAfterCutAntiLambda = new TH2F("h1Chi2KFAfterCutAntiLambda", "#bar{#Lambda}^{0} candidates;#Chi^{2};Counts", 250, 0, 50, 2,-0.5,1.5); fListHist->Add(fHistChi2KFAfterCutAntiLambda); // Mass: fHistMassK0 = new TH1F("h1MassK0", "K^{0} candidates;M(#pi^{+}#pi^{-}) (GeV/c^{2});Counts", 100, 0.4, 0.6); fListHist->Add(fHistMassK0); // fHistMassK0MI = new TH1F("h1MassK0MI", "K^{0} candidates;M(#pi^{+}#pi^{-}) (GeV/c^{2});Counts", 100, 0.4, 0.6); // fListHist->Add(fHistMassK0MI); fHistMassLambda = new TH1F("h1MassLambda", "#Lambda^{0} candidates;M(p#pi^{-}) (GeV/c^{2});Counts", 75, 1.05, 1.2); fListHist->Add(fHistMassLambda); // fHistMassLambdaMI = new TH1F("h1MassLambdaMI", "#Lambda^{0} candidates;M(p#pi^{-}) (GeV/c^{2});Counts", 75, 1.05, 1.2); // fListHist->Add(fHistMassLambdaMI); fHistMassAntiLambda = new TH1F("h1MassAntiLambda", "#bar{#Lambda}^{0} candidates;M(#bar{p}#pi^{+}) (GeV/c^{2});Counts", 75, 1.05, 1.2); fListHist->Add(fHistMassAntiLambda); // fHistMassAntiLambdaMI = new TH1F("h1MassAntiLambdaMI", "#bar{#Lambda}^{0} candidates;M(#bar{p}#pi^{+}) (GeV/c^{2});Counts", 75, 1.05, 1.2); // fListHist->Add(fHistMassAntiLambdaMI); // invariant mass vs radius const Double_t radius[10] = {0.0,2.5,2.9,3.9,7.6,15.0,23.9,37.8,42.8,100.0}; Int_t lNbinRadius = 9; Int_t lNbinInvMassLambda = 300; fHistMassVsRadiusK0 = new TH2F("h2MassVsRadiusK0", "K^{0} candidates;radius (cm);M(#pi^{+}#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, 200, 0.4, 0.6); fListHist->Add(fHistMassVsRadiusK0); // fHistMassVsRadiusK0MI = new TH2F("h2MassVsRadiusK0MI", "K^{0} MI candidates;radius (cm);M(#pi^{+}#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, 200, 0.4, 0.6); // fListHist->Add(fHistMassVsRadiusK0MI); fHistMassVsRadiusLambda = new TH2F("h2MassVsRadiusLambda", "#Lambda candidates;radius (cm);M(p#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, 140, 1.06, 1.2); fListHist->Add(fHistMassVsRadiusLambda); // fHistMassVsRadiusLambdaMI = new TH2F("h2MassVsRadiusLambdaMI", "#Lambda MI candidates;radius (cm);M(p#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, 140, 1.06, 1.2); // fListHist->Add(fHistMassVsRadiusLambdaMI); fHistMassVsRadiusAntiLambda = new TH2F("h2MassVsRadiusAntiLambda", "#bar{#Lambda} candidates;radius (cm);M(#bar{p}#pi^{+}) (GeV/c^{2})",lNbinRadius,radius, 140, 1.06, 1.2); fListHist->Add(fHistMassVsRadiusAntiLambda); // fHistMassVsRadiusAntiLambdaMI = new TH2F("h2MassVsRadiusAntiLambdaMI", "#bar{#Lambda} candidates;radius (cm);M(#bar{p}#pi^{+}) (GeV/c^{2})",lNbinRadius,radius, 140, 1.06, 1.2); // fListHist->Add(fHistMassVsRadiusAntiLambdaMI); // Pt Vs Mass fHistPtVsMassK0 = new TH2F("h2PtVsMassK0","K^{0} candidates;M(#pi^{+}#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",200, 0.4, 0.6,240,0,12); fListHist->Add(fHistPtVsMassK0); // fHistPtVsMassK0MI = new TH2F("h2PtVsMassK0MI","K^{0} MIcandidates;M(#pi^{+}#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",200, 0.4, 0.6,240,0,12); // fListHist->Add(fHistPtVsMassK0MI); fHistPtVsMassLambda = new TH2F("h2PtVsMassLambda","#Lambda^{0} candidates;M(p#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",140, 1.06, 1.2,240,0,12); fListHist->Add(fHistPtVsMassLambda); // fHistPtVsMassLambdaMI = new TH2F("h2PtVsMassLambdaMI","#Lambda^{0} candidates;M(p#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",140, 1.06, 1.2,240,0,12); // fListHist->Add(fHistPtVsMassLambdaMI); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// fHistPzPtBeforeK0s = new TH1F("h1PzPtBeforeK0s","K0s; Abs(pz/pt); count",1000,0,10); fListHist->Add(fHistPzPtBeforeK0s); fHistPzPtAfterK0s = new TH1F("h1PzPtAfterK0s","K0s; Abs(pz/pt); count",1000,0,10); fListHist->Add(fHistPzPtAfterK0s); fHistPzPtBeforeLambda = new TH1F("h1PzPtBeforeLambda","#Lambda^{0}; Abs(pz/pt); count",1000,0,10); fListHist->Add(fHistPzPtBeforeLambda); fHistPzPtAfterLambda = new TH1F("h1PzPtAfterLambda","#Lambda^{0}; Abs(pz/pt); count",1000,0,10); fListHist->Add(fHistPzPtAfterLambda); /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// fHistArmenterosPodolanski = new TH2F("h2ArmenterosPodolanski","Armenteros-Podolanski phase space;#alpha;p_{t} arm",100,-1.0,1.0,50,0,0.5); // fHistArmenterosPodolanskiMI = new TH2F("h2ArmenterosPodolanskiMI","Armenteros-Podolanski phase space;#alpha;p_{t} arm",100,-1.0,1.0,50,0,0.5); //PID fHistNsigmaPosPionAntiLambda = new TH1F("h1NsigmaPosPionAntiLambda", "Positive daughter of Antilambda;NsigmaPion;Counts",25,0,5); fListHist->Add(fHistNsigmaPosPionAntiLambda); fHistNsigmaNegProtonAntiLambda = new TH1F("h1NsigmaNegProtonAntiLambda", "Negative daughter of Antilambda;NsigmaProton;Counts",25,0,5); fListHist->Add(fHistNsigmaNegProtonAntiLambda); fHistNsigmaPosProtonLambda = new TH1F("h1NsigmaPosProtonLambda", "Positive daughter of Lambda;NsigmaProton;Counts",25,0,5); fListHist->Add(fHistNsigmaPosProtonLambda); fHistNsigmaNegPionLambda = new TH1F("h1NsigmaNegPionLambda", "Negative daughter of Lambda;NsigmaPion;Counts",25,0,5); fListHist->Add(fHistNsigmaNegPionLambda); fHistNsigmaPosPionK0 = new TH1F("h1NsigmaPosPionK0", "Positive daughter of K0s;NsigmaPion;Counts",25,0,5); fListHist->Add(fHistNsigmaPosPionK0); fHistNsigmaNegPionK0 = new TH1F("h1NsigmaNegPionK0", "Negative daughter of K0s;NsigmaPion;Counts",25,0,5); fListHist->Add(fHistNsigmaNegPionK0); //******************************** // Associated particles histograms //******************************** // Rap distribution fHistAsMcRapK0 = new TH1F("h1AsMcRapK0", "K^{0} associated;eta;Counts", 60, -1.5, 1.5); fListHist->Add(fHistAsMcRapK0); // fHistAsMcRapK0MI = new TH1F("h1AsMcRapK0MI", "K^{0} associated;eta;Counts", 60, -1.5, 1.5); // fListHist->Add(fHistAsMcRapK0MI); fHistAsMcRapLambda = new TH1F("h1AsMcRapLambda", "#Lambda^{0} associated;eta;Counts", 60, -1.5, 1.5); fListHist->Add(fHistAsMcRapLambda); // fHistAsMcRapLambdaMI = new TH1F("h1AsMcRapLambdaMI", "#Lambda^{0} associated;eta;Counts", 60, -1.5, 1.5); // fListHist->Add(fHistAsMcRapLambdaMI); fHistAsMcRapAntiLambda = new TH1F("h1AsMcRapAntiLambda", "#bar{#Lambda}^{0} associated;eta;Counts", 60, -1.5, 1.5); fListHist->Add(fHistAsMcRapAntiLambda); // fHistAsMcRapAntiLambdaMI = new TH1F("h1AsMcRapAntiLambdaMI", "#bar{#Lambda}^{0} associated;eta;Counts", 60, -1.5, 1.5); // fListHist->Add(fHistAsMcRapAntiLambdaMI); //Pt distribution fHistAsMcPtK0 = new TH1F("h1AsMcPtK0", "K^{0} associated;p_{t} (GeV/c);Counts", 240,0,12); fListHist->Add(fHistAsMcPtK0); // fHistAsMcPtK0MI = new TH1F("h1AsMcPtK0MI", "K^{0} associated;p_{t} (GeV/c);Counts", 240,0,12); // fListHist->Add(fHistAsMcPtK0MI); fHistAsMcPtLambda = new TH1F("h1AsMcPtLambda", "#Lambda^{0} associated;p_{t} (GeV/c);Counts", 240,0,12); fListHist->Add(fHistAsMcPtLambda); // fHistAsMcPtAntiLambdaMI = new TH1F("h1AsMcPtAntiLambdaMI", "#bar{#Lambda}^{0} associated;p_{t} (GeV/c);Counts", 240,0,12); // fListHist->Add(fHistAsMcPtAntiLambdaMI); fHistAsMcPtZoomK0 = new TH1F("h1AsMcPtZoomK0", "K^{0} candidates in -1 Add(fHistAsMcPtZoomK0); // fHistAsMcPtZoomK0MI = new TH1F("h1AsMcPtZoomK0MI", "K^{0} MI candidates in -1 Add(fHistAsMcPtZoomK0MI); fHistAsMcPtZoomLambda = new TH1F("h1AsMcPtZoomLambda", "#Lambda^{0} candidates in -1 Add(fHistAsMcPtZoomLambda); // fHistAsMcPtZoomLambdaMI = new TH1F("h1AsMcPtZoomLambdaMI", "#Lambda^{0} MI candidates in -1 Add(fHistAsMcPtZoomLambdaMI); // Radius distribution fHistAsMcProdRadiusK0 = new TH1F("h1AsMcProdRadiusK0", "K^{0} associated;r (cm);Counts", 500, 0, 100); fListHist->Add(fHistAsMcProdRadiusK0); // fHistAsMcProdRadiusK0MI = new TH1F("h1AsMcProdRadiusK0MI", "K^{0} associated;r (cm);Counts", 500, 0, 100); // fListHist->Add(fHistAsMcProdRadiusK0MI); fHistAsMcProdRadiusLambda = new TH1F("h1AsMcProdRadiusLambda", "#Lambda^{0} associated;r (cm);Counts", 500, 0, 100); fListHist->Add(fHistAsMcProdRadiusLambda); // fHistAsMcProdRadiusLambdaMI = new TH1F("h1AsMcProdRadiusLambdaMI", "#Lambda^{0} associated;r (cm);Counts", 500, 0, 100); // fListHist->Add(fHistAsMcProdRadiusLambdaMI); fHistAsMcProdRadiusAntiLambda = new TH1F("h1AsMcProdRadiusAntiLambda", "#bar{#Lambda}^{0} associated;r (cm);Counts", 500, 0, 100); fListHist->Add(fHistAsMcProdRadiusAntiLambda); // fHistAsMcProdRadiusAntiLambdaMI = new TH1F("h1AsMcProdRadiusAntiLambdaMI", "#bar{#Lambda}^{0} associated;r (cm);Counts", 500, 0, 100); // fListHist->Add(fHistAsMcProdRadiusAntiLambdaMI); fHistAsMcProdRadiusXvsYK0s = new TH2F("h2AsMcProdRadiusXvsYK0s","Associated Secondary K^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); fListHist->Add(fHistAsMcProdRadiusXvsYK0s); // fHistAsMcProdRadiusXvsYK0sMI = new TH2F("h2AsMcProdRadiusXvsYK0sMI","Associated Secondary K^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); // fListHist->Add(fHistAsMcProdRadiusXvsYK0sMI); fHistAsMcProdRadiusXvsYLambda = new TH2F("h2AsMcProdRadiusXvsYLambda","Associated Secondary #Lambda^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); fListHist->Add(fHistAsMcProdRadiusXvsYLambda); // fHistAsMcProdRadiusXvsYLambdaMI = new TH2F("h2AsMcProdRadiusXvsYLambdaMI","Associated Secondary #Lambda^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); // fListHist->Add(fHistAsMcProdRadiusXvsYLambdaMI); fHistAsMcProdRadiusXvsYAntiLambda = new TH2F("h2AsMcProdRadiusXvsYAntiLambda","Associated Secondary #bar{#Lambda}^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); fListHist->Add(fHistAsMcProdRadiusXvsYAntiLambda); // fHistAsMcProdRadiusXvsYAntiLambdaMI = new TH2F("h2AsMcProdRadiusXvsYAntiLambdaMI","Associated Secondary #bar{#Lambda}^{0} Production Radius;x (cm); y (cm)",200,-50,50,200,-50,50); // fListHist->Add(fHistAsMcProdRadiusXvsYAntiLambdaMI); // Mass fHistPidMcMassK0 = new TH1F("h1PidMcMassK0", "K^{0} MC PId checked;M(#pi^{+}#pi^{-}) (GeV/c^{2});Counts", 100, 0.4, 0.6); fListHist->Add(fHistPidMcMassK0); // fHistPidMcMassK0MI = new TH1F("h1PidMcMassK0MI", "K^{0} MC PId checked;M(#pi^{+}#pi^{-}) (GeV/c^{2});Counts", 100, 0.4, 0.6); // fListHist->Add(fHistPidMcMassK0MI); fHistPidMcMassLambda = new TH1F("h1PidMcMassLambda", "#Lambda^{0} MC PId checked;M(p#pi^{-}) (GeV/c^{2});Counts", 75, 1.05, 1.2); fListHist->Add(fHistPidMcMassLambda); // fHistPidMcMassLambdaMI = new TH1F("h1PidMcMassLambdaMI", "#Lambda^{0} MC PId checked;M(p#pi^{-}) (GeV/c^{2});Counts", 75, 1.05, 1.2); // fListHist->Add(fHistPidMcMassLambdaMI); fHistPidMcMassAntiLambda = new TH1F("h1PidMcMassAntiLambda", "#bar{#Lambda}^{0} MC PId checked;M(#bar{p}#pi^{+}) (GeV/c^{2});Counts", 75, 1.05, 1.2); fListHist->Add(fHistPidMcMassAntiLambda); // fHistPidMcMassAntiLambdaMI = new TH1F("h1PidMcMassAntiLambdaMI", "#bar{#Lambda}^{0} MC PId checked;M(#bar{p}#pi^{+}) (GeV/c^{2});Counts", 75, 1.05, 1.2); // fListHist->Add(fHistPidMcMassAntiLambdaMI); fHistAsMcMassK0 = new TH1F("h1AsMcMassK0", "K^{0} associated;M(#pi^{+}#pi^{-}) (GeV/c^{2});Counts", 100, 0.4, 0.6); fListHist->Add(fHistAsMcMassK0); // fHistAsMcMassK0MI = new TH1F("h1AsMcMassK0MI", "K^{0} associated;M(#pi^{+}#pi^{-}) (GeV/c^{2});Counts", 100, 0.4, 0.6); // fListHist->Add(fHistAsMcMassK0MI); fHistAsMcMassLambda = new TH1F("h1AsMcMassLambda", "#Lambda^{0} associated;M(p#pi^{-}) (GeV/c^{2});Counts", 75, 1.05, 1.2); fListHist->Add(fHistAsMcMassLambda); // fHistAsMcMassLambdaMI = new TH1F("h1AsMcMassLambdaMI", "#Lambda^{0} associated;M(p#pi^{-}) (GeV/c^{2});Counts", 75, 1.05, 1.2); // fListHist->Add(fHistAsMcMassLambdaMI); fHistAsMcMassAntiLambda = new TH1F("h1AsMcMassAntiLambda", "#bar{#Lambda}^{0} associated;M(#bar{p}#pi^{+}) (GeV/c^{2});Counts", 75, 1.05, 1.2); fListHist->Add(fHistAsMcMassAntiLambda); // fHistAsMcMassAntiLambdaMI = new TH1F("h1AsMcMassAntiLambdaMI", "#bar{#Lambda}^{0} associated;M(#bar{p}#pi^{+}) (GeV/c^{2});Counts", 75, 1.05, 1.2); // fListHist->Add(fHistAsMcMassAntiLambdaMI); //Pt versus Mass fHistAsMcPtVsMassK0 = new TH2F("h2AsMcPtVsMassK0","K^{0} associated;M(#pi^{+}#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",200, 0.4, 0.6,240,0,12); fListHist->Add(fHistAsMcPtVsMassK0); // fHistAsMcPtVsMassK0MI = new TH2F("h2AsMcPtVsMassK0MI","K^{0} MIassociated;M(#pi^{+}#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",200, 0.4, 0.6,240,0,12); // fListHist->Add(fHistAsMcPtVsMassK0MI); fHistAsMcPtVsMassLambda = new TH2F("h2AsMcPtVsMassLambda","#Lambda^{0} associated;M(p#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",140, 1.06, 1.2,240,0,12); fListHist->Add(fHistAsMcPtVsMassLambda); // fHistAsMcPtVsMassLambdaMI = new TH2F("h2AsMcPtVsMassLambdaMI","#Lambda^{0} associated;M(p#pi^{-}) (GeV/c^{2});p_{t} (GeV/c)",140, 1.06, 1.2,240,0,12); // fListHist->Add(fHistAsMcPtVsMassLambdaMI); fHistAsMcPtVsMassAntiLambda = new TH2F("h2AsMcPtVsMassAntiLambda","#bar{#Lambda}^{0} associated;M(#bar{p}#pi^{+}) (GeV/c^{2});p_{t} (GeV/c)",140, 1.06, 1.2,240,0,12); fListHist->Add(fHistAsMcPtVsMassAntiLambda); // fHistAsMcPtVsMassAntiLambdaMI = new TH2F("h2AsMcPtVsMassAntiLambdaMI","#bar{#Lambda}^{0} associated;M(#bar{p}#pi^{+}) (GeV/c^{2});p_{t} (GeV/c)",140, 1.06, 1.2,240,0,12); // fListHist->Add(fHistAsMcPtVsMassAntiLambdaMI); // invariant mass vs radius fHistAsMcMassVsRadiusK0 = new TH2F("h2AsMcMassVsRadiusK0", "K^{0} associated;radius (cm);M(#pi^{+}#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, 500, 0.47, 0.52); fListHist->Add(fHistAsMcMassVsRadiusK0); // fHistAsMcMassVsRadiusK0MI = new TH2F("h2AsMcMassVsRadiusK0MI", "K^{0} MI associated;radius (cm);M(#pi^{+}#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, 500, 0.47, 0.52); // fListHist->Add(fHistAsMcMassVsRadiusK0MI); fHistAsMcMassVsRadiusLambda = new TH2F("h2AsMcMassVsRadiusLambda", "#Lambda associated;radius (cm);M(p#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, lNbinInvMassLambda, 1.10, 1.13); fListHist->Add(fHistAsMcMassVsRadiusLambda); // fHistAsMcMassVsRadiusLambdaMI = new TH2F("h2AsMcMassVsRadiusLambdaMI", "#Lambda MI associated;radius (cm);M(p#pi^{-}) (GeV/c^{2})",lNbinRadius,radius, lNbinInvMassLambda, 1.10, 1.13); // fListHist->Add(fHistAsMcMassVsRadiusLambdaMI); fHistAsMcMassVsRadiusAntiLambda = new TH2F("h2AsMcMassVsRadiusAntiLambda", "#bar{#Lambda} associated;radius (cm);M(#bar{p}#pi^{+}) (GeV/c^{2})",lNbinRadius,radius,lNbinInvMassLambda , 1.10, 1.13); fListHist->Add(fHistAsMcMassVsRadiusAntiLambda); // fHistAsMcMassVsRadiusAntiLambdaMI = new TH2F("h2AsMcMassVsRadiusAntiLambdaMI", "#bar{#Lambda} MI associated;radius (cm);M(#bar{p}#pi^{+}) (GeV/c^{2})",lNbinRadius,radius,lNbinInvMassLambda , 1.10, 1.13); // fListHist->Add(fHistAsMcMassVsRadiusAntiLambdaMI); // Position Resolution fHistAsMcResxK0 = new TH1F("h1AsMcResxK0", "K^{0} associated;#Delta x (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcResxK0); fHistAsMcResyK0 = new TH1F("h1AsMcResyK0", "K^{0} associated;#Delta y (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcResyK0); fHistAsMcReszK0 = new TH1F("h1AsMcReszK0", "K^{0} associated;#Delta z (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcReszK0); fHistAsMcResrVsRadiusK0 = new TH2F("h2AsMcResrVsRadiusK0", "K^{0} associated;Radius (cm);#Delta r (cm)",200,0.0,50., 50, -0.25, 0.25); fListHist->Add(fHistAsMcResrVsRadiusK0); fHistAsMcReszVsRadiusK0 = new TH2F("h2AsMcReszVsRadiusK0", "K^{0} associated;Radius (cm);#Delta z (cm)",200,0.0,50.0, 50, -0.25, 0.25); fListHist->Add(fHistAsMcReszVsRadiusK0); // fHistAsMcResxK0MI = new TH1F("h1AsMcResxK0MI", "K^{0} MI associated;#Delta x (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResxK0MI); // fHistAsMcResyK0MI = new TH1F("h1AsMcResyK0MI", "K^{0} MI associated;#Delta y (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResyK0MI); // fHistAsMcReszK0MI = new TH1F("h1AsMcReszK0MI", "K^{0} MI associated;#Delta z (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcReszK0MI); // fHistAsMcResrVsRadiusK0MI = new TH2F("h2AsMcResrVsRadiusK0MI", "K^{0} MI associated;Radius (cm);#Delta r (cm)",8,radius, 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResrVsRadiusK0MI); // fHistAsMcReszVsRadiusK0MI = new TH2F("h2AsMcReszVsRadiusK0MI", "K^{0} MI associated;Radius (cm);#Delta z (cm)",8,radius, 50, -0.25, 0.25); // fListHist->Add(fHistAsMcReszVsRadiusK0MI); fHistAsMcResxLambda = new TH1F("h1AsMcResxLambda", "#Lambda^{0} associated;#Delta x (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcResxLambda); fHistAsMcResyLambda = new TH1F("h1AsMcResyLambda", "#Lambda^{0} associated;#Delta y (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcResyLambda); fHistAsMcReszLambda = new TH1F("h1AsMcReszLambda", "#Lambda^{0} associated;#Delta z (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcReszLambda); fHistAsMcResrVsRadiusLambda = new TH2F("h2AsMcResrVsRadiusLambda", "#Lambda^{0} associated;Radius (cm);#Delta r (cm)",200,0.0,50.0, 50, -0.25, 0.25); fListHist->Add(fHistAsMcResrVsRadiusLambda); fHistAsMcReszVsRadiusLambda = new TH2F("h2AsMcReszVsRadiusLambda", "#Lambda^{0} associated;Radius (cm);#Delta z (cm)",200,0.0,50.0, 50, -0.25, 0.25); fListHist->Add(fHistAsMcReszVsRadiusLambda); // fHistAsMcResxLambdaMI = new TH1F("h1AsMcResxLambdaMI", "#Lambda^{0} MI associated;#Delta x (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResxLambdaMI); // fHistAsMcResyLambdaMI = new TH1F("h1AsMcResyLambdaMI", "#Lambda^{0} MI associated;#Delta y (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResyLambdaMI); // fHistAsMcReszLambdaMI = new TH1F("h1AsMcReszLambdaMI", "#Lambda^{0} MI associated;#Delta z (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcReszLambdaMI); // fHistAsMcResrVsRadiusLambdaMI = new TH2F("h2AsMcResrVsRadiusLambdaMI", "#Lambda^{0} MI associated;Radius (cm);#Delta r (cm)",8,radius, 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResrVsRadiusLambdaMI); // fHistAsMcReszVsRadiusLambdaMI = new TH2F("h2AsMcReszVsRadiusLambdaMI", "#Lambda^{0} MI associated;Radius (cm);#Delta z (cm)",8,radius, 50, -0.25, 0.25); // fListHist->Add(fHistAsMcReszVsRadiusLambdaMI); fHistAsMcResxAntiLambda = new TH1F("h1AsMcResxAntiLambda", "#bar{#Lambda}^{0} associated;#Delta x (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcResxAntiLambda); fHistAsMcResyAntiLambda = new TH1F("h1AsMcResyAntiLambda", "#bar{#Lambda}^{0} associated;#Delta y (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcResyAntiLambda); fHistAsMcReszAntiLambda = new TH1F("h1AsMcReszAntiLambda", "#bar{#Lambda}^{0} associated;#Delta z (cm);Counts", 50, -0.25, 0.25); fListHist->Add(fHistAsMcReszAntiLambda); fHistAsMcResrVsRadiusAntiLambda = new TH2F("h2AsMcResrVsRadiusAntiLambda", "#bar{#Lambda}^{0} associated;Radius (cm);#Delta r (cm)",200,0.0,50.0, 50, -0.25, 0.25); fListHist->Add(fHistAsMcResrVsRadiusAntiLambda); fHistAsMcReszVsRadiusAntiLambda = new TH2F("h2AsMcReszVsRadiusAntiLambda", "#bar{#Lambda}^{0} associated;Radius (cm);#Delta z (cm)",200,0.0,50.0, 50, -0.25, 0.25); fListHist->Add(fHistAsMcReszVsRadiusAntiLambda); // fHistAsMcResxAntiLambdaMI = new TH1F("h1AsMcResxAntiLambdaMI", "#bar{#Lambda}^{0} MI associated;#Delta x (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResxAntiLambdaMI); // fHistAsMcResyAntiLambdaMI = new TH1F("h1AsMcResyAntiLambdaMI", "#bar{#Lambda}^{0} MI associated;#Delta y (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResyAntiLambdaMI); // fHistAsMcReszAntiLambdaMI = new TH1F("h1AsMcReszAntiLambdaMI", "#bar{#Lambda}^{0} MI associated;#Delta z (cm);Counts", 50, -0.25, 0.25); // fListHist->Add(fHistAsMcReszAntiLambdaMI); // fHistAsMcResrVsRadiusAntiLambdaMI = new TH2F("h2AsMcResrVsRadiusAntiLambdaMI", "#bar{#Lambda}^{0} MI associated;Radius (cm);#Delta r (cm)",8,radius, 50, -0.25, 0.25); // fListHist->Add(fHistAsMcResrVsRadiusAntiLambdaMI); // fHistAsMcReszVsRadiusAntiLambdaMI = new TH2F("h2AsMcReszVsRadiusAntiLambdaMI", "#bar{#Lambda}^{0} MI associated;Radius (cm);#Delta z (cm)",8,radius, 50, -0.25, 0.25); // fListHist->Add(fHistAsMcReszVsRadiusAntiLambdaMI); // Pt Resolution fHistAsMcResPtK0 = new TH1F("h1AsMcResPtK0","Pt Resolution K^{0};#Delta Pt;Counts",200,-1,1); fListHist->Add(fHistAsMcResPtK0); // fHistAsMcResPtK0MI = new TH1F("h1AsMcResPtK0MI","Pt Resolution K^{0} MI;#Delta Pt;Counts",200,-1,1); // fListHist->Add(fHistAsMcResPtK0MI); fHistAsMcResPtLambda = new TH1F("h1AsMcResPtLambda","Pt Resolution #Lambda^{0};#Delta Pt;Counts",200,-1,1); fListHist->Add(fHistAsMcResPtLambda); // fHistAsMcResPtLambdaMI = new TH1F("h1AsMcResPtLambdaMI","Pt Resolution #Lambda^{0} MI;#Delta Pt;Counts",200,-1,1); // fListHist->Add(fHistAsMcResPtLambdaMI); fHistAsMcResPtAntiLambda = new TH1F("h1AsMcResPtAntiLambda","Pt Resolution #bar{#Lambda}^{0};#Delta Pt;Counts",200,-1,1); fListHist->Add(fHistAsMcResPtAntiLambda); // fHistAsMcResPtAntiLambdaMI = new TH1F("h1AsMcResPtAntiLambdaMI","Pt Resolution #bar{#Lambda}^{0} MI;#Delta Pt;Counts",200,-1,1); /// fListHist->Add(fHistAsMcResPtAntiLambdaMI); fHistAsMcResPtVsRapK0 = new TH2F("h2AsMcResPtVsRapK0","Pt Resolution K^{0};#Delta Pt;Rap",200,-1,1,20,-1,1); fListHist->Add(fHistAsMcResPtVsRapK0); // fHistAsMcResPtVsRapK0MI = new TH2F("h2AsMcResPtVsRapK0MI","Pt Resolution K^{0} MI;#Delta Pt;Rap",200,-1,1,20,-1,1); // fListHist->Add(fHistAsMcResPtVsRapK0MI); fHistAsMcResPtVsRapLambda = new TH2F("h2AsMcResPtVsRapLambda","Pt Resolution #Lambda^{0};#Delta Pt;Rap",200,-1,1,20,-1,1); fListHist->Add(fHistAsMcResPtVsRapLambda); // fHistAsMcResPtVsRapLambdaMI = new TH2F("h2AsMcResPtVsRapLambdaMI","Pt Resolution #Lambda^{0} MI;#Delta Pt;Rap",200,-1,1,20,-1,1); // fListHist->Add(fHistAsMcResPtVsRapLambdaMI); fHistAsMcResPtVsRapAntiLambda = new TH2F("h2AsMcResPtVsRapAntiLambda","Pt Resolution #bar{#Lambda}^{0};#Delta Pt;Rap",200,-1,1,20,-1,1); fListHist->Add(fHistAsMcResPtVsRapAntiLambda); // fHistAsMcResPtVsRapAntiLambdaMI = new TH2F("h2AsMcResPtVsRapAntiLambdaMI","Pt Resolution #bar{#Lambda}^{0} MI;#Delta Pt;Rap",200,-1,1,20,-1,1); // fListHist->Add(fHistAsMcResPtVsRapAntiLambdaMI); fHistAsMcResPtVsPtK0 = new TH2F("h2AsMcResPtVsPtK0","Pt Resolution K^{0};#Delta Pt;Pt",600,-0.15,0.15,240,0,12); fListHist->Add(fHistAsMcResPtVsPtK0); // fHistAsMcResPtVsPtK0MI = new TH2F("h2AsMcResPtVsPtK0MI","Pt Resolution K^{0} MI;#Delta Pt;Pt",600,-0.15,0.15,240,0,12); // fListHist->Add(fHistAsMcResPtVsPtK0MI); fHistAsMcResPtVsPtLambda = new TH2F("h2AsMcResPtVsPtLambda","Pt Resolution #Lambda^{0};#Delta Pt;Pt",600,-0.15,0.15,240,0,12); fListHist->Add(fHistAsMcResPtVsPtLambda); // fHistAsMcResPtVsPtLambdaMI = new TH2F("h2AsMcResPtVsPtLambdaMI","Pt Resolution #Lambda^{0} MI;#Delta Pt;Pt",600,-0.15,0.15,240,0,12); // fListHist->Add(fHistAsMcResPtVsPtLambdaMI); fHistAsMcResPtVsPtAntiLambda = new TH2F("h2AsMcResPtVsPtAntiLambda","Pt Resolution #bar{#Lambda}^{0};#Delta Pt;Pt",300,-0.15,0.15,240,0,12); fListHist->Add(fHistAsMcResPtVsPtAntiLambda); // fHistAsMcResPtVsPtAntiLambdaMI = new TH2F("h2AsMcResPtVsPtAntiLambdaMI","Pt Resolution #bar{#Lambda}^{0} MI;#Delta Pt;Pt",300,-0.15,0.15,240,0,12); // fListHist->Add(fHistAsMcResPtVsPtAntiLambdaMI); // pdgcode of mother fHistAsMcMotherPdgCodeK0s = new TH1F("h1AsMcMotherPdgCodeK0s","Mother of Associated K^{0};mother;counts",11,0,11); fListHist->Add(fHistAsMcMotherPdgCodeK0s); // fHistAsMcMotherPdgCodeK0sMI = new TH1F("h1AsMcMotherPdgCodeK0sMI","Mother of Associated K^{0} MI;mother;counts",11,0,11); // fListHist->Add(fHistAsMcMotherPdgCodeK0sMI); fHistAsMcMotherPdgCodeLambda = new TH1F("h1AsMcMotherPdgCodeLambda","Mother of Associated #Lambda^{0};mother;counts",11,0,11); fListHist->Add(fHistAsMcMotherPdgCodeLambda); // fHistAsMcMotherPdgCodeLambdaMI = new TH1F("h1AsMcMotherPdgCodeLambdaMI","Mother of Associated #Lambda^{0} MI;mother;counts",11,0,11); // fListHist->Add(fHistAsMcMotherPdgCodeLambdaMI); fHistAsMcMotherPdgCodeAntiLambda = new TH1F("h1AsMcMotherPdgCodeAntiLambda","Mother of Associated #bar{#Lambda}^{0};mother;counts",11,0,11); fListHist->Add(fHistAsMcMotherPdgCodeAntiLambda); // fHistAsMcMotherPdgCodeAntiLambdaMI = new TH1F("h1AsMcMotherPdgCodeAntiLambdaMI","Mother of Associated #bar{Lambda}^{0} MI;mother;counts",11,0,11); // fListHist->Add(fHistAsMcMotherPdgCodeAntiLambdaMI); // Pt distribution Lambda from Sigma fHistAsMcPtLambdaFromSigma = new TH1F("h1AsMcPtLambdaFromSigma","#Lambda}^{0} associated from Sigma;p_{t} (GeV/c);Count",240,0,12); fListHist->Add(fHistAsMcPtLambdaFromSigma); // fHistAsMcPtLambdaFromSigmaMI = new TH1F("h1AsMcPtLambdaFromSigmaMI","#Lambda^{0} MI associated from Sigma;p_{t} (GeV/c);Count",240,0,12); // fListHist->Add(fHistAsMcPtLambdaFromSigmaMI); fHistAsMcPtAntiLambdaFromSigma = new TH1F("h1AsMcPtAntiLambdaFromSigma","#bar{#Lambda}^{0} associated from Sigma;p_{t} (GeV/c);Count",240,0,12); fListHist->Add(fHistAsMcPtAntiLambdaFromSigma); // fHistAsMcPtAntiLambdaFromSigmaMI = new TH1F("h1AsMcPtAntiLambdaFromSigmaMI","#bar{#Lambda}^{0} MI associated from Sigma;p_{t} (GeV/c);Count",240,0,12); // fListHist->Add(fHistAsMcPtAntiLambdaFromSigmaMI); // Associated secondary particles: // Pt and rapidity distribution fHistAsMcSecondaryPtVsRapK0s = new TH2F("h2AsMcSecondaryPtVsRapK0s", "K^{0} associated secondary;p_{t} (GeV/c);rapidity",240,0,12,30,-1.5,1.5); fListHist->Add(fHistAsMcSecondaryPtVsRapK0s); // fHistAsMcSecondaryPtVsRapK0sMI = new TH2F("h2AsMcSecondaryPtVsRapK0sMI", "K^{0} MI associated secondary;p_{t} (GeV/c);rapidity",240,0,12,30,-1.5,1.5); // fListHist->Add(fHistAsMcSecondaryPtVsRapK0sMI); fHistAsMcSecondaryPtVsRapLambda = new TH2F("h2AsMcSecondaryPtVsRapLambda", "#Lambda^{0} associated secondary;p_{t} (GeV/c);rapidity",240,0,12,30,-1.5,1.5); fListHist->Add(fHistAsMcSecondaryPtVsRapLambda); // fHistAsMcSecondaryPtVsRapLambdaMI = new TH2F("h2AsMcSecondaryPtVsRapLambdaMI", "#Lambda^{0} MI associated secondary;p_{t} (GeV/c);rapidity",240,0,12,30,-1.5,1.5); // fListHist->Add(fHistAsMcSecondaryPtVsRapLambdaMI); fHistAsMcSecondaryPtVsRapAntiLambda = new TH2F("h2AsMcSecondaryPtVsRapAntiLambda", "#bar{#Lambda}^{0} associated secondary;p_{t} (GeV/c);rapidity",240,0,12,30,-1.5,1.5); fListHist->Add(fHistAsMcSecondaryPtVsRapAntiLambda); // fHistAsMcSecondaryPtVsRapAntiLambdaMI = new TH2F("h2AsMcSecondaryPtVsRapAntiLambdaMI", "#bar{#Lambda}^{0} MI associated secondary;p_{t} (GeV/c);rapidity",240,0,12,30,-1.5,1.5); // fListHist->Add(fHistAsMcSecondaryPtVsRapAntiLambdaMI); // Production radius fHistAsMcSecondaryProdRadiusK0s = new TH1F("h1AsMcSecondaryProdRadiusK0s", "K^{0} Production Radius;r (cm);Count", 170, -2, 15); fListHist->Add(fHistAsMcSecondaryProdRadiusK0s); // fHistAsMcSecondaryProdRadiusK0sMI = new TH1F("h1AsMcSecondaryProdRadiusK0sMI", "K^{0} MI Production Radius;r (cm);Count", 170, -2, 15); // fListHist->Add(fHistAsMcSecondaryProdRadiusK0sMI); fHistAsMcSecondaryProdRadiusLambda = new TH1F("h1AsMcSecondaryProdRadiusLambda", "#Lambda^{0} Production Radius;r (cm);Count", 170, -2, 15); fListHist->Add(fHistAsMcSecondaryProdRadiusLambda); // fHistAsMcSecondaryProdRadiusLambdaMI = new TH1F("h1AsMcSecondaryProdRadiusLambdaMI", "#Lambda^{0} MI Production Radius;r (cm);Count", 170, -2, 15); // fListHist->Add(fHistAsMcSecondaryProdRadiusLambdaMI); fHistAsMcSecondaryProdRadiusAntiLambda = new TH1F("h1AsMcSecondaryProdRadiusAntiLambda", "#bar{#Lambda}^{0} Production Radius;r (cm);Count", 170, -2, 15); fListHist->Add(fHistAsMcSecondaryProdRadiusAntiLambda); // fHistAsMcSecondaryProdRadiusAntiLambdaMI = new TH1F("h1AsMcSecondaryProdRadiusAntiLambdaMI", "#bar{#Lambda}^{0} MI Production Radius;r (cm);Count", 170, -2, 15); // fListHist->Add(fHistAsMcSecondaryProdRadiusAntiLambdaMI); fHistAsMcSecondaryProdRadiusXvsYK0s = new TH2F("h2AsMcSecondaryProdRadiusXvsYK0s","Associated Secondary K^{0} Production Radius;x (cm); y (cm)",200,-20,20,200,-20,20); fListHist->Add(fHistAsMcSecondaryProdRadiusXvsYK0s); // fHistAsMcSecondaryProdRadiusXvsYK0sMI = new TH2F("h2AsMcSecondaryProdRadiusXvsYK0sMI","Associated Secondary K^{0} Production Radius;x (cm); y (cm)",200,-20,20,200,-20,20); // fListHist->Add(fHistAsMcSecondaryProdRadiusXvsYK0sMI); fHistAsMcSecondaryProdRadiusXvsYLambda = new TH2F("h2AsMcSecondaryProdRadiusXvsYLambda","Associated Secondary #Lambda^{0} Production Radius;x (cm); y (cm)",200,-20,20,200,-20,20); fListHist->Add(fHistAsMcSecondaryProdRadiusXvsYLambda); // fHistAsMcSecondaryProdRadiusXvsYLambdaMI = new TH2F("h2AsMcSecondaryProdRadiusXvsYLambdaMI","Associated Secondary #Lambda^{0} Production Radius;x (cm); y (cm)",200,-20,20,200,-20,20); // fListHist->Add(fHistAsMcSecondaryProdRadiusXvsYLambdaMI); fHistAsMcSecondaryProdRadiusXvsYAntiLambda = new TH2F("h2AsMcSecondaryProdRadiusXvsYAntiLambda","Associated Secondary #bar{#Lambda}^{0} Production Radius;x (cm); y (cm)",200,-20,20,200,-20,20); fListHist->Add(fHistAsMcSecondaryProdRadiusXvsYAntiLambda); // fHistAsMcSecondaryProdRadiusXvsYAntiLambdaMI = new TH2F("h2AsMcSecondaryProdRadiusXvsYAntiLambdaMI","Associated Secondary #bar{#Lambda}^{0} Production Radius;x (cm); y (cm)",200,-20,20,200,-20,20); // fListHist->Add(fHistAsMcSecondaryProdRadiusXvsYAntiLambdaMI); fHistAsMcSecondaryMotherPdgCodeK0s = new TH1F("h1AsMcSecondaryMotherPdgCodeK0s","Mother of Associated Secondary K^{0};mother;counts",11,0,11); fListHist->Add(fHistAsMcSecondaryMotherPdgCodeK0s); // fHistAsMcSecondaryMotherPdgCodeK0sMI = new TH1F("h1AsMcSecondaryMotherPdgCodeK0sMI","Mother of Associated Secondary K^{0} MI;mother;counts",11,0,11); // fListHist->Add(fHistAsMcSecondaryMotherPdgCodeK0sMI); fHistAsMcSecondaryMotherPdgCodeLambda = new TH1F("h1AsMcSecondaryMotherPdgCodeLambda","Mother of Associated Secondary #Lambda^{0};mother;counts",11,0,11); fListHist->Add(fHistAsMcSecondaryMotherPdgCodeLambda); // fHistAsMcSecondaryMotherPdgCodeLambdaMI = new TH1F("h1AsMcSecondaryMotherPdgCodeLambdaMI","Mother of Associated Secondary #Lambda^{0} MI;mother;counts",11,0,11); // fListHist->Add(fHistAsMcSecondaryMotherPdgCodeLambdaMI); fHistAsMcSecondaryMotherPdgCodeAntiLambda = new TH1F("h1AsMcSecondaryMotherPdgCodeAntiLambda","Mother of Associated Secondary #bar{#Lambda}^{0};mother;counts",11,0,11); fListHist->Add(fHistAsMcSecondaryMotherPdgCodeAntiLambda); // fHistAsMcSecondaryMotherPdgCodeAntiLambdaMI = new TH1F("h1AsMcSecondaryMotherPdgCodeAntiLambdaMI","Mother of Associated Secondary #bar{Lambda}^{0} MI;mother;counts",11,0,11); // fListHist->Add(fHistAsMcSecondaryMotherPdgCodeAntiLambdaMI); // Pt distribution Lambda from Sigma fHistAsMcSecondaryPtLambdaFromSigma = new TH1F("h1AsMcSecondaryPtLambdaFromSigma","#Lambda}^{0} associated from Sigma;p_{t} (GeV/c);Count",240,0,12); fListHist->Add(fHistAsMcSecondaryPtLambdaFromSigma); // fHistAsMcSecondaryPtLambdaFromSigmaMI = new TH1F("h1AsMcSecondaryPtLambdaFromSigmaMI","#Lambda^{0} MI associated from Sigma;p_{t} (GeV/c);Count",240,0,12); // fListHist->Add(fHistAsMcSecondaryPtLambdaFromSigmaMI); fHistAsMcSecondaryPtAntiLambdaFromSigma = new TH1F("h1AsMcSecondaryPtAntiLambdaFromSigma","#bar{#Lambda}^{0} associated from Sigma;p_{t} (GeV/c);Count",240,0,12); fListHist->Add(fHistAsMcSecondaryPtAntiLambdaFromSigma); // fHistAsMcSecondaryPtAntiLambdaFromSigmaMI = new TH1F("h1AsMcSecondaryPtAntiLambdaFromSigmaMI","#bar{#Lambda}^{0} MI associated from Sigma;p_{t} (GeV/c);Count",240,0,12); // fListHist->Add(fHistAsMcSecondaryPtAntiLambdaFromSigmaMI); PostData(1, fListHist); PostData(2, fCentrSelector); } //________________________________________________________________________ void AliAnalysisTaskPerformanceStrange::UserExec(Option_t *) { // Main loop // Called for each event AliStack* stack = NULL; TClonesArray *mcArray = NULL; TArrayF mcPrimaryVtx; fESD=(AliESDEvent *)InputEvent(); if (!fESD) { Printf("ERROR: fESD not available"); return; } AliVEvent* lEvent = InputEvent(); if (!lEvent) { Printf("ERROR: Event not available"); return; } fHistNumberEvents->Fill(0.5); //****************** // Trigger Selection ! Warning Works only for ESD, add protection in case of AOD loop //****************** Bool_t isSelected = (((AliInputEventHandler*)(AliAnalysisManager::GetAnalysisManager()->GetInputEventHandler()))->IsEventSelected() & AliVEvent::kMB); if (!isSelected) return; // Centrality selection static AliESDtrackCuts * trackCuts = AliESDtrackCuts::GetStandardITSTPCTrackCuts2010(); // FIXME: make it a data member Bool_t isCentralitySelected = fCentrSelector->IsCentralityBinSelected(fESD,trackCuts); // FIXME esd track cuts if needed if(!isCentralitySelected) return; // FIXME: add to hist number events another entry for centrality. // Done by the AliPhysicsSelection Task ! Only the selected events are passed to this task fHistNumberEvents->Fill(1.5); //************************* //End track multiplicity //************************* // Remove Events with no tracks //if (!(fESD->GetNumberOfTracks())) return; fHistNumberEvents->Fill(2.5); fHistTrackPerEvent->Fill(fESD->GetNumberOfTracks()); //************************************* // Cut used: //************************************* // Cut Rapidity: Double_t lCutRap = 0.75; // Cut AliKF Chi2 for Reconstructed particles Double_t cutChi2KF = 1E3; // If PID is used: Double_t lLimitPPID = 0.7; Float_t cutNSigmaLowP = 1E3; Float_t cutNSigmaHighP = 1E3; if (fUsePID.Contains("withPID")) { cutNSigmaLowP = 5.0; cutNSigmaHighP = 3.0; } // Cut Daughters pt (GeV/c): Double_t cutMinPtDaughter = 0.160; // Cut primary vertex: Double_t cutPrimVertex = 10.0; // Min number of TPC clusters: Int_t nbMinTPCclusters = 80; //******************* // PID parameters: //******************* Double_t fAlephParameters[5] = {0,0,0,0,0,}; fAlephParameters[0] = 0.0283086; fAlephParameters[1] = 2.63394e+01; fAlephParameters[2] = 5.04114e-11; fAlephParameters[3] = 2.12543e+00; fAlephParameters[4] = 4.88663e+00; //******************* // Access MC: //******************* if (fAnalysisMC) { if(fAnalysisType == "ESD") { AliMCEventHandler* eventHandler = dynamic_cast (AliAnalysisManager::GetAnalysisManager()->GetMCtruthEventHandler()); if (!eventHandler) { Printf("ERROR: Could not retrieve MC event handler"); return; } AliMCEvent* mcEvent = eventHandler->MCEvent(); if (!mcEvent) { Printf("ERROR: Could not retrieve MC event"); return; } stack = mcEvent->Stack(); if (!stack) { Printf("ERROR: Could not retrieve stack"); return; } AliGenEventHeader* mcHeader=mcEvent->GenEventHeader(); if(!mcHeader) return; mcHeader->PrimaryVertex(mcPrimaryVtx); } else if(fAnalysisType == "AOD") { // load MC particles mcArray = (TClonesArray*)fESD->GetList()->FindObject(AliAODMCParticle::StdBranchName()); if(!mcArray) { Printf("strange analysis::UserExec: MC particles branch not found!\n"); return; } // load MC header AliAODMCHeader *mcHeader = (AliAODMCHeader*)fESD->GetList()->FindObject(AliAODMCHeader::StdBranchName()); if(!mcHeader) { Printf("strange analysis::UserExec: MC header branch not found!\n"); return; } } // PID parameters for MC simulations: fAlephParameters[0] = 2.15898e+00/50.; fAlephParameters[1] = 1.75295e+01; fAlephParameters[2] = 3.40030e-09; fAlephParameters[3] = 1.96178e+00; fAlephParameters[4] = 3.91720e+00; } //********************************************** // MC loop //********************************************** Double_t lmcPrimVtxR = 0; Int_t lNbMCPrimary = 0; Int_t lNbMCPart = 0; Int_t lPdgcodeCurrentPart = 0; Double_t lRapCurrentPart = 0; Double_t lPtCurrentPart = 0; Int_t lComeFromSigma = 0; // Production Radius Double_t mcPosX = 0.0, mcPosY = 0.0, mcPosZ = 0.0; Double_t mcPosR = 0.0; // Decay Radius Double_t mcDecayPosX = 0, mcDecayPosY = 0, mcDecayPosR = 0; // current mc particle 's mother Int_t iCurrentMother = 0, lPdgCurrentMother = 0; Bool_t lCurrentMotherIsPrimary; // current mc particles 's daughter: Int_t lPdgCurrentDaughter0 = 0, lPdgCurrentDaughter1 = 0; // variables for multiple reconstruction studies: Int_t id0 = 0, id1 = 0; //Int_t lLabelTrackN = 0, lLabelTrackP = 0; //Int_t lPartNMother = 0, lPartPMother = 0; //Int_t lPartPMotherPDGcode = 0; Int_t lNtimesReconstructedK0s = 0, lNtimesReconstructedLambda = 0, lNtimesReconstructedAntiLambda = 0; // Int_t lNtimesReconstructedK0sMI = 0, lNtimesReconstructedLambdaMI = 0, lNtimesReconstructedAntiLambdaMI = 0; //**************************** // Start loop over MC particles if (fAnalysisMC) { // Primary vertex fHistMCPrimaryVertexX->Fill(mcPrimaryVtx.At(0)); fHistMCPrimaryVertexY->Fill(mcPrimaryVtx.At(1)); fHistMCPrimaryVertexZ->Fill(mcPrimaryVtx.At(2)); lmcPrimVtxR = TMath::Sqrt(mcPrimaryVtx.At(0)*mcPrimaryVtx.At(0)+mcPrimaryVtx.At(1)*mcPrimaryVtx.At(1)); if(fAnalysisType == "ESD") { lNbMCPrimary = stack->GetNprimary(); lNbMCPart = stack->GetNtrack(); fHistMCMultiplicityPrimary->Fill(lNbMCPrimary); fHistMCMultiplicityTracks->Fill(lNbMCPart); for (Int_t iMc = 0; iMc < (stack->GetNtrack()); iMc++) { TParticle *p0 = stack->Particle(iMc); if (!p0) { //Printf("ERROR: particle with label %d not found in stack (mc loop)", iMc); continue; } lPdgcodeCurrentPart = p0->GetPdgCode(); // Keep only K0s, Lambda and AntiLambda, Xi and Phi: if ( (lPdgcodeCurrentPart != 310 ) && (lPdgcodeCurrentPart != 3122 ) && (lPdgcodeCurrentPart != -3122 ) && (lPdgcodeCurrentPart != 3312 ) && (lPdgcodeCurrentPart != -3312) && (lPdgcodeCurrentPart != -333) ) continue; lRapCurrentPart = MyRapidity(p0->Energy(),p0->Pz()); //lEtaCurrentPart = p0->Eta(); lPtCurrentPart = p0->Pt(); iCurrentMother = p0->GetFirstMother(); // lPdgCurrentMother = stack->Particle(iCurrentMother)->GetPdgCode(); if (iCurrentMother == -1){lPdgCurrentMother=0; } else {lPdgCurrentMother = stack->Particle(iCurrentMother)->GetPdgCode();} mcPosX = p0->Vx(); mcPosY = p0->Vy(); mcPosZ = p0->Vz(); mcPosR = TMath::Sqrt(mcPosX*mcPosX+mcPosY*mcPosY); id0 = p0->GetDaughter(0); id1 = p0->GetDaughter(1); // Decay Radius and Production Radius if ( id0 <= lNbMCPart && id0 > 0 && id1 <= lNbMCPart && id1 > 0) { TParticle *pDaughter0 = stack->Particle(id0); TParticle *pDaughter1 = stack->Particle(id1); lPdgCurrentDaughter0 = pDaughter0->GetPdgCode(); lPdgCurrentDaughter1 = pDaughter1->GetPdgCode(); mcDecayPosX = pDaughter0->Vx(); mcDecayPosY = pDaughter0->Vy(); mcDecayPosR = TMath::Sqrt(mcDecayPosX*mcDecayPosX+mcDecayPosY*mcDecayPosY); } else { //FIXME: shouldn't this be a fatal? //Printf("ERROR: particle with label %d and/or %d not found in stack (mc loop)", id0,id1); mcDecayPosR = -1.0; } if (lPdgcodeCurrentPart==310) { fHistMCtracksProdRadiusK0s->Fill(mcPosX,mcPosY); fHistMCtracksDecayRadiusK0s->Fill(mcDecayPosR); if (TMath::Abs(lRapCurrentPart) < lCutRap) fHistMCPtAllK0s->Fill(lPtCurrentPart); } else if (lPdgcodeCurrentPart==3122) { fHistMCtracksProdRadiusLambda->Fill(mcPosX,mcPosY); fHistMCtracksDecayRadiusLambda->Fill(mcDecayPosR); if (TMath::Abs(lRapCurrentPart) < lCutRap) fHistMCPtAllLambda->Fill(lPtCurrentPart); } else if (lPdgcodeCurrentPart==-3122) { fHistMCtracksProdRadiusAntiLambda->Fill(mcPosX,mcPosY); fHistMCtracksDecayRadiusAntiLambda->Fill(mcDecayPosR); if (TMath::Abs(lRapCurrentPart) < lCutRap) fHistMCPtAllAntiLambda->Fill(lPtCurrentPart); } // FIXME: not sure if I understand this: is it correct? if ( ( ( TMath::Abs(lPdgCurrentMother) == 3212) || ( TMath::Abs(lPdgCurrentMother) == 3224) || ( TMath::Abs(lPdgCurrentMother) == 3214) || ( TMath::Abs(lPdgCurrentMother) == 3114) ) && ( iCurrentMother <= lNbMCPrimary ) ) lComeFromSigma = 1; else lComeFromSigma = 0; //********************************************* // Now keep only primary particles if ( ( iMc > lNbMCPrimary ) && (!lComeFromSigma) ) continue; //******************************************** //check if V0 is reconstructed several times lNtimesReconstructedK0s = 0; lNtimesReconstructedLambda = 0; lNtimesReconstructedAntiLambda = 0; //lNtimesReconstructedK0sMI = 0; lNtimesReconstructedLambdaMI = 0; lNtimesReconstructedAntiLambdaMI = 0; //for (Int_t jV0 = 0; jV0 < fESD->GetNumberOfV0s(); jV0++) { //lLabelTrackN = 0; lLabelTrackP = 0; //lPartNMother = 0; lPartPMother = 0; //AliESDv0 *vertexESD = ((AliESDEvent*)fESD)->GetV0(jV0); //if (!vertexESD) continue; //AliESDtrack *trackNESD = ((AliESDEvent*)fESD)->GetTrack(TMath::Abs(vertexESD->GetNindex())); //lLabelTrackN = (UInt_t)TMath::Abs(trackNESD->GetLabel()); //if (lLabelTrackN!=id0 && lLabelTrackN!=id1) continue; //AliESDtrack *trackPESD = ((AliESDEvent*)fESD)->GetTrack(TMath::Abs(vertexESD->GetPindex())); //lLabelTrackP = (UInt_t)TMath::Abs(trackPESD->GetLabel()); //if (lLabelTrackP!=id0 && lLabelTrackP!=id1) continue; //TParticle *lPartNESD = stack->Particle(lLabelTrackN); //TParticle *lPartPESD = stack->Particle(lLabelTrackP); //lPartNMother = lPartNESD->GetFirstMother(); //lPartPMother = lPartPESD->GetFirstMother(); //lPartPMotherPDGcode = stack->Particle(lPartPMother)->GetPdgCode(); //switch (vertexESD->GetOnFlyStatus()){ //case 0 : //if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==310) ) lNtimesReconstructedK0s++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==3122) ) lNtimesReconstructedLambda++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==-3122) ) lNtimesReconstructedAntiLambda++; //break; //case 1 : //if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==310) ) lNtimesReconstructedK0sMI++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==3122) ) lNtimesReconstructedLambdaMI++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==-3122) ) lNtimesReconstructedAntiLambdaMI++; //break; //} //} // end loop over reconstructed V0s inside MC loop ; // Rap distribution if (lPdgcodeCurrentPart==310) { fHistMCRapK0s->Fill(lRapCurrentPart); if (lPtCurrentPart < 0.2 && lPtCurrentPart < 3.0) fHistMCRapInPtRangeK0s->Fill(lRapCurrentPart); } if (lPdgcodeCurrentPart==3122) { fHistMCRapLambda->Fill(lRapCurrentPart); if (lPtCurrentPart < 0.6 && lPtCurrentPart < 3.5) fHistMCRapInPtRangeLambda->Fill(lRapCurrentPart); } if (lPdgcodeCurrentPart==-3122) { fHistMCRapAntiLambda->Fill(lRapCurrentPart); if (lPtCurrentPart < 0.6 && lPtCurrentPart < 3.5) fHistMCRapInPtRangeAntiLambda->Fill(lRapCurrentPart); } if (lPdgcodeCurrentPart==3312 || lPdgcodeCurrentPart==-3312) { fHistMCRapXi->Fill(lRapCurrentPart); if (lPtCurrentPart < 0.6 && lPtCurrentPart < 3.0) fHistMCRapInPtRangeXi->Fill(lRapCurrentPart); } if (lPdgcodeCurrentPart==333) { fHistMCRapPhi->Fill(lRapCurrentPart); if (lPtCurrentPart < 0.7 && lPtCurrentPart < 3.0) fHistMCRapInPtRangePhi->Fill(lRapCurrentPart); } // Rapidity Cut if (TMath::Abs(lRapCurrentPart) > lCutRap) continue; if (lPdgcodeCurrentPart==310) { fHistMCProdRadiusK0s->Fill(mcPosR); fHistMCPtK0s->Fill(lPtCurrentPart); fHistNTimesRecK0s->Fill(lNtimesReconstructedK0s); // fHistNTimesRecK0sMI->Fill(lNtimesReconstructedK0s); fHistNTimesRecK0sVsPt->Fill(lPtCurrentPart,lNtimesReconstructedK0s); // fHistNTimesRecK0sVsPtMI->Fill(lPtCurrentPart,lNtimesReconstructedK0sMI); } else if (lPdgcodeCurrentPart==3122) { fHistMCProdRadiusLambda->Fill(mcPosR); fHistMCPtLambda->Fill(lPtCurrentPart); fHistNTimesRecLambda->Fill(lNtimesReconstructedLambda); // fHistNTimesRecLambdaMI->Fill(lNtimesReconstructedLambdaMI); fHistNTimesRecLambdaVsPt->Fill(lPtCurrentPart,lNtimesReconstructedLambda); // fHistNTimesRecLambdaVsPtMI->Fill(lPtCurrentPart,lNtimesReconstructedLambdaMI); if (lComeFromSigma) fHistMCPtLambdaFromSigma->Fill(lPtCurrentPart); //printf("found Lambda MC pT=%e\n",lPtCurrentPart); //printf("found Lambda MC Plabel=%d PPDGcode=%d Nlabel=%d NPDGcode=%d\n\n",id0,lPdgCurrentDaughter0,id1,lPdgCurrentDaughter1); } } // end loop ESD MC } // end ESD condition else if(fAnalysisType == "AOD") { lNbMCPart = mcArray->GetEntriesFast(); lNbMCPrimary = 0; fHistMCMultiplicityTracks->Fill(lNbMCPart); for (Int_t iMc = 0; iMc < lNbMCPart; iMc++) { // Primary vertex TO DO !! // AliAODMCParticle *mcAODPart = (AliAODMCParticle*)mcArray->At(iMc); if (!mcAODPart) { //Printf("Strange analysis task (mc loop): particle with label %d not found", iMc); continue; } lPdgcodeCurrentPart = mcAODPart->GetPdgCode(); if (mcAODPart->IsPhysicalPrimary()) {lNbMCPrimary = lNbMCPrimary +1;} // Keep only K0s, Lambda and AntiLambda: if ( (lPdgcodeCurrentPart != 310 ) && (lPdgcodeCurrentPart != 3122 ) && (lPdgcodeCurrentPart != -3122 ) ) continue; //lEtaCurrentPart = mcAODPart->Eta(); lRapCurrentPart = mcAODPart->Y(); lPtCurrentPart = mcAODPart->Pt(); iCurrentMother = mcAODPart->GetMother(); lPdgCurrentMother = ((AliAODMCParticle*)mcArray->At(iCurrentMother))->GetPdgCode(); lCurrentMotherIsPrimary = ((AliAODMCParticle*)mcArray->At(iCurrentMother))->IsPhysicalPrimary(); mcPosX = mcAODPart->Xv(); mcPosY = mcAODPart->Yv(); mcPosZ = mcAODPart->Zv(); mcPosR = TMath::Sqrt(mcPosX*mcPosX+mcPosY*mcPosY); id0 = mcAODPart->GetDaughter(0); id1 = mcAODPart->GetDaughter(1); // Decay Radius and Production Radius if ( id0 <= lNbMCPart && id0 > 0 && id1 <= lNbMCPart && id1 > 0) { AliAODMCParticle *mcAODDaughter1 = (AliAODMCParticle*)mcArray->At(id1); if (!mcAODPart) { //Printf("Strange analysis task (mc loop): daughter not found"); continue; } mcDecayPosX = mcAODDaughter1->Xv(); mcDecayPosY = mcAODDaughter1->Yv(); mcDecayPosR = TMath::Sqrt(mcDecayPosX*mcDecayPosX+mcDecayPosY*mcDecayPosY); } else { //Printf("ERROR: particle with label %d and/or %d not found in stack (mc loop)", id0,id1); mcDecayPosR = -1.0; } if (lPdgcodeCurrentPart==310) { fHistMCtracksProdRadiusK0s->Fill(mcPosX,mcPosY); fHistMCtracksDecayRadiusK0s->Fill(mcDecayPosR); if (TMath::Abs(lRapCurrentPart) < lCutRap) fHistMCPtAllK0s->Fill(lPtCurrentPart); } else if (lPdgcodeCurrentPart==3122) { fHistMCtracksProdRadiusLambda->Fill(mcPosX,mcPosY); fHistMCtracksDecayRadiusLambda->Fill(mcDecayPosR); if (TMath::Abs(lRapCurrentPart) < lCutRap) fHistMCPtAllLambda->Fill(lPtCurrentPart); } else if (lPdgcodeCurrentPart==-3122) { fHistMCtracksProdRadiusAntiLambda->Fill(mcPosX,mcPosY); fHistMCtracksDecayRadiusAntiLambda->Fill(mcDecayPosR); if (TMath::Abs(lRapCurrentPart) < lCutRap) fHistMCPtAllAntiLambda->Fill(lPtCurrentPart); } if ( ( ( TMath::Abs(lPdgCurrentMother) == 3212) || ( TMath::Abs(lPdgCurrentMother) == 3224) || ( TMath::Abs(lPdgCurrentMother) == 3214) || ( TMath::Abs(lPdgCurrentMother) == 3114) ) && (lCurrentMotherIsPrimary) ) lComeFromSigma = 1; else lComeFromSigma = 0; //********************************************* // Now keep only primary particles // FIX IT !!!! iMC is not defined !!!! FIX IT also in ESD/AOD loop !! if ( ( iMc > lNbMCPrimary ) && (!lComeFromSigma) ) continue; //******************************************** // check if V0 is reconstructed several times //lNtimesReconstructedK0s = 0; lNtimesReconstructedLambda = 0; lNtimesReconstructedAntiLambda = 0; //lNtimesReconstructedK0sMI = 0; lNtimesReconstructedLambdaMI = 0; lNtimesReconstructedAntiLambdaMI = 0; //for (Int_t jV0 = 0; jV0 < fESD->GetNumberOfV0s(); jV0++) { //lLabelTrackN = 0; lLabelTrackP = 0; //lPartNMother = 0; lPartPMother = 0; //AliAODv0 *vertexAOD= ((AliAODEvent*)fESD)->GetV0(jV0); //if (!vertexAOD) continue; //printf("enter!!"); //AliVParticle *trackP = ((AliVEvent*)fESD)->GetTrack(vertexAOD->GetPosID()); //if (!trackP) continue; //lLabelTrackP = TMath::Abs(trackP->GetLabel()); //if (lLabelTrackP!=id0 && lLabelTrackP!=id1) continue; //AliVParticle *trackN = ((AliVEvent*)fESD)->GetTrack(vertexAOD->GetNegID()); //if (!trackN) continue; //lLabelTrackN = TMath::Abs(trackN->GetLabel()); //if (lLabelTrackN!=id0 && lLabelTrackN!=id1) continue; //AliAODMCParticle *lPartNAOD = (AliAODMCParticle*)mcArray->At(lLabelTrackN); //if (!lPartNAOD) continue; //AliAODMCParticle *lPartPAOD = (AliAODMCParticle*)mcArray->At(lLabelTrackP); //if (!lPartPAOD) continue; //lPartNMother = lPartNAOD->GetMother(); //lPartPMother = lPartPAOD->GetMother(); //lPartPMotherPDGcode = ((AliAODMCParticle*)mcArray->At(lPartPMother))->GetPdgCode(); //switch (vertexAOD->GetOnFlyStatus()){ //case 0 : //if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==310) ) lNtimesReconstructedK0s++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==3122) ) lNtimesReconstructedLambda++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==-3122) ) lNtimesReconstructedAntiLambda++; //break; //case 1 : //if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==310) ) lNtimesReconstructedK0sMI++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==3122) ) lNtimesReconstructedLambdaMI++; //else if ( (lPartPMother==lPartNMother) && (lPartPMotherPDGcode==-3122) ) lNtimesReconstructedAntiLambdaMI++; //break; ///} //} // end loop over reconstructed V0s inside MC loop if (TMath::Abs(lRapCurrentPart) > lCutRap) continue; if (lPdgcodeCurrentPart==310) { fHistMCProdRadiusK0s->Fill(mcPosR); fHistMCPtK0s->Fill(lPtCurrentPart); fHistNTimesRecK0s->Fill(lNtimesReconstructedK0s); // fHistNTimesRecK0sMI->Fill(lNtimesReconstructedK0s); fHistNTimesRecK0sVsPt->Fill(lPtCurrentPart,lNtimesReconstructedK0s); // fHistNTimesRecK0sVsPtMI->Fill(lPtCurrentPart,lNtimesReconstructedK0sMI); } else if (lPdgcodeCurrentPart==3122) { fHistMCProdRadiusLambda->Fill(mcPosR); fHistMCPtLambda->Fill(lPtCurrentPart); fHistNTimesRecLambda->Fill(lNtimesReconstructedLambda); // fHistNTimesRecLambdaMI->Fill(lNtimesReconstructedLambdaMI); fHistNTimesRecLambdaVsPt->Fill(lPtCurrentPart,lNtimesReconstructedLambda); // fHistNTimesRecLambdaVsPtMI->Fill(lPtCurrentPart,lNtimesReconstructedLambdaMI); if (lComeFromSigma) fHistMCPtLambdaFromSigma->Fill(lPtCurrentPart); } else if (lPdgcodeCurrentPart==-3122) { fHistMCProdRadiusAntiLambda->Fill(mcPosR); //fHistMCPtAntiLambda->Fill(lPtCurrentPart); fHistNTimesRecAntiLambda->Fill(lNtimesReconstructedAntiLambda); // fHistNTimesRecAntiLambdaMI->Fill(lNtimesReconstructedAntiLambdaMI); fHistNTimesRecAntiLambdaVsPt->Fill(lPtCurrentPart,lNtimesReconstructedAntiLambda); // fHistNTimesRecAntiLambdaVsPtMI->Fill(lPtCurrentPart,lNtimesReconstructedAntiLambdaMI); if (lComeFromSigma) fHistMCPtAntiLambdaFromSigma->Fill(lPtCurrentPart); } } // end loop over AODMC particles fHistMCMultiplicityPrimary->Fill(lNbMCPrimary); } // end AOD condition } // End Loop over MC condition //************************************ // ESD or AOD loop //************************************ Double_t lMagneticField = 999; //Multiplcity: Int_t nv0sTot= 0, nv0s = 0; // Int_t nv0sMI =0; // Variables: Double_t lV0Position[3]; Double_t lDcaPosToPrimVertex = 0; Double_t lDcaNegToPrimVertex = 0; Double_t lDcaV0Daughters = 0; Double_t lV0cosPointAngle = 0; Double_t lChi2V0 = 0; Double_t lV0DecayLength = 0; Double_t lV0Radius = 0; Double_t lDcaV0ToPrimVertex = 0; Int_t lOnFlyStatus = 0; //Float_t tdcaPosToPrimVertexXYZ[2], tdcaNegToPrimVertexXYZ[2]; // ..[0] = Impact parameter in XY plane and ..[1] = Impact parameter in Z //Double_t tdcaDaughterToPrimVertex[2]; // ..[0] = Pos and ..[1] = Neg Double_t lInvMassK0s = 0, lInvMassLambda = 0, lInvMassAntiLambda = 0; Double_t lPtK0s = 0, lPtLambda = 0, lPtAntiLambda = 0; Double_t lRapK0s = 0, lRapLambda = 0, lRapAntiLambda = 0; Double_t lEtaK0s = 0, lEtaLambda = 0, lEtaAntiLambda = 0; Double_t lAlphaV0 = 0, lPtArmV0 = 0; Double_t lPzK0s = 0, lPzLambda = 0, lPzAntiLambda = 0; Double_t lV0Eta = 999; // to study Associated V0s: Int_t lIndexTrackPos = 0, lIndexTrackNeg = 0; UInt_t lLabelTrackPos = 0, lLabelTrackNeg = 0; Int_t lCheckPIdK0Short = 0, lCheckMcK0Short = 0; Int_t lCheckPIdLambda = 0, lCheckMcLambda = 0; Int_t lCheckPIdAntiLambda = 0, lCheckMcAntiLambda = 0; Int_t lCheckSecondaryK0s = 0, lCheckSecondaryLambda = 0, lCheckSecondaryAntiLambda = 0; Int_t lCheckGamma = 0; Double_t mcPosMotherX = 0, mcPosMotherY = 0, mcPosMotherZ = 0; Double_t mcPosMotherR = 0; Double_t mcMotherPt = 0; Int_t lIndexPosMother = 0; Int_t lIndexNegMother = 0; Int_t lIndexMotherOfMother = 0; Int_t lPDGCodePosDaughter = 0; Int_t lPDGCodeNegDaughter = 0; Int_t lPdgcodeMother = 0; Int_t lPdgcodeMotherOfMother = 0; // Reconstructed position Double_t rcPosXK0s = 0, rcPosYK0s = 0, rcPosZK0s = 0; Double_t rcPosRK0s = 0; Double_t rcPosXLambda = 0, rcPosYLambda = 0, rcPosZLambda = 0; Double_t rcPosRLambda = 0; Double_t rcPosXAntiLambda = 0, rcPosYAntiLambda = 0, rcPosZAntiLambda = 0; Double_t rcPosRAntiLambda = 0; // Pt resolution Double_t deltaPtK0s = 0, deltaPtLambda = 0, deltaPtAntiLambda = 0; // Daughters AliESDtrack *myTrackPos = NULL; AliESDtrack *myTrackNeg = NULL; AliVParticle *lVPartPos = NULL; AliVParticle *lVPartNeg = NULL; // Daughters' momentum: Double_t lMomPos[3] = {999,999,999}; Double_t lMomNeg[3] = {999,999,999}; Double_t lPtPos = 999, lPtNeg = 999; Double_t lPPos = 999, lPNeg = 999; // Inner Wall parameters: Double_t lMomInnerWallPos =999, lMomInnerWallNeg = 999; // AliKF Chi2 and Armenteros variables Double_t lChi2KFK0s = 0, lChi2KFLambda = 0, lChi2KFAntiLambda = 0; Double_t lAlphaV0K0s = 0, lAlphaV0Lambda = 0, lAlphaV0AntiLambda = 0; Double_t lPtArmV0K0s = 0, lPtArmV0Lambda = 0, lPtArmV0AntiLambda = 0; Double_t lQlPos = 0, lQlNeg = 0; // PID Float_t nSigmaPosPion = 0; Float_t nSigmaNegPion = 0; Float_t nSigmaPosProton = 0; Float_t nSigmaNegProton = 0; Int_t lCheckPIDK0sPosDaughter = 0, lCheckPIDK0sNegDaughter = 0; Int_t lCheckPIDLambdaPosDaughter = 0, lCheckPIDLambdaNegDaughter = 0; Int_t lCheckPIDAntiLambdaPosDaughter = 0, lCheckPIDAntiLambdaNegDaughter = 0; //*********************** // Primary Vertex cuts & // Magnetic field and Quality tracks cuts Double_t lPrimaryVtxPosition[3]; Double_t lPrimaryVtxCov[6]; Double_t lPrimaryVtxChi2 = 999; Double_t lResPrimaryVtxX = 999; Double_t lResPrimaryVtxY = 999; Double_t lResPrimaryVtxZ = 999; AliAODVertex *myPrimaryVertex = NULL; //const AliVVertex *mySPDPrimaryVertex = NULL; AliESDtrackCuts *myTracksCuts = NULL; const AliMultiplicity *myMultiplicty = ((AliESDEvent*)fESD)->GetMultiplicity(); if(fAnalysisType == "ESD") { // Best Primary Vertex: const AliESDVertex *myBestPrimaryVertex = ((AliESDEvent*)fESD)->GetPrimaryVertex(); myBestPrimaryVertex = ((AliESDEvent*)fESD)->GetPrimaryVertex(); if (!myBestPrimaryVertex) return; if (!myBestPrimaryVertex->GetStatus()) return; fHistNumberEvents->Fill(3.5); myBestPrimaryVertex->GetXYZ(lPrimaryVtxPosition); myBestPrimaryVertex->GetCovMatrix(lPrimaryVtxCov); if ( ( TMath::Abs(lPrimaryVtxPosition[2]) ) > cutPrimVertex) return ; fHistNumberEvents->Fill(4.5); lPrimaryVtxChi2 = myBestPrimaryVertex->GetChi2toNDF(); lResPrimaryVtxX = myBestPrimaryVertex->GetXRes(); lResPrimaryVtxY = myBestPrimaryVertex->GetYRes(); lResPrimaryVtxZ = myBestPrimaryVertex->GetZRes(); // remove TPC-only primary vertex : retain only events with tracking + SPD vertex const AliESDVertex *mySPDPrimaryVertex = ((AliESDEvent*)fESD)->GetPrimaryVertexSPD(); if (!mySPDPrimaryVertex) return; fHistSPDPrimaryVertexZ->Fill(mySPDPrimaryVertex->GetZ()); const AliESDVertex *myPrimaryVertexTracking = ((AliESDEvent*)fESD)->GetPrimaryVertexTracks(); if (!myPrimaryVertexTracking) return; if (!mySPDPrimaryVertex->GetStatus() && !myPrimaryVertexTracking->GetStatus() ) return; fHistNumberEvents->Fill(5.5); myPrimaryVertex = new AliAODVertex(lPrimaryVtxPosition, lPrimaryVtxCov, lPrimaryVtxChi2, NULL, -1, AliAODVertex::kPrimary); if (!myPrimaryVertex) return; // Number of Tracklets: //const AliMultiplicity *myMultiplicty = ((AliESDEvent*)fESD)->GetMultiplicity(); //if (myMultiplicty->GetNumberOfTracklets() < 10) return; fHistTrackletPerEvent->Fill(myMultiplicty->GetNumberOfTracklets()); lMagneticField = ((AliESDEvent*)fESD)->GetMagneticField(); myTracksCuts = new AliESDtrackCuts(); // require TPC refit myTracksCuts->SetRequireTPCRefit(kTRUE); // minimum number of clusters in TPC myTracksCuts->SetMinNClustersTPC(nbMinTPCclusters); } else if(fAnalysisType == "AOD") { printf("enter AOD!!"); myPrimaryVertex = ((AliAODEvent*)fESD)->GetPrimaryVertex(); if (!myPrimaryVertex) return; lPrimaryVtxPosition[0] = myPrimaryVertex->GetX(); lPrimaryVtxPosition[1] = myPrimaryVertex->GetY(); lPrimaryVtxPosition[2] = myPrimaryVertex->GetZ(); // Cut on SPD vertex and fill histo Nevents: FIX it ! // Tracks cuts FIX IT ! // FIX it !!! lMagneticField = 999; } fHistPrimaryVertexX->Fill(lPrimaryVtxPosition[0]); fHistPrimaryVertexY->Fill(lPrimaryVtxPosition[1]); fHistPrimaryVertexZ->Fill(lPrimaryVtxPosition[2]); //Double_t lrcPrimVtxR = TMath::Sqrt(lPrimaryVtxPosition[0]*lPrimaryVtxPosition[0]+lPrimaryVtxPosition[0]*lPrimaryVtxPosition[0]); fHistPrimaryVertexResX->Fill(lResPrimaryVtxX); fHistPrimaryVertexResY->Fill(lResPrimaryVtxY); fHistPrimaryVertexResZ->Fill(lResPrimaryVtxZ); //*********************** // AliKF Primary Vertex AliKFVertex primaryVtxKF( *myPrimaryVertex ); AliKFParticle::SetField(lMagneticField); //************************************ // PID AliESDpid *fESDpid = new AliESDpid(); // FIXME delete fESDpid->GetTPCResponse().SetBetheBlochParameters(fAlephParameters[0],fAlephParameters[1],fAlephParameters[2],fAlephParameters[3],fAlephParameters[4]); //***Rerun the V0 finder // fESD->ResetV0s(); // AliV0vertexer v0Vertexer; // v0Vertexer.SetCuts(fCuts); // v0Vertexer.Tracks2V0vertices(fESD); //************************* // V0 loop nv0sTot = fESD->GetNumberOfV0s(); if (!nv0sTot) fHistNumberEvents->Fill(6.5); for (Int_t iV0 = 0; iV0 < nv0sTot; iV0++) { // ALiKF AliKFParticle* negPiKF = NULL; AliKFParticle* posPiKF = NULL; AliKFParticle* posPKF = NULL; AliKFParticle* negAPKF = NULL; lIndexPosMother = 0; lIndexNegMother = 0; lIndexMotherOfMother = 0; lCheckPIdK0Short = 0; lCheckMcK0Short = 0; lCheckSecondaryK0s = 0; lCheckPIdLambda = 0; lCheckMcLambda = 0; lCheckSecondaryLambda = 0; lCheckPIdAntiLambda = 0; lCheckMcAntiLambda = 0; lCheckSecondaryAntiLambda = 0; lComeFromSigma = -1; if(fAnalysisType == "ESD") { AliESDv0 *v0 = ((AliESDEvent*)fESD)->GetV0(iV0); if (!v0) continue; // Primary vertex: fHistPrimaryVertexPosXV0events->Fill(lPrimaryVtxPosition[0]); fHistPrimaryVertexPosYV0events->Fill(lPrimaryVtxPosition[1]); fHistPrimaryVertexPosZV0events->Fill(lPrimaryVtxPosition[2]); // V0's Daughters lIndexTrackPos = TMath::Abs(v0->GetPindex()); lIndexTrackNeg = TMath::Abs(v0->GetNindex()); AliESDtrack *myTrackPosTest = ((AliESDEvent*)fESD)->GetTrack(lIndexTrackPos); AliESDtrack *myTrackNegTest = ((AliESDEvent*)fESD)->GetTrack(lIndexTrackNeg); if (!myTrackPosTest || !myTrackNegTest) { Printf("strange analysis::UserExec:: Error:Could not retreive one of the daughter track\n"); continue; } // Remove like-sign if ( myTrackPosTest->GetSign() == myTrackNegTest->GetSign()){ continue; } // VO's main characteristics to check the reconstruction cuts lOnFlyStatus = v0->GetOnFlyStatus(); lChi2V0 = v0->GetChi2V0(); lDcaV0Daughters = v0->GetDcaV0Daughters(); lDcaV0ToPrimVertex = v0->GetD(lPrimaryVtxPosition[0],lPrimaryVtxPosition[1],lPrimaryVtxPosition[2]); lV0cosPointAngle = v0->GetV0CosineOfPointingAngle(lPrimaryVtxPosition[0],lPrimaryVtxPosition[1], lPrimaryVtxPosition[2]); v0->GetXYZ(lV0Position[0], lV0Position[1], lV0Position[2]); lV0Radius = TMath::Sqrt(lV0Position[0]*lV0Position[0]+lV0Position[1]*lV0Position[1]); lV0DecayLength = TMath::Sqrt(TMath::Power(lV0Position[0] - lPrimaryVtxPosition[0],2) + TMath::Power(lV0Position[1] - lPrimaryVtxPosition[1],2) + TMath::Power(lV0Position[2] - lPrimaryVtxPosition[2],2 )); if( myTrackPosTest->GetSign() ==1){ myTrackPos = ((AliESDEvent*)fESD)->GetTrack(lIndexTrackPos); myTrackNeg = ((AliESDEvent*)fESD)->GetTrack(lIndexTrackNeg); // Daughters' momentum; v0->GetPPxPyPz(lMomPos[0],lMomPos[1],lMomPos[2]); v0->GetNPxPyPz(lMomNeg[0],lMomNeg[1],lMomNeg[2]); if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; negPiKF = new AliKFParticle( *(v0->GetParamN()) ,-211); posPiKF = new AliKFParticle( *(v0->GetParamP()) ,211); posPKF = new AliKFParticle( *(v0->GetParamP()) ,2212); negAPKF = new AliKFParticle( *(v0->GetParamN()) ,-2212); } if( myTrackPosTest->GetSign() ==-1){ myTrackPos = ((AliESDEvent*)fESD)->GetTrack(lIndexTrackNeg); myTrackNeg = ((AliESDEvent*)fESD)->GetTrack(lIndexTrackPos); // Daughters' momentum; v0->GetPPxPyPz(lMomNeg[0],lMomNeg[1],lMomNeg[2]); v0->GetNPxPyPz(lMomPos[0],lMomPos[1],lMomPos[2]); if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; negPiKF = new AliKFParticle( *(v0->GetParamP()) ,-211); posPiKF = new AliKFParticle( *(v0->GetParamN()) ,211); posPKF = new AliKFParticle( *(v0->GetParamN()) ,2212); negAPKF = new AliKFParticle( *(v0->GetParamP()) ,-2212); } lLabelTrackPos = (UInt_t)TMath::Abs(myTrackPos->GetLabel()); lLabelTrackNeg = (UInt_t)TMath::Abs(myTrackNeg->GetLabel()); // Daughters Pt and P: lPtPos = TMath::Sqrt(lMomPos[0]*lMomPos[0] + lMomPos[1]*lMomPos[1]); lPtNeg = TMath::Sqrt(lMomNeg[0]*lMomNeg[0] + lMomNeg[1]*lMomNeg[1]); lPPos = TMath::Sqrt(lMomPos[0]*lMomPos[0] + lMomPos[1]*lMomPos[1] + lMomPos[2]*lMomPos[2]); lPNeg = TMath::Sqrt(lMomNeg[0]*lMomNeg[0] + lMomNeg[1]*lMomNeg[1] + lMomNeg[2]*lMomNeg[2]); // Inner Wall parameter: const AliExternalTrackParam *myInnerWallTrackPos = myTrackPos->GetInnerParam(); if(myInnerWallTrackPos) lMomInnerWallPos = myInnerWallTrackPos->GetP(); const AliExternalTrackParam *myInnerWallTrackNeg = myTrackNeg->GetInnerParam(); if(myInnerWallTrackNeg) lMomInnerWallNeg = myInnerWallTrackNeg->GetP(); // DCA between daughter and Primary Vertex: if (myTrackPos) lDcaPosToPrimVertex = TMath::Abs(myTrackPos->GetD(lPrimaryVtxPosition[0],lPrimaryVtxPosition[1],lMagneticField) ); if (myTrackNeg) lDcaNegToPrimVertex = TMath::Abs(myTrackNeg->GetD(lPrimaryVtxPosition[0],lPrimaryVtxPosition[1],lMagneticField) ); // Quality tracks cuts: if ( !(myTracksCuts->IsSelected(myTrackPos)) || !(myTracksCuts->IsSelected(myTrackNeg)) ) { if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; continue; } // Armenteros variables: lAlphaV0 = v0->AlphaV0(); lPtArmV0 = v0->PtArmV0(); // Pseudorapidity: lV0Eta = v0->Eta(); // PID if (fUsePID.Contains("withPID")) { nSigmaPosPion = TMath::Abs(fESDpid->NumberOfSigmasTPC(myTrackPos,AliPID::kPion)); nSigmaNegPion = TMath::Abs(fESDpid->NumberOfSigmasTPC(myTrackNeg,AliPID::kPion)); nSigmaPosProton = TMath::Abs(fESDpid->NumberOfSigmasTPC(myTrackPos,AliPID::kProton)); nSigmaNegProton = TMath::Abs(fESDpid->NumberOfSigmasTPC(myTrackNeg,AliPID::kProton)); } else { nSigmaPosPion = 0; nSigmaNegPion =0; nSigmaPosProton = 0; nSigmaNegProton= 0; } // Monte-Carlo particle associated to reconstructed particles: if (fAnalysisMC) { //if (lLabelTrackPos < 0 || lLabelTrackNeg < 0) continue; TParticle *lMCESDPartPos = stack->Particle(lLabelTrackPos); if(!lMCESDPartPos) { Printf("no MC particle for positive and/or negative daughter\n"); continue; } TParticle *lMCESDPartNeg = stack->Particle(lLabelTrackNeg); if (!lMCESDPartNeg) continue; lPDGCodePosDaughter = lMCESDPartPos->GetPdgCode(); lPDGCodeNegDaughter = lMCESDPartNeg->GetPdgCode(); lIndexPosMother = lMCESDPartPos->GetFirstMother(); lIndexNegMother = lMCESDPartNeg->GetFirstMother(); if (lIndexPosMother == -1) continue; TParticle *lMCESDMother = stack->Particle(lIndexPosMother); if (!lMCESDMother) continue; lPdgcodeMother = lMCESDMother->GetPdgCode(); lIndexMotherOfMother = lMCESDMother->GetFirstMother(); if (lIndexMotherOfMother ==-1) lPdgcodeMotherOfMother = 0; else { TParticle *lMCESDMotherOfMother = stack->Particle(lIndexMotherOfMother); if (!lMCESDMotherOfMother) continue; lPdgcodeMotherOfMother = lMCESDMotherOfMother->GetPdgCode(); } mcPosX = lMCESDPartPos->Vx(); mcPosY = lMCESDPartPos->Vy(); mcPosZ = lMCESDPartPos->Vz(); mcPosR = TMath::Sqrt(mcPosX*mcPosX+mcPosY*mcPosY); mcPosMotherX = lMCESDMother->Vx(); mcPosMotherY = lMCESDMother->Vy(); mcPosMotherZ = lMCESDMother->Vz(); mcPosMotherR = TMath::Sqrt(mcPosMotherX*mcPosMotherX+mcPosMotherY*mcPosMotherY); mcMotherPt = lMCESDMother->Pt(); } } // end ESD condition else if(fAnalysisType == "AOD") { AliAODv0 *myAODv0 = ((AliAODEvent*)fESD)->GetV0(iV0); if (!myAODv0) continue; // Primary vertex: fHistPrimaryVertexPosXV0events->Fill(lPrimaryVtxPosition[0]); fHistPrimaryVertexPosYV0events->Fill(lPrimaryVtxPosition[1]); fHistPrimaryVertexPosZV0events->Fill(lPrimaryVtxPosition[2]); //Multiplicity: if(!lOnFlyStatus) nv0s++; // else if(lOnFlyStatus) nv0sMI++; // V0's Daughters lIndexTrackPos = TMath::Abs(myAODv0->GetPosID()); lIndexTrackNeg = TMath::Abs(myAODv0->GetNegID()); AliVParticle *lVPartPosTest = ((AliVEvent*)fESD)->GetTrack(lIndexTrackPos); AliVParticle *lVPartNegTest = ((AliVEvent*)fESD)->GetTrack(lIndexTrackNeg); //AliAODTrack *lVPartPos = ((AliAODEvent*)fESD)->GetTrack(lIndexTrackPos); //AliAODTrack *lVPartNeg = ((AliAODEvent*)fESD)->GetTrack(lIndexTrackNeg); if (!lVPartPosTest ||(!lVPartNegTest )) { Printf("strange analysis::UserExec:: Could not retreive one of the daughter track\n"); continue; } // Quality cuts: // TO DO !!!!!!! // TPC refit condition (done during reconstruction for Offline but not for On-the-fly) //if( !(lVPartPosTest->GetStatus() & AliAODTrack::kTPCrefit)) continue; //if( !(lVPartNegTest->GetStatus() & AliAODTrack::kTPCrefit)) continue; lDcaPosToPrimVertex = myAODv0->DcaPosToPrimVertex(); lDcaNegToPrimVertex = myAODv0->DcaNegToPrimVertex(); lOnFlyStatus = myAODv0->GetOnFlyStatus(); lChi2V0 = myAODv0->Chi2V0(); lDcaV0Daughters = myAODv0->DcaV0Daughters(); lDcaV0ToPrimVertex = myAODv0->DcaV0ToPrimVertex(); lV0DecayLength = myAODv0->DecayLengthV0(lPrimaryVtxPosition); lV0cosPointAngle = myAODv0->CosPointingAngle(lPrimaryVtxPosition); lV0Radius = myAODv0->RadiusV0(); if( lVPartPosTest->Charge() ==1){ lVPartPos = ((AliVEvent*)fESD)->GetTrack(lIndexTrackPos); lVPartNeg = ((AliVEvent*)fESD)->GetTrack(lIndexTrackNeg); if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; //negPiKF = new AliKFParticle( *(myAODv0->GetParamN()) ,-211); //posPiKF = new AliKFParticle( *(myAODv0->GetParamP()) ,211); //posPKF = new AliKFParticle( *(myAODv0->GetParamP()) ,2212); //negAPKF = new AliKFParticle( *(myAODv0->GetParamN()) ,-2212); // TO DO !!!!!! negPiKF = NULL; posPiKF = NULL; posPKF = NULL; negAPKF = NULL; } if( lVPartPosTest->Charge() ==-1){ lVPartPos = ((AliVEvent*)fESD)->GetTrack(lIndexTrackNeg); lVPartNeg = ((AliVEvent*)fESD)->GetTrack(lIndexTrackPos); if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; //negPiKF = new AliKFParticle( *(myAODv0->GetParamP()) ,-211); //posPiKF = new AliKFParticle( *(myAODv0->GetParamN()) ,211); //posPKF = new AliKFParticle( *(myAODv0->GetParamN()) ,2212); //negAPKF = new AliKFParticle( *(myAODv0->GetParamP()) ,-2212); negPiKF = NULL; posPiKF = NULL; posPKF = NULL; negAPKF = NULL; } lLabelTrackPos = TMath::Abs(lVPartPos->GetLabel()); lLabelTrackNeg = TMath::Abs(lVPartNeg->GetLabel()); // Armenteros variables: lAlphaV0 = myAODv0->AlphaV0(); lPtArmV0 = myAODv0->PtArmV0(); // Pseudorapidity: lV0Eta = myAODv0->PseudoRapV0(); // PID not accessible with AOD ! nSigmaPosPion = 0; nSigmaNegPion =0; nSigmaPosProton = 0; nSigmaNegProton= 0; // Monte-Carlo particle associated to reconstructed particles: if (fAnalysisMC) { AliAODMCParticle *lMCAODPartPos = (AliAODMCParticle*)mcArray->At(lLabelTrackPos); if (!lMCAODPartPos) continue; AliAODMCParticle *lMCAODPartNeg = (AliAODMCParticle*)mcArray->At(lLabelTrackNeg); if(!lMCAODPartNeg) { // Printf("strange analysis::UserExec:no MC particle for negative daughter\n"); continue; } lPDGCodePosDaughter = lMCAODPartPos->GetPdgCode(); lPDGCodeNegDaughter = lMCAODPartNeg->GetPdgCode(); lIndexPosMother = lMCAODPartPos->GetMother(); lIndexNegMother = lMCAODPartNeg->GetMother(); AliAODMCParticle *lMCAODMother = (AliAODMCParticle*)mcArray->At(lIndexPosMother); lPdgcodeMother = lMCAODMother->GetPdgCode(); lIndexMotherOfMother = lMCAODMother->GetMother(); if (lIndexMotherOfMother ==-1) lPdgcodeMotherOfMother = 0; else { lPdgcodeMotherOfMother = ((AliAODMCParticle*)mcArray->At(lIndexMotherOfMother))->GetPdgCode(); } mcPosX = lMCAODPartPos->Xv(); mcPosY = lMCAODPartPos->Yv(); mcPosZ = lMCAODPartPos->Zv(); mcPosR = TMath::Sqrt(mcPosX*mcPosX+mcPosY*mcPosY); mcPosMotherX = lMCAODMother->Xv(); mcPosMotherY = lMCAODMother->Yv(); mcPosMotherZ = lMCAODMother->Zv(); mcPosMotherR = TMath::Sqrt(mcPosMotherX*mcPosMotherX+mcPosMotherY*mcPosMotherY); mcMotherPt = lMCAODMother->Pt(); } } // end AOD condition // Multiplicity: if(!lOnFlyStatus) nv0s++; // else if(lOnFlyStatus) nv0sMI++; // Daughter momentum cut: ! FIX it in case of AOD ! if ( (lPtPos < cutMinPtDaughter ) || (lPtNeg < cutMinPtDaughter ) ) { if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; continue; } AliKFParticle v0K0sKF; v0K0sKF+=(*negPiKF); v0K0sKF+=(*posPiKF); v0K0sKF.SetProductionVertex(primaryVtxKF); AliKFParticle v0LambdaKF; v0LambdaKF+=(*negPiKF); v0LambdaKF+=(*posPKF); v0LambdaKF.SetProductionVertex(primaryVtxKF); AliKFParticle v0AntiLambdaKF; v0AntiLambdaKF+=(*posPiKF); v0AntiLambdaKF+=(*negAPKF); v0AntiLambdaKF.SetProductionVertex(primaryVtxKF); // Invariant mass lInvMassK0s = v0K0sKF.GetMass(); lInvMassLambda = v0LambdaKF.GetMass(); lInvMassAntiLambda = v0AntiLambdaKF.GetMass(); // Rapidity: lRapK0s = 0.5*TMath::Log((v0K0sKF.GetE()+v0K0sKF.GetPz())/(v0K0sKF.GetE()-v0K0sKF.GetPz()+1.e-13)); lRapLambda = 0.5*TMath::Log((v0LambdaKF.GetE()+v0LambdaKF.GetPz())/(v0LambdaKF.GetE()-v0LambdaKF.GetPz()+1.e-13)); lRapAntiLambda = 0.5*TMath::Log((v0AntiLambdaKF.GetE()+v0AntiLambdaKF.GetPz())/(v0AntiLambdaKF.GetE()-v0AntiLambdaKF.GetPz()+1.e-13)); // Pseudo-rapidity lEtaK0s = v0K0sKF.GetEta(); lEtaLambda = v0LambdaKF.GetEta(); lEtaAntiLambda = v0AntiLambdaKF.GetEta(); // Pz: lPzK0s = v0K0sKF.GetPz(); lPzLambda = v0LambdaKF.GetPz(); lPzAntiLambda = v0AntiLambdaKF.GetPz(); // Pt: lPtK0s = v0K0sKF.GetPt(); lPtLambda = v0LambdaKF.GetPt(); lPtAntiLambda = v0AntiLambdaKF.GetPt(); if (lPtK0s==0) { if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; continue; } if (lPtLambda==0) { if (negPiKF) delete negPiKF; negPiKF=NULL; if (posPiKF) delete posPiKF; posPiKF=NULL; if (posPKF) delete posPKF; posPKF=NULL; if (negAPKF) delete negAPKF; negAPKF=NULL; continue; } // Pt Resolution deltaPtK0s = (lPtK0s - mcMotherPt)/mcMotherPt; deltaPtLambda = (lPtLambda - mcMotherPt)/mcMotherPt; deltaPtAntiLambda = (lPtAntiLambda - mcMotherPt)/mcMotherPt; // KF Chi2 lChi2KFK0s = v0K0sKF.GetChi2(); lChi2KFLambda = v0LambdaKF.GetChi2(); lChi2KFAntiLambda = v0AntiLambdaKF.GetChi2(); // Reconstructed Position rcPosXK0s = v0K0sKF.GetX(); rcPosYK0s = v0K0sKF.GetY(); rcPosZK0s = v0K0sKF.GetZ(); rcPosRK0s = TMath::Sqrt(rcPosXK0s*rcPosXK0s+rcPosYK0s*rcPosYK0s); rcPosXLambda = v0LambdaKF.GetX(); rcPosYLambda = v0LambdaKF.GetY(); rcPosZLambda = v0LambdaKF.GetZ(); rcPosRLambda = TMath::Sqrt(rcPosXLambda*rcPosXLambda+rcPosYLambda*rcPosYLambda); rcPosXAntiLambda = v0AntiLambdaKF.GetX(); rcPosYAntiLambda = v0AntiLambdaKF.GetY(); rcPosZAntiLambda = v0AntiLambdaKF.GetZ(); rcPosRAntiLambda = TMath::Sqrt(rcPosXAntiLambda*rcPosXAntiLambda+rcPosYAntiLambda*rcPosYAntiLambda); TVector3 momPos(lMomPos[0],lMomPos[1],lMomPos[2]); TVector3 momNeg(lMomNeg[0],lMomNeg[1],lMomNeg[2]); TVector3 momTotK0s(v0K0sKF.GetPx(),v0K0sKF.GetPy(),v0K0sKF.GetPz()); TVector3 momTotLambda(v0LambdaKF.GetPx(),v0LambdaKF.GetPy(),v0LambdaKF.GetPz()); TVector3 momTotAntiLambda(v0AntiLambdaKF.GetPx(),v0AntiLambdaKF.GetPy(),v0AntiLambdaKF.GetPz()); lQlPos = momPos.Dot(momTotK0s)/momTotK0s.Mag(); lQlNeg = momNeg.Dot(momTotK0s)/momTotK0s.Mag(); lAlphaV0K0s = 1.-2./(1.+lQlPos/lQlNeg); lQlPos = momPos.Dot(momTotLambda)/momTotLambda.Mag(); lQlNeg = momNeg.Dot(momTotLambda)/momTotLambda.Mag(); lAlphaV0Lambda = 1.-2./(1.+lQlPos/lQlNeg); lQlPos = momPos.Dot(momTotAntiLambda)/momTotAntiLambda.Mag(); lQlNeg = momNeg.Dot(momTotAntiLambda)/momTotAntiLambda.Mag(); lAlphaV0AntiLambda = 1.-2./(1.+lQlPos/lQlNeg); lPtArmV0K0s = momPos.Perp(momTotK0s); lPtArmV0Lambda = momPos.Perp(momTotLambda); lPtArmV0AntiLambda = momPos.Perp(momTotAntiLambda); // Look for associated particles: if (fAnalysisMC) { if( (lIndexPosMother==-1) || (lIndexNegMother==-1) ) { fHistMCDaughterTrack->Fill(1); } else if( ( (lPDGCodePosDaughter==+211) && (lPDGCodeNegDaughter==-211) ) ) { lCheckPIdK0Short = 1; fHistMCDaughterTrack->Fill(3); if ( (lIndexPosMother==lIndexNegMother) && (lPdgcodeMother==310) ) { if (lIndexPosMother <= lNbMCPrimary) lCheckMcK0Short = 1; else lCheckSecondaryK0s = 1; } } else if( ( (lPDGCodePosDaughter==+2212) && (lPDGCodeNegDaughter==-211) ) ) { lCheckPIdLambda = 1; fHistMCDaughterTrack->Fill(5); if ( (lIndexPosMother==lIndexNegMother) && (lPdgcodeMother==3122) ){ if ( ( TMath::Abs(lPdgcodeMotherOfMother) == 3212) || ( TMath::Abs(lPdgcodeMotherOfMother) == 3224) || ( TMath::Abs(lPdgcodeMotherOfMother) == 3214) || ( TMath::Abs(lPdgcodeMotherOfMother) == 3114) ) lComeFromSigma = 1; else lComeFromSigma = 0; if ( (lIndexPosMother <= lNbMCPrimary) || ( ( lIndexPosMother > lNbMCPrimary) && (lComeFromSigma) ) ) lCheckMcLambda = 1; else lCheckSecondaryLambda = 1; } } else if( ( (lPDGCodePosDaughter==211) && (lPDGCodeNegDaughter==-2212) ) ) { lCheckPIdAntiLambda = 1; fHistMCDaughterTrack->Fill(7); if ( (lIndexPosMother==lIndexNegMother) && (lPdgcodeMother==-3122) ) { if ( ( TMath::Abs(lPdgcodeMotherOfMother) == 3212) || ( TMath::Abs(lPdgcodeMotherOfMother) == 3224) || ( TMath::Abs(lPdgcodeMotherOfMother) == 3214) || ( TMath::Abs(lPdgcodeMotherOfMother) == 3114) ) lComeFromSigma = 1; else lComeFromSigma = 0; if ( (lIndexPosMother <= lNbMCPrimary) || ( ( lIndexPosMother > lNbMCPrimary) && (lComeFromSigma) ) ) lCheckMcAntiLambda = 1; else lCheckSecondaryAntiLambda = 1; } } // Gamma conversion else if ( (lPDGCodePosDaughter==11) && (lPDGCodeNegDaughter==-11) && (lPdgcodeMother==22 ) ) lCheckGamma = 1; } // end "look for associated particles // Cuts: /* if (fUseCut.Contains("yes")) { if ( (lDcaPosToPrimVertex < 0.036 ) || (lDcaNegToPrimVertex < 0.036 ) || (lDcaV0Daughters > 0.5 ) || (lV0cosPointAngle < 0.999 ) ) continue; } */ /* if ( (lDcaV0Daughters > 0.3 ) || (lV0cosPointAngle < 0.998 ) ) continue; */ // PID condition: lCheckPIDK0sPosDaughter = 0, lCheckPIDK0sNegDaughter = 0; lCheckPIDLambdaPosDaughter = 0, lCheckPIDLambdaNegDaughter = 0; lCheckPIDAntiLambdaPosDaughter = 0, lCheckPIDAntiLambdaNegDaughter = 0; if (lMomInnerWallPos < lLimitPPID) { if (nSigmaPosPion < cutNSigmaLowP) { lCheckPIDK0sPosDaughter = 1; lCheckPIDAntiLambdaPosDaughter = 1; } if (nSigmaPosProton < cutNSigmaLowP) lCheckPIDLambdaPosDaughter = 1; } else if (lMomInnerWallPos > lLimitPPID) { if (nSigmaPosPion < cutNSigmaHighP) { lCheckPIDK0sPosDaughter = 1; lCheckPIDAntiLambdaPosDaughter = 1; } if (nSigmaPosProton < cutNSigmaHighP) lCheckPIDLambdaPosDaughter = 1; } if (lMomInnerWallNeg < lLimitPPID) { if (nSigmaNegPion < cutNSigmaLowP) { lCheckPIDK0sNegDaughter = 1; lCheckPIDLambdaNegDaughter = 1; } if (nSigmaNegProton < cutNSigmaLowP) lCheckPIDAntiLambdaNegDaughter = 1; } else if (lMomInnerWallNeg > lLimitPPID) { if (nSigmaNegPion < cutNSigmaHighP) { lCheckPIDK0sNegDaughter = 1; lCheckPIDLambdaNegDaughter = 1; } if (nSigmaNegProton < cutNSigmaHighP) lCheckPIDAntiLambdaNegDaughter = 1; } //***************************** // filling histograms fHistDcaPosToPrimVertex->Fill(lDcaPosToPrimVertex,lOnFlyStatus); fHistDcaNegToPrimVertex->Fill(lDcaNegToPrimVertex,lOnFlyStatus); fHistDcaPosToPrimVertexZoom->Fill(lDcaPosToPrimVertex,lOnFlyStatus); fHistDcaNegToPrimVertexZoom->Fill(lDcaNegToPrimVertex,lOnFlyStatus); fHistRadiusV0->Fill(lV0Radius,lOnFlyStatus); fHistDecayLengthV0->Fill(lV0DecayLength,lOnFlyStatus); fHistDcaV0Daughters->Fill(lDcaV0Daughters,lOnFlyStatus); fHistChi2->Fill(lChi2V0,lOnFlyStatus); fHistCosPointAngle->Fill(lV0cosPointAngle,lOnFlyStatus); if (lV0cosPointAngle >= 0.9) fHistCosPointAngleZoom->Fill(lV0cosPointAngle,lOnFlyStatus); fHistChi2KFBeforeCutK0s->Fill(lChi2KFK0s,lOnFlyStatus); fHistChi2KFBeforeCutLambda->Fill(lChi2KFLambda,lOnFlyStatus); fHistChi2KFBeforeCutAntiLambda->Fill(lChi2KFAntiLambda,lOnFlyStatus); // Histo versus Rap and armenteros plot if (!lOnFlyStatus){ if (lCheckMcK0Short) fHistAsMcRapK0->Fill(lRapK0s); if (lCheckMcLambda) fHistAsMcRapLambda->Fill(lRapLambda); if (lCheckMcAntiLambda) fHistAsMcRapLambda->Fill(lRapAntiLambda); // fHistArmenterosPodolanski->Fill(lAlphaV0,lPtArmV0); // fHistDaughterPt->Fill(lPtPos,lPtNeg); } /* else { if (lCheckMcK0Short) fHistAsMcRapK0MI->Fill(lRapK0s); if (lCheckMcLambda) fHistAsMcRapLambdaMI->Fill(lRapLambda); if (lCheckMcAntiLambda) fHistAsMcRapLambdaMI->Fill(lRapAntiLambda); fHistArmenterosPodolanskiMI->Fill(lAlphaV0,lPtArmV0); }*/ // K0s associated histograms in |rap| < lCutRap: //////////////////////////// if ( lCheckPIDK0sPosDaughter && lCheckPIDK0sNegDaughter && (lChi2KFK0s < cutChi2KF)) fHistPzPtBeforeK0s->Fill(TMath::Abs(lPzK0s/lPtK0s)); ///////////////////////////// if ( lCheckPIDK0sPosDaughter && lCheckPIDK0sNegDaughter && (lChi2KFK0s < cutChi2KF) && (TMath::Abs(lPzK0s/lPtK0s)<0.7) ) { fHistPzPtAfterK0s->Fill(TMath::Abs(lPzK0s/lPtK0s)); fHistChi2KFAfterCutK0s->Fill(lChi2KFK0s,lOnFlyStatus); if (TMath::Abs(lRapK0s) < lCutRap) { fHistNsigmaPosPionK0->Fill(nSigmaPosPion); fHistNsigmaNegPionK0->Fill(nSigmaNegPion); switch (lOnFlyStatus){ case 0 : fHistMassK0->Fill(lInvMassK0s); fHistMassVsRadiusK0->Fill(rcPosRK0s,lInvMassK0s); fHistPtVsMassK0->Fill(lInvMassK0s,lPtK0s); // fHistMultVsPtVsMassK0->Fill(multiplicity ,lInvMassK0s,lPtK0s); if(lCheckPIdK0Short) fHistPidMcMassK0->Fill(lInvMassK0s); if(lCheckMcK0Short) { fHistAsMcMassK0->Fill(lInvMassK0s); fHistAsMcPtK0->Fill(lPtK0s); fHistAsMcPtVsMassK0->Fill(lInvMassK0s,lPtK0s); if (lPtK0s <= 1) fHistAsMcPtZoomK0->Fill(lPtK0s); fHistAsMcMassVsRadiusK0->Fill(rcPosRK0s,lInvMassK0s); fHistAsMcResxK0->Fill(rcPosXK0s-mcPosX); fHistAsMcResyK0->Fill(rcPosYK0s-mcPosY); fHistAsMcReszK0->Fill(rcPosZK0s-mcPosZ); fHistAsMcResrVsRadiusK0->Fill(rcPosRK0s,rcPosRK0s-mcPosR); fHistAsMcReszVsRadiusK0->Fill(rcPosZK0s,rcPosZK0s-mcPosZ); fHistAsMcProdRadiusK0->Fill(mcPosMotherR); fHistAsMcProdRadiusXvsYK0s->Fill(mcPosMotherX,mcPosMotherY); fHistAsMcResPtK0->Fill(deltaPtK0s); fHistAsMcResPtVsRapK0->Fill(deltaPtK0s,lRapK0s); fHistAsMcResPtVsPtK0->Fill(deltaPtK0s,lPtK0s); } else if (lCheckSecondaryK0s) { fHistAsMcSecondaryPtVsRapK0s->Fill(lPtK0s,lRapK0s); fHistAsMcSecondaryProdRadiusK0s->Fill(mcPosMotherR); fHistAsMcSecondaryProdRadiusXvsYK0s->Fill(mcPosMotherX,mcPosMotherY); switch (lPdgcodeMotherOfMother) { case 130 : fHistAsMcSecondaryMotherPdgCodeK0s->Fill(0.5);break; // K0L case 321 : fHistAsMcSecondaryMotherPdgCodeK0s->Fill(1.5);break; // K+ case -321 : fHistAsMcSecondaryMotherPdgCodeK0s->Fill(2.5);break; // K- case -3122 : fHistAsMcSecondaryMotherPdgCodeK0s->Fill(3.5);break; //AntiLambda default : fHistAsMcSecondaryMotherPdgCodeK0s->Fill(6.5);break; } } break; /* case 1 : fHistMassK0MI->Fill(lInvMassK0s); fHistMassVsRadiusK0MI->Fill(rcPosRK0s,lInvMassK0s); fHistPtVsMassK0MI->Fill(lInvMassK0s,lPtK0s); if(lCheckPIdK0Short) fHistPidMcMassK0MI->Fill(lInvMassK0s); if(lCheckMcK0Short) { fHistAsMcMassK0MI->Fill(lInvMassK0s); fHistAsMcPtK0MI->Fill(lPtK0s); fHistAsMcPtVsMassK0MI->Fill(lInvMassK0s,lPtK0s); if (lPtK0s <= 1) fHistAsMcPtZoomK0MI->Fill(lPtK0s); fHistAsMcMassVsRadiusK0MI->Fill(rcPosRK0s,lInvMassK0s); fHistAsMcResxK0MI->Fill(rcPosXK0s-mcPosX); fHistAsMcResyK0MI->Fill(rcPosYK0s-mcPosY); fHistAsMcReszK0MI->Fill(rcPosZK0s-mcPosZ); fHistAsMcResrVsRadiusK0MI->Fill(rcPosRK0s,rcPosRK0s-mcPosR); fHistAsMcReszVsRadiusK0MI->Fill(rcPosZK0s,rcPosZK0s-mcPosZ); fHistAsMcProdRadiusK0MI->Fill(mcPosMotherR); fHistAsMcProdRadiusXvsYK0sMI->Fill(mcPosMotherX,mcPosMotherY); fHistAsMcResPtK0MI->Fill(deltaPtK0s); fHistAsMcResPtVsRapK0MI->Fill(deltaPtK0s,lRapK0s); fHistAsMcResPtVsPtK0MI->Fill(deltaPtK0s,lPtK0s); } else if (lCheckSecondaryK0s) { fHistAsMcSecondaryPtVsRapK0sMI->Fill(lPtK0s,lRapK0s); fHistAsMcSecondaryProdRadiusK0sMI->Fill(mcPosMotherR); fHistAsMcSecondaryProdRadiusXvsYK0sMI->Fill(mcPosMotherX,mcPosMotherY); switch (lPdgcodeMotherOfMother) { case 130 : fHistAsMcSecondaryMotherPdgCodeK0sMI->Fill(0.5);break; // K0L case 321 : fHistAsMcSecondaryMotherPdgCodeK0sMI->Fill(1.5);break; // K+ case -321 : fHistAsMcSecondaryMotherPdgCodeK0sMI->Fill(2.5);break; // K- case -3122 : fHistAsMcSecondaryMotherPdgCodeK0sMI->Fill(3.5);break; //AntiLambda default : fHistAsMcSecondaryMotherPdgCodeK0sMI->Fill(6.5);break; } } break; */ } } // end rapidity condition } // end nsigma condition // Associated Lambda histograms in |rap| < lCutRap ////////////////////////len koly kontrole Abs(Pz/Pt) if ( lCheckPIDLambdaPosDaughter && lCheckPIDLambdaNegDaughter && (lChi2KFLambda < cutChi2KF)) fHistPzPtBeforeLambda->Fill(TMath::Abs(lPzLambda/lPtLambda)); //////////////////////// if ( lCheckPIDLambdaPosDaughter && lCheckPIDLambdaNegDaughter && (lChi2KFLambda < cutChi2KF) && (TMath::Abs(lPzLambda/lPtLambda)<0.7) ) { fHistPzPtAfterLambda->Fill(TMath::Abs(lPzLambda/lPtLambda)); fHistChi2KFAfterCutLambda->Fill(lChi2KFLambda,lOnFlyStatus); if (TMath::Abs(lRapLambda) < lCutRap) { fHistNsigmaPosProtonLambda->Fill(nSigmaPosProton); fHistNsigmaNegPionLambda->Fill(nSigmaNegPion); switch (lOnFlyStatus){ case 0 : fHistMassLambda->Fill(lInvMassLambda); fHistMassVsRadiusLambda->Fill(rcPosRLambda,lInvMassLambda); fHistPtVsMassLambda->Fill(lInvMassLambda,lPtLambda); // fHistMultVsPtVsMassLambda->Fill(multiplicity ,lInvMassLambda,lPtLambda); if(lCheckPIdLambda) fHistPidMcMassLambda->Fill(lInvMassLambda); if(lCheckMcLambda) { fHistAsMcMassLambda->Fill(lInvMassLambda); fHistAsMcPtLambda->Fill(lPtLambda); fHistAsMcPtVsMassLambda->Fill(lInvMassLambda,lPtLambda); if (lPtLambda <= 1) fHistAsMcPtZoomLambda->Fill(lPtLambda); fHistAsMcMassVsRadiusLambda->Fill(rcPosRLambda,lInvMassLambda); fHistAsMcResxLambda->Fill(rcPosXLambda-mcPosX); fHistAsMcResyLambda->Fill(rcPosYLambda-mcPosY); fHistAsMcReszLambda->Fill(rcPosZLambda-mcPosZ); fHistAsMcResrVsRadiusLambda->Fill(rcPosRLambda,rcPosRLambda-mcPosR); fHistAsMcReszVsRadiusLambda->Fill(rcPosZLambda,rcPosZLambda-mcPosZ); fHistAsMcProdRadiusLambda->Fill(mcPosMotherR); fHistAsMcProdRadiusXvsYLambda->Fill(mcPosMotherX,mcPosMotherY); fHistAsMcResPtLambda->Fill(deltaPtLambda); fHistAsMcResPtVsRapLambda->Fill(deltaPtLambda,lRapLambda); fHistAsMcResPtVsPtLambda->Fill(deltaPtLambda,lPtLambda); if (lComeFromSigma) fHistAsMcPtLambdaFromSigma->Fill(lPtLambda); switch (lPdgcodeMotherOfMother) { case 3222 : fHistAsMcMotherPdgCodeLambda->Fill(0.5); break; // Sigma + case 3212 : fHistAsMcMotherPdgCodeLambda->Fill(1.5); break; // Sigma 0 case 3112 : fHistAsMcMotherPdgCodeLambda->Fill(2.5); break;// Sigma - case 3224 : fHistAsMcMotherPdgCodeLambda->Fill(3.5); break;// Sigma(1385) + case 3214 : fHistAsMcMotherPdgCodeLambda->Fill(4.5); break;// Sigma(1385) 0 case 3114 : fHistAsMcMotherPdgCodeLambda->Fill(5.5); break;// Sigma(1385) - case 3322 : fHistAsMcMotherPdgCodeLambda->Fill(6.5); break; // Xi 0 case 3312 : fHistAsMcMotherPdgCodeLambda->Fill(7.5); break; // Xi - case 3334 : fHistAsMcMotherPdgCodeLambda->Fill(8.5); break; // Omega case -1 : fHistAsMcMotherPdgCodeLambda->Fill(9.5); break; default : fHistAsMcMotherPdgCodeLambda->Fill(10.5);break; } //printf("found Lambda RC dcaPos=%e dcaNeg=%e dcaDau=%e cosP=%e pT=%e mass=%e\n",lDcaPosToPrimVertex ,lDcaNegToPrimVertex ,lDcaV0Daughters,lV0cosPointAngle,lPtLambda,lInvMassLambda); //printf("found Lambda RC Pindex=%d Nindex=%d Plabel=%d Nlabel=%d\n\n",lIndexTrackPos,lIndexTrackNeg,lLabelTrackPos,lLabelTrackNeg); } else if (lCheckSecondaryLambda) { fHistAsMcSecondaryPtVsRapLambda->Fill(lPtLambda,lRapLambda); fHistAsMcSecondaryProdRadiusLambda->Fill(mcPosMotherR); fHistAsMcSecondaryProdRadiusXvsYLambda->Fill(mcPosMotherX,mcPosMotherY); if (lComeFromSigma) fHistAsMcSecondaryPtLambdaFromSigma->Fill(lPtLambda); printf(" lPdgcodeMotherOfMother= %d",lPdgcodeMotherOfMother); switch (lPdgcodeMotherOfMother) { case 3222 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(0.5); break;// Sigma + case 3212 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(1.5); break;// Sigma 0 case 3112 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(2.5); break;// Sigma - case 3224 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(3.5); break;// Sigma(1385) + case 3214 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(4.5); break;// Sigma(1385) 0 case 3114 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(5.5); break;// Sigma(1385) - case 3322 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(6.5); break; // Xi 0 case 3312 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(7.5); break; // Xi - case 3334 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(8.5); break; // Omega case -1 : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(9.5); break; default : fHistAsMcSecondaryMotherPdgCodeLambda->Fill(10.5);break; } } break; /* case 1 : fHistMassLambdaMI->Fill(lInvMassLambda); fHistMassVsRadiusLambdaMI->Fill(rcPosRLambda,lInvMassLambda); fHistPtVsMassLambdaMI->Fill(lInvMassLambda,lPtLambda); if(lCheckPIdLambda) fHistPidMcMassLambdaMI->Fill(lInvMassLambda); if(lCheckMcLambda) { fHistAsMcMassLambdaMI->Fill(lInvMassLambda); fHistAsMcPtLambdaMI->Fill(lPtLambda); fHistAsMcPtVsMassLambdaMI->Fill(lInvMassLambda,lPtLambda); fHistAsMcMassVsRadiusLambdaMI->Fill(rcPosRLambda,lInvMassLambda); fHistAsMcResxLambdaMI->Fill(rcPosXLambda-mcPosX); fHistAsMcResyLambdaMI->Fill(rcPosYLambda-mcPosY); fHistAsMcReszLambdaMI->Fill(rcPosZLambda-mcPosZ); fHistAsMcResrVsRadiusLambdaMI->Fill(rcPosRLambda,rcPosRLambda-mcPosR); fHistAsMcReszVsRadiusLambdaMI->Fill(rcPosZLambda,rcPosZLambda-mcPosZ); fHistAsMcProdRadiusLambdaMI->Fill(mcPosMotherR); fHistAsMcProdRadiusXvsYLambdaMI->Fill(mcPosMotherX,mcPosMotherY); fHistAsMcResPtLambdaMI->Fill(deltaPtLambda); fHistAsMcResPtVsRapLambdaMI->Fill(deltaPtLambda,lRapLambda); fHistAsMcResPtVsPtLambdaMI->Fill(deltaPtLambda,lPtLambda); if (lComeFromSigma) fHistAsMcPtLambdaFromSigmaMI->Fill(lPtLambda); switch (lPdgcodeMotherOfMother) { case 3222 : fHistAsMcMotherPdgCodeLambdaMI->Fill(0.5); break; // Sigma + case 3212 : fHistAsMcMotherPdgCodeLambdaMI->Fill(1.5); break; // Sigma 0 case 3112 : fHistAsMcMotherPdgCodeLambdaMI->Fill(2.5); break;// Sigma - case 3224 : fHistAsMcMotherPdgCodeLambdaMI->Fill(3.5); break;// Sigma(1385) + case 3214 : fHistAsMcMotherPdgCodeLambdaMI->Fill(4.5); break;// Sigma(1385) 0 case 3114 : fHistAsMcMotherPdgCodeLambdaMI->Fill(5.5); break;// Sigma(1385) - case 3322 : fHistAsMcMotherPdgCodeLambdaMI->Fill(6.5);break; // Xi 0 case 3312 : fHistAsMcMotherPdgCodeLambdaMI->Fill(7.5);break; // Xi - case 3334 : fHistAsMcMotherPdgCodeLambdaMI->Fill(8.5);break; // Omega case -1 : fHistAsMcMotherPdgCodeLambdaMI->Fill(9.5);break; default : fHistAsMcMotherPdgCodeLambdaMI->Fill(10.5);break; } } else if (lCheckSecondaryLambda) { fHistAsMcSecondaryPtVsRapLambdaMI->Fill(lPtLambda,lRapLambda); fHistAsMcSecondaryProdRadiusLambdaMI->Fill(mcPosMotherR); fHistAsMcSecondaryProdRadiusXvsYLambdaMI->Fill(mcPosMotherX,mcPosMotherY); if (lComeFromSigma) fHistAsMcSecondaryPtLambdaFromSigmaMI->Fill(lPtLambda); switch (lPdgcodeMotherOfMother) { case 3222 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(0.5); break;// Sigma + case 3212 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(1.5); break;// Sigma 0 case 3112 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(2.5); break;// Sigma - case 3224 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(3.5); break;// Sigma(1385) + case 3214 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(4.5); break;// Sigma(1385) 0 case 3114 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(5.5); break;// Sigma(1385) - case 3322 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(6.5); break; // Xi 0 case 3312 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(7.5); break; // Xi - case 3334 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(8.5); break; // Omega case -1 : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(9.5); break; default : fHistAsMcSecondaryMotherPdgCodeLambdaMI->Fill(10.5);break; } } break; */ } } // end rapidity condition } //end nsigma condition - lambda if (negPiKF) delete negPiKF; negPiKF= NULL; if (posPiKF) delete posPiKF; posPiKF= NULL; if (posPKF) delete posPKF; posPKF = NULL; if (negAPKF) delete negAPKF; negAPKF= NULL; } // end V0 loop fHistV0Multiplicity->Fill(nv0s); // fHistV0MultiplicityMI->Fill(nv0sMI); if (fAnalysisType == "ESD") { if(myPrimaryVertex) delete myPrimaryVertex; } if(myTracksCuts) delete myTracksCuts; // Post output data PostData(1, fListHist); PostData(1, fCentrSelector); } //________________________________________________________________________ void AliAnalysisTaskPerformanceStrange::Terminate(Option_t *) {/* // Draw result to the screen // Called once at the end of the query TList *cRetrievedList = 0x0; cRetrievedList = (TList*)GetOutputData(1); if(!cRetrievedList){ AliWarning("ERROR - AliAnalysisTaskPerformanceStrange: output data container list not available\n"); return; } fHistV0Multiplicity = dynamic_cast ( cRetrievedList->FindObject("fHistV0Multiplicity")); if (!fHistV0Multiplicity) { Printf("ERROR: fHistV0Multiplicity not available"); return; } fHistV0MultiplicityMI = dynamic_cast ( cRetrievedList->FindObject("fHistV0MultiplicityMI")); if (!fHistV0MultiplicityMI) { Printf("ERROR: fHistV0MultiplicityMI not available"); return; } TCanvas *canPerformanceStrange = new TCanvas("AliAnalysisTaskCheckV0","Multiplicity",10,10,510,510); canPerformanceStrange->Divide(2,1); if (fHistV0Multiplicity->GetMaximum() > 0.) canPerformanceStrange->cd(1)->SetLogy(); fHistV0Multiplicity->SetMarkerStyle(25); fHistV0Multiplicity->DrawCopy("E"); if (fHistV0MultiplicityMI->GetMaximum() > 0.) canPerformanceStrange->cd(2)->SetLogy(); fHistV0MultiplicityMI->SetMarkerStyle(24); fHistV0MultiplicityMI->DrawCopy("E"); */ } //---------------------------------------------------------------------------- Double_t AliAnalysisTaskPerformanceStrange::MyRapidity(Double_t rE, Double_t rPz) const { // Local calculation for rapidity return 0.5*TMath::Log((rE+rPz)/(rE-rPz+1.e-13)); } //----------------------------------------------------------------------------