/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //----------------------------------------------------------------------- // This class stores QA variables as function of pT for different type // of tracks and track selection criteria // Output: Histograms for different set of cuts //----------------------------------------------------------------------- // Author : Marta Verweij - UU //----------------------------------------------------------------------- #ifndef ALIPWG4HIGHPTTRACKQA_CXX #define ALIPWG4HIGHPTTRACKQA_CXX #include "AliPWG4HighPtTrackQA.h" #include "TH1.h" #include "TH2.h" #include "TH3.h" #include "TProfile.h" #include "TList.h" #include "TFile.h" #include "TChain.h" #include "TH3F.h" #include "TKey.h" #include "TSystem.h" #include "TBits.h" #include "AliAnalysisManager.h" #include "AliESDInputHandler.h" #include "AliMCEvent.h" #include "AliMCEventHandler.h" #include "AliStack.h" #include "AliESDtrack.h" #include "AliESDtrackCuts.h" #include "AliExternalTrackParam.h" #include "AliLog.h" #include "AliGenPythiaEventHeader.h" #include "AliGenCocktailEventHeader.h" #include "AliCentrality.h" #include "AliAODVertex.h" #include "AliAODEvent.h" //#include "AliAnalysisHelperJetTasks.h" using namespace std; //required for resolving the 'cout' symbol ClassImp(AliPWG4HighPtTrackQA) AliPWG4HighPtTrackQA::AliPWG4HighPtTrackQA() : AliAnalysisTaskSE(), fDataType(kESD), fEvent(0x0), fESD(0x0), fVtx(0x0), fTrackCuts(0), fTrackType(0), fFilterMask(0), fPtMax(100.), fIsPbPb(0), fCentClass(10), fNVariables(13), fVariables(0x0), fAvgTrials(1), fNEventAll(0), fNEventSel(0), fNEventReject(0), fh1Centrality(0x0), fh1Xsec(0), fh1Trials(0), fh1PtHard(0), fh1PtHardTrials(0), fh1NTracksAll(0x0), fh1NTracksReject(0x0), fh1NTracksSel(0x0), fPtAll(0), fPtSel(0), fPtPhi(0x0), fPtEta(0x0), fPtDCA2D(0x0), fPtDCAZ(0x0), fPtNClustersTPC(0x0), fPtNPointITS(0x0), fPtChi2C(0x0), fPtNSigmaToVertex(0x0), fPtRelUncertainty1Pt(0x0), fPtChi2PerClusterTPC(0x0), fPtNCrossedRows(0x0), fPtNCrossedRowsNClusF(0x0), fPtNCrRNCrRNClusF(0x0), fHistList(0) { SetNVariables(13); } //________________________________________________________________________ AliPWG4HighPtTrackQA::AliPWG4HighPtTrackQA(const char *name): AliAnalysisTaskSE(name), fDataType(kESD), fEvent(0x0), fESD(0x0), fVtx(0x0), fTrackCuts(), fTrackType(0), fFilterMask(0), fPtMax(100.), fIsPbPb(0), fCentClass(10), fNVariables(13), fVariables(0x0), fAvgTrials(1), fNEventAll(0), fNEventSel(0), fNEventReject(0), fh1Centrality(0x0), fh1Xsec(0), fh1Trials(0), fh1PtHard(0), fh1PtHardTrials(0), fh1NTracksAll(0x0), fh1NTracksReject(0x0), fh1NTracksSel(0x0), fPtAll(0), fPtSel(0), fPtPhi(0x0), fPtEta(0x0), fPtDCA2D(0x0), fPtDCAZ(0x0), fPtNClustersTPC(0x0), fPtNPointITS(0x0), fPtChi2C(0x0), fPtNSigmaToVertex(0x0), fPtRelUncertainty1Pt(0x0), fPtChi2PerClusterTPC(0x0), fPtNCrossedRows(0x0), fPtNCrossedRowsNClusF(0x0), fPtNCrRNCrRNClusF(0x0), fHistList(0) { // // Constructor. Initialization of Inputs and Outputs // AliDebug(2,Form("AliPWG4HighPtTrackQA Calling Constructor")); SetNVariables(13); // Input slot #0 works with a TChain ESD DefineInput(0, TChain::Class()); // Output slot #1 write into a TList DefineOutput(1, TList::Class()); } //________________________________________________________________________ void AliPWG4HighPtTrackQA::UserCreateOutputObjects() { //Create output objects AliDebug(2,Form(">> AliPWG4HighPtTrackQA::UserCreateOutputObjects \n")); Bool_t oldStatus = TH1::AddDirectoryStatus(); TH1::AddDirectory(kFALSE); OpenFile(1); fHistList = new TList(); fHistList->SetOwner(kTRUE); Float_t fgkPtMin = 0.; Float_t fgkPtMax = fPtMax; Float_t ptBinEdges[2][2]; ptBinEdges[0][0] = 10.; ptBinEdges[0][1] = 1.; ptBinEdges[1][0] = 20.; ptBinEdges[1][1] = 2.; Float_t binWidth3 = 5.; if(fPtMax>100.) { ptBinEdges[0][0] = 100.; ptBinEdges[0][1] = 5.; ptBinEdges[1][0] = 300.; ptBinEdges[1][1] = 10.; binWidth3 = 20.; } const Float_t ptmin1 = fgkPtMin; const Float_t ptmax1 = ptBinEdges[0][0]; const Float_t ptmin2 = ptmax1 ; const Float_t ptmax2 = ptBinEdges[1][0]; const Float_t ptmin3 = ptmax2 ; const Float_t ptmax3 = fgkPtMax; const Int_t nbin11 = (int)((ptmax1-ptmin1)/ptBinEdges[0][1]); const Int_t nbin12 = (int)((ptmax2-ptmin2)/ptBinEdges[1][1])+nbin11; const Int_t nbin13 = (int)((ptmax3-ptmin3)/binWidth3)+nbin12; Int_t fgkNPtBins=nbin13; //Create array with low edges of each bin Double_t *binsPt=new Double_t[fgkNPtBins+1]; for(Int_t i=0; i<=fgkNPtBins; i++) { if(i<=nbin11) binsPt[i]=(Double_t)ptmin1 + (ptmax1-ptmin1)/nbin11*(Double_t)i ; if(i<=nbin12 && i>nbin11) binsPt[i]=(Double_t)ptmin2 + (ptmax2-ptmin2)/(nbin12-nbin11)*((Double_t)i-(Double_t)nbin11) ; if(i<=nbin13 && i>nbin12) binsPt[i]=(Double_t)ptmin3 + (ptmax3-ptmin3)/(nbin13-nbin12)*((Double_t)i-(Double_t)nbin12) ; } Int_t fgkNPhiBins = 18*6; Float_t kMinPhi = 0.; Float_t kMaxPhi = 2.*TMath::Pi(); Double_t *binsPhi = new Double_t[fgkNPhiBins+1]; for(Int_t i=0; i<=fgkNPhiBins; i++) binsPhi[i]=(Double_t)kMinPhi + (kMaxPhi-kMinPhi)/fgkNPhiBins*(Double_t)i ; Int_t fgkNEtaBins=20; Float_t fgkEtaMin = -1.; Float_t fgkEtaMax = 1.; Double_t *binsEta=new Double_t[fgkNEtaBins+1]; for(Int_t i=0; i<=fgkNEtaBins; i++) binsEta[i]=(Double_t)fgkEtaMin + (fgkEtaMax-fgkEtaMin)/fgkNEtaBins*(Double_t)i ; Int_t fgkNNClustersTPCBins=80; Float_t fgkNClustersTPCMin = 0.5; Float_t fgkNClustersTPCMax = 160.5; Double_t *binsNClustersTPC=new Double_t[fgkNNClustersTPCBins+1]; for(Int_t i=0; i<=fgkNNClustersTPCBins; i++) binsNClustersTPC[i]=(Double_t)fgkNClustersTPCMin + (fgkNClustersTPCMax-fgkNClustersTPCMin)/fgkNNClustersTPCBins*(Double_t)i ; Int_t fgkNDCA2DBins=80; Float_t fgkDCA2DMin = -0.2; Float_t fgkDCA2DMax = 0.2; Double_t *binsDCA2D=new Double_t[fgkNDCA2DBins+1]; for(Int_t i=0; i<=fgkNDCA2DBins; i++) binsDCA2D[i]=(Double_t)fgkDCA2DMin + (fgkDCA2DMax-fgkDCA2DMin)/fgkNDCA2DBins*(Double_t)i ; Int_t fgkNDCAZBins=80; Float_t fgkDCAZMin = -2.; Float_t fgkDCAZMax = 2.; Double_t *binsDCAZ=new Double_t[fgkNDCAZBins+1]; for(Int_t i=0; i<=fgkNDCAZBins; i++) binsDCAZ[i]=(Double_t)fgkDCAZMin + (fgkDCAZMax-fgkDCAZMin)/fgkNDCAZBins*(Double_t)i ; Int_t fgkNNPointITSBins=9; Float_t fgkNPointITSMin = -0.5; Float_t fgkNPointITSMax = 8.5; Double_t *binsNPointITS=new Double_t[fgkNNPointITSBins+1]; for(Int_t i=0; i<=fgkNNPointITSBins; i++) binsNPointITS[i]=(Double_t)fgkNPointITSMin + (fgkNPointITSMax-fgkNPointITSMin)/fgkNNPointITSBins*(Double_t)i ; Int_t fgkNNSigmaToVertexBins=40; Float_t fgkNSigmaToVertexMin = 0.; Float_t fgkNSigmaToVertexMax = 8.; Double_t *binsNSigmaToVertex=new Double_t[fgkNNSigmaToVertexBins+1]; for(Int_t i=0; i<=fgkNNSigmaToVertexBins; i++) binsNSigmaToVertex[i]=(Double_t)fgkNSigmaToVertexMin + (fgkNSigmaToVertexMax-fgkNSigmaToVertexMin)/fgkNNSigmaToVertexBins*(Double_t)i ; Int_t fgkNChi2CBins=20; Float_t fgkChi2CMin = 0.; Float_t fgkChi2CMax = 10.; Double_t *binsChi2C=new Double_t[fgkNChi2CBins+1]; for(Int_t i=0; i<=fgkNChi2CBins; i++) binsChi2C[i]=(Double_t)fgkChi2CMin + (fgkChi2CMax-fgkChi2CMin)/fgkNChi2CBins*(Double_t)i ; Int_t fgkNRel1PtUncertaintyBins=30; Float_t fgkRel1PtUncertaintyMin = 0.; Float_t fgkRel1PtUncertaintyMax = 0.3; Double_t *binsRel1PtUncertainty=new Double_t[fgkNRel1PtUncertaintyBins+1]; for(Int_t i=0; i<=fgkNRel1PtUncertaintyBins; i++) binsRel1PtUncertainty[i]=(Double_t)fgkRel1PtUncertaintyMin + (fgkRel1PtUncertaintyMax-fgkRel1PtUncertaintyMin)/fgkNRel1PtUncertaintyBins*(Double_t)i ; Float_t fgkChi2PerClusMin = 0.; Float_t fgkChi2PerClusMax = 4.; Int_t fgkNChi2PerClusBins = (int)(fgkChi2PerClusMax*10.); Double_t *binsChi2PerClus=new Double_t[fgkNChi2PerClusBins+1]; for(Int_t i=0; i<=fgkNChi2PerClusBins; i++) binsChi2PerClus[i]=(Double_t)fgkChi2PerClusMin + (fgkChi2PerClusMax-fgkChi2PerClusMin)/fgkNChi2PerClusBins*(Double_t)i ; Int_t fgkNCrossedRowsNClusFBins = 50; Float_t fgkNCrossedRowsNClusFMin = 0.; Float_t fgkNCrossedRowsNClusFMax = 1.; Double_t *binsNCrossedRowsNClusF=new Double_t[fgkNCrossedRowsNClusFBins+1]; for(Int_t i=0; i<=fgkNCrossedRowsNClusFBins; i++) binsNCrossedRowsNClusF[i]=(Double_t)fgkNCrossedRowsNClusFMin + (fgkNCrossedRowsNClusFMax-fgkNCrossedRowsNClusFMin)/fgkNCrossedRowsNClusFBins*(Double_t)i ; fNEventAll = new TH1F("fNEventAll","NEventAll",1,-0.5,0.5); fHistList->Add(fNEventAll); fNEventSel = new TH1F("fNEventSel","NEvent Selected for analysis",1,-0.5,0.5); fHistList->Add(fNEventSel); fNEventReject = new TH1F("fNEventReject","Reason events are rejectected for analysis",20,0,20); //Set labels fNEventReject->Fill("noESD",0); fNEventReject->Fill("Trigger",0); fNEventReject->Fill("NTracks<2",0); fNEventReject->Fill("noVTX",0); fNEventReject->Fill("VtxStatus",0); fNEventReject->Fill("NCont<2",0); fNEventReject->Fill("ZVTX>10",0); fNEventReject->Fill("cent",0); fNEventReject->Fill("cent>90",0); fHistList->Add(fNEventReject); fh1Centrality = new TH1F("fh1Centrality","fh1Centrality; Centrality %",100,0,100); fHistList->Add(fh1Centrality); fh1Xsec = new TProfile("fh1Xsec","xsec from pyxsec.root",1,0,1); fh1Xsec->GetXaxis()->SetBinLabel(1,"<#sigma>"); fHistList->Add(fh1Xsec); fh1Trials = new TH1F("fh1Trials","trials root file",1,0,1); fh1Trials->GetXaxis()->SetBinLabel(1,"#sum{ntrials}"); fHistList->Add(fh1Trials); fh1PtHard = new TH1F("fh1PtHard","PYTHIA Pt hard;p_{T,hard}",350,-.5,349.5); fHistList->Add(fh1PtHard); fh1PtHardTrials = new TH1F("fh1PtHardTrials","PYTHIA Pt hard weight with trials;p_{T,hard}",350,-.5,349.5); fHistList->Add(fh1PtHardTrials); fh1NTracksAll = new TH1F("fh1NTracksAll","fh1NTracksAll",1,-0.5,0.5); fHistList->Add(fh1NTracksAll); fh1NTracksReject = new TH1F("fh1NTracksReject","fh1NTracksReject",1,-0.5,0.5); fh1NTracksReject->Fill("noESDtrack",0); fh1NTracksReject->Fill("noTPCInner",0); fh1NTracksReject->Fill("FillTPC",0); fh1NTracksReject->Fill("noTPConly",0); fh1NTracksReject->Fill("relate",0); fh1NTracksReject->Fill("trackCuts",0); fh1NTracksReject->Fill("laser",0); fHistList->Add(fh1NTracksReject); fh1NTracksSel = new TH1F("fh1NTracksSel","fh1NTracksSel",1,-0.5,0.5); fHistList->Add(fh1NTracksSel); fPtAll = new TH1F("fPtAll","PtAll",fgkNPtBins, binsPt); fHistList->Add(fPtAll); fPtSel = new TH1F("fPtSel","PtSel",fgkNPtBins, binsPt); fHistList->Add(fPtSel); fPtPhi = new TH2F("fPtPhi","fPtPhi",fgkNPtBins,binsPt,fgkNPhiBins,binsPhi); fHistList->Add(fPtPhi); fPtEta = new TH2F("fPtEta","fPtEta",fgkNPtBins,binsPt,fgkNEtaBins,binsEta); fHistList->Add(fPtEta); fPtDCA2D = new TH2F("fPtDCA2D","fPtDCA2D",fgkNPtBins,binsPt,fgkNDCA2DBins,binsDCA2D); fHistList->Add(fPtDCA2D); fPtDCAZ = new TH2F("fPtDCAZ","fPtDCAZ",fgkNPtBins,binsPt,fgkNDCAZBins,binsDCAZ); fHistList->Add(fPtDCAZ); fPtNClustersTPC = new TH2F("fPtNClustersTPC","fPtNClustersTPC",fgkNPtBins,binsPt,fgkNNClustersTPCBins,binsNClustersTPC); fHistList->Add(fPtNClustersTPC); fPtNPointITS = new TH2F("fPtNPointITS","fPtNPointITS",fgkNPtBins,binsPt,fgkNNPointITSBins,binsNPointITS); fHistList->Add(fPtNPointITS); fPtChi2C = new TH2F("fPtChi2C","fPtChi2C",fgkNPtBins,binsPt,fgkNChi2CBins,binsChi2C); fHistList->Add(fPtChi2C); fPtNSigmaToVertex = new TH2F("fPtNSigmaToVertex","fPtNSigmaToVertex",fgkNPtBins,binsPt,fgkNNSigmaToVertexBins,binsNSigmaToVertex); fHistList->Add(fPtNSigmaToVertex); fPtRelUncertainty1Pt = new TH2F("fPtRelUncertainty1Pt","fPtRelUncertainty1Pt",fgkNPtBins,binsPt,fgkNRel1PtUncertaintyBins,binsRel1PtUncertainty); fHistList->Add(fPtRelUncertainty1Pt); fPtChi2PerClusterTPC = new TH2F("fPtChi2PerClusterTPC","fPtChi2PerClusterTPC",fgkNPtBins,binsPt,fgkNChi2PerClusBins,binsChi2PerClus); fHistList->Add(fPtChi2PerClusterTPC); fPtNCrossedRows = new TH2F("fPtNCrossedRows","fPtNCrossedRows",fgkNPtBins,binsPt,fgkNNClustersTPCBins,binsNClustersTPC); fHistList->Add(fPtNCrossedRows); fPtNCrossedRowsNClusF = new TH2F("fPtNCrossedRowsNClusF","fPtNCrossedRowsNClusF",fgkNPtBins,binsPt,fgkNCrossedRowsNClusFBins,binsNCrossedRowsNClusF); fHistList->Add(fPtNCrossedRowsNClusF); fPtNCrRNCrRNClusF = new TH3F("fPtNCrRNCrRNClusF","fPtNCrRNCrRNClusF",fgkNPtBins,binsPt,fgkNNClustersTPCBins,binsNClustersTPC,fgkNCrossedRowsNClusFBins,binsNCrossedRowsNClusF); fHistList->Add(fPtNCrRNCrRNClusF); TH1::AddDirectory(oldStatus); PostData(1, fHistList); if(binsPhi) delete [] binsPhi; if(binsPt) delete [] binsPt; if(binsNClustersTPC) delete [] binsNClustersTPC; if(binsDCA2D) delete [] binsDCA2D; if(binsDCAZ) delete [] binsDCAZ; if(binsNPointITS) delete [] binsNPointITS; if(binsNSigmaToVertex) delete [] binsNSigmaToVertex; if(binsChi2C) delete [] binsChi2C; if(binsEta) delete [] binsEta; if(binsRel1PtUncertainty) delete [] binsRel1PtUncertainty; if(binsChi2PerClus) delete [] binsChi2PerClus; if(binsChi2PerClus) delete [] binsNCrossedRowsNClusF; } //________________________________________________________________________ Bool_t AliPWG4HighPtTrackQA::SelectEvent() { // // Decide if event should be selected for analysis // // Checks following requirements: // - fEvent available // - trigger info from AliPhysicsSelection // - MCevent available // - number of reconstructed tracks > 1 // - primary vertex reconstructed // - z-vertex < 10 cm // - centrality in case of PbPb Bool_t selectEvent = kTRUE; //fEvent object available? if (!fEvent) { AliDebug(2,Form("ERROR: fInputEvent not available\n")); fNEventReject->Fill("noAliVEvent",1); selectEvent = kFALSE; return selectEvent; } //Check if number of reconstructed tracks is larger than 1 if(!fEvent->GetNumberOfTracks() || fEvent->GetNumberOfTracks()<2) { fNEventReject->Fill("NTracks<2",1); selectEvent = kFALSE; return selectEvent; } //Check if vertex is reconstructed if(fDataType==kESD) { fVtx = dynamic_cast(fEvent)->GetPrimaryVertexSPD(); if(!fVtx) { fNEventReject->Fill("noVTX",1); selectEvent = kFALSE; return selectEvent; } if(!fVtx->GetStatus()) { fNEventReject->Fill("VtxStatus",1); selectEvent = kFALSE; return selectEvent; } // Need vertex cut if(fVtx->GetNContributors()<2) { fNEventReject->Fill("NCont<2",1); selectEvent = kFALSE; return selectEvent; } //Check if z-vertex < 10 cm double primVtx[3]; fVtx->GetXYZ(primVtx); if(TMath::Sqrt(primVtx[0]*primVtx[0] + primVtx[1]*primVtx[1])>1. || TMath::Abs(primVtx[2]>10.)){ fNEventReject->Fill("ZVTX>10",1); selectEvent = kFALSE; return selectEvent; } } else if(fDataType==kAOD) { const AliAODVertex *vtx = dynamic_cast(fEvent)->GetPrimaryVertexSPD(); if(!vtx) { fNEventReject->Fill("noVTX",1); selectEvent = kFALSE; return selectEvent; } // Need vertex cut if(vtx->GetNContributors()<2) { fNEventReject->Fill("NCont<2",1); selectEvent = kFALSE; return selectEvent; } //Check if z-vertex < 10 cm double primVtx[3]; vtx->GetXYZ(primVtx); if(TMath::Sqrt(primVtx[0]*primVtx[0] + primVtx[1]*primVtx[1])>1. || TMath::Abs(primVtx[2]>10.)){ fNEventReject->Fill("ZVTX>10",1); selectEvent = kFALSE; return selectEvent; } } //Centrality selection should only be done in case of PbPb if(IsPbPb()) { Float_t cent = 0.; if(fCentClass!=CalculateCentrality(fEvent) && fCentClass!=10) { fNEventReject->Fill("cent",1); selectEvent = kFALSE; return selectEvent; } else { if(fDataType==kESD) { if(dynamic_cast(fEvent)->GetCentrality()) { cent = dynamic_cast(fEvent)->GetCentrality()->GetCentralityPercentile("V0M"); } } else if(fDataType==kAOD) { if(dynamic_cast(fEvent)->GetHeader()->GetCentrality()) cent = dynamic_cast(fEvent)->GetHeader()->GetCentrality(); } if(cent>90.) { fNEventReject->Fill("cent>90",1); selectEvent = kFALSE; return selectEvent; } fh1Centrality->Fill(cent); } } return selectEvent; } //________________________________________________________________________ Int_t AliPWG4HighPtTrackQA::CalculateCentrality(AliVEvent *ev){ if(fDataType==kESD) return CalculateCentrality(dynamic_cast(ev)); else if(fDataType==kAOD) return CalculateCentrality(dynamic_cast(ev)); else return 5; } //________________________________________________________________________ Int_t AliPWG4HighPtTrackQA::CalculateCentrality(AliESDEvent *esd){ Float_t cent = 999; if(esd->GetCentrality()){ cent = esd->GetCentrality()->GetCentralityPercentile("V0M"); if(fDebug>3) cout << "centrality: " << cent << endl; } if(cent>80)return 4; if(cent>50)return 3; if(cent>30)return 2; if(cent>10)return 1; return 0; } //________________________________________________________________________ Int_t AliPWG4HighPtTrackQA::CalculateCentrality(AliAODEvent *aod){ Float_t cent = aod->GetHeader()->GetCentrality(); cout << "centrality: " << cent << endl; if(cent>80)return 4; if(cent>50)return 3; if(cent>30)return 2; if(cent>10)return 1; return 0; } //________________________________________________________________________ void AliPWG4HighPtTrackQA::UserExec(Option_t *) { // Main loop // Called for each event AliDebug(2,Form(">> AliPWG4HighPtTrackQA::UserExec \n")); fEvent = InputEvent(); fESD = dynamic_cast(InputEvent()); // All events without selection fNEventAll->Fill(0.); if(!SelectEvent()) { // Post output data PostData(1, fHistList); return; } //Need to keep track of selected events fNEventSel->Fill(0.); fVariables = new TArrayF(fNVariables); if(fDataType==kESD) DoAnalysisESD(); if(fDataType==kAOD) DoAnalysisAOD(); //Delete old fVariables if(fVariables) delete fVariables; // Post output data PostData(1, fHistList); } //________________________________________________________________________ void AliPWG4HighPtTrackQA::DoAnalysisESD() { if(!fESD) { PostData(1, fHistList); return; } // ---- Get MC Header information (for MC productions in pThard bins) ---- Double_t ptHard = 0.; Double_t nTrials = 1; // trials for MC trigger weight for real data AliMCEventHandler *eventHandlerMC = dynamic_cast (AliAnalysisManager::GetAnalysisManager()->GetMCtruthEventHandler()); if (eventHandlerMC) { if(eventHandlerMC->MCEvent()){ AliGenPythiaEventHeader* pythiaGenHeader = GetPythiaEventHeader(eventHandlerMC->MCEvent()); if(pythiaGenHeader){ nTrials = pythiaGenHeader->Trials(); ptHard = pythiaGenHeader->GetPtHard(); fh1PtHard->Fill(ptHard); fh1PtHardTrials->Fill(ptHard,nTrials); fh1Trials->Fill("#sum{ntrials}",fAvgTrials); } } } Int_t nTracks = fESD->GetNumberOfTracks(); AliDebug(2,Form("nTracks ESD%d", nTracks)); /* Variables to be put in fVariables 0: pt 1: phi 2: eta 3: dca2D 4: dcaZ 5: nClustersTPC 6: nPointITS 7: chi2C 8: nSigmaToVertex 9: relUncertainty1Pt 10: chi2PerClusterTPC 11: #crossed rows 12: (#crossed rows)/(#findable clusters) */ for (Int_t iTrack = 0; iTrack < nTracks; iTrack++) { fh1NTracksAll->Fill(0.); //Get track for analysis AliESDtrack *track; AliESDtrack *esdtrack = fESD->GetTrack(iTrack); if(!esdtrack) { fh1NTracksReject->Fill("noESDtrack",1); continue; } if(fTrackType==1) track = AliESDtrackCuts::GetTPCOnlyTrack(fESD,esdtrack->GetID()); else if(fTrackType==2) { track = AliESDtrackCuts::GetTPCOnlyTrack(fESD,esdtrack->GetID()); if(!track) { fh1NTracksReject->Fill("noTPConly",1); delete track; continue; } AliExternalTrackParam exParam; Bool_t relate = track->RelateToVertexTPC(fVtx,fESD->GetMagneticField(),kVeryBig,&exParam); if( !relate ) { fh1NTracksReject->Fill("relate",1); delete track; continue; } track->Set(exParam.GetX(),exParam.GetAlpha(),exParam.GetParameter(),exParam.GetCovariance()); } else track = esdtrack; if(!track) { if(fTrackType==1 || fTrackType==2) delete track; continue; } fPtAll->Fill(track->Pt()); if (!(fTrackCuts->AcceptTrack(track))) { fh1NTracksReject->Fill("trackCuts",1); if(fTrackType==1 || fTrackType==2) delete track; continue; } if(track->GetTPCsignal()<10) { //Cut on laser tracks fh1NTracksReject->Fill("laser",1); if(fTrackType==1 || fTrackType==2) delete track; continue; } fh1NTracksSel->Fill(0.); fVariables->Reset(0.); fVariables->SetAt(track->Pt(),0); fVariables->SetAt(track->Phi(),1); fVariables->SetAt(track->Eta(),2); Float_t dca2D = 0.; Float_t dcaz = 0.; if(fTrackType==0) { //Global track->GetImpactParameters(dca2D,dcaz); } else if(fTrackType==1 || fTrackType==2) { //TPConly track->GetImpactParametersTPC(dca2D,dcaz); } fVariables->SetAt(dca2D,3); fVariables->SetAt(dcaz,5); fVariables->SetAt((float)track->GetTPCNcls(),5); Int_t nPointITS = 0; UChar_t itsMap = track->GetITSClusterMap(); for (Int_t i=0; i < 6; i++) { if (itsMap & (1 << i)) nPointITS ++; } fVariables->SetAt((float)nPointITS,6); fVariables->SetAt(track->GetConstrainedChi2(),7); fVariables->SetAt(fTrackCuts->GetSigmaToVertex(track),8);// Calculates the number of sigma to the vertex for a track. fVariables->SetAt(TMath::Sqrt(track->GetSigma1Pt2())*fVariables->At(0),9); if(fVariables->At(5)>0.) fVariables->SetAt(track->GetTPCchi2()/fVariables->At(5),10); //cout << "#crossed rows (1): " << track->GetTPCClusterInfo(1) << endl; //cout << "#crossed rows (2): " << track->GetTPCClusterInfo(2) << endl; fVariables->SetAt(track->GetTPCClusterInfo(2,1),11); //#crossed rows Float_t crossedRowsTPCNClsF = track->GetTPCClusterInfo(2,0); //if(track->GetTPCNclsF()>0.) crossedRowsTPCNClsF = fVariables->At(11)/track->GetTPCNclsF(); fVariables->SetAt(crossedRowsTPCNClsF,12);//(#crossed rows)/(#findable clusters) FillHistograms(); // int mult = fTrackCuts->CountAcceptedTracks(fESD); if(fTrackType==1 || fTrackType==2) delete track; }//track loop } //________________________________________________________________________ void AliPWG4HighPtTrackQA::DoAnalysisAOD() { AliAODEvent *aod = dynamic_cast(fEvent); for (Int_t iTrack = 0; iTrack < fEvent->GetNumberOfTracks(); iTrack++) { AliAODTrack *aodtrack = aod->GetTrack(iTrack); if( !aodtrack->TestFilterMask(fFilterMask) ) continue; fVariables->Reset(0.); fVariables->SetAt(aodtrack->Pt(),0); fVariables->SetAt(aodtrack->Phi(),1); fVariables->SetAt(aodtrack->Eta(),2); Double_t dca[2] = {1e6,1e6}; Double_t covar[3] = {1e6,1e6,1e6}; if(aodtrack->PropagateToDCA(fEvent->GetPrimaryVertex(),fEvent->GetMagneticField(),100.,dca,covar)) { fVariables->SetAt(dca[0],3); fVariables->SetAt(dca[1],4); } fVariables->SetAt((float)aodtrack->GetTPCNcls(),5); fVariables->SetAt((float)aodtrack->GetITSNcls(),6); fVariables->SetAt(0.,7); fVariables->SetAt(0.,8); fVariables->SetAt(0.,9); fVariables->SetAt(aodtrack->Chi2perNDF(),10); fVariables->SetAt(GetTPCClusterInfo(aodtrack,2),11); Float_t crossedRowsTPCNClsF = 0.; if(aodtrack->GetTPCNclsF()>0.) crossedRowsTPCNClsF = fVariables->At(11)/aodtrack->GetTPCNclsF(); fVariables->SetAt(crossedRowsTPCNClsF,12); fPtAll->Fill(fVariables->At(0)); FillHistograms(); } } //________________________________________________________________________ void AliPWG4HighPtTrackQA::FillHistograms() { fPtSel->Fill(fVariables->At(0)); fPtPhi->Fill(fVariables->At(0),fVariables->At(1)); fPtEta->Fill(fVariables->At(0),fVariables->At(2)); fPtDCA2D->Fill(fVariables->At(0),fVariables->At(3)); fPtDCAZ->Fill(fVariables->At(0),fVariables->At(4)); fPtNClustersTPC->Fill(fVariables->At(0),fVariables->At(5)); fPtNPointITS->Fill(fVariables->At(0),fVariables->At(6)); if(fDataType==kESD) { fPtChi2C->Fill(fVariables->At(0),fVariables->At(7)); fPtNSigmaToVertex->Fill(fVariables->At(0),fVariables->At(8)); fPtRelUncertainty1Pt->Fill(fVariables->At(0),fVariables->At(9)); } fPtChi2PerClusterTPC->Fill(fVariables->At(0),fVariables->At(10)); fPtNCrossedRows->Fill(fVariables->At(0),fVariables->At(11)); fPtNCrossedRowsNClusF->Fill(fVariables->At(0),fVariables->At(12)); fPtNCrRNCrRNClusF->Fill(fVariables->At(0),fVariables->At(11),fVariables->At(12)); } //________________________________________________________________________ Bool_t AliPWG4HighPtTrackQA::PythiaInfoFromFile(const char* currFile,Float_t &fXsec,Float_t &fTrials){ // // get the cross section and the trails either from pyxsec.root or from pysec_hists.root // This is to called in Notify and should provide the path to the AOD/ESD file // Copied from AliAnalysisTaskJetSpectrum2 // TString file(currFile); fXsec = 0; fTrials = 1; if(file.Contains("root_archive.zip#")){ Ssiz_t pos1 = file.Index("root_archive",12,TString::kExact); Ssiz_t pos = file.Index("#",1,pos1,TString::kExact); file.Replace(pos+1,20,""); } else { // not an archive take the basename.... file.ReplaceAll(gSystem->BaseName(file.Data()),""); } // Printf("%s",file.Data()); TFile *fxsec = TFile::Open(Form("%s%s",file.Data(),"pyxsec.root")); // problem that we cannot really test the existance of a file in a archive so we have to lvie with open error message from root if(!fxsec){ // next trial fetch the histgram file fxsec = TFile::Open(Form("%s%s",file.Data(),"pyxsec_hists.root")); if(!fxsec){ // not a severe condition but inciate that we have no information return kFALSE; } else{ // find the tlist we want to be independtent of the name so use the Tkey TKey* key = (TKey*)fxsec->GetListOfKeys()->At(0); if(!key){ fxsec->Close(); return kFALSE; } TList *list = dynamic_cast(key->ReadObj()); if(!list){ fxsec->Close(); return kFALSE; } fXsec = ((TProfile*)list->FindObject("h1Xsec"))->GetBinContent(1); fTrials = ((TH1F*)list->FindObject("h1Trials"))->GetBinContent(1); fxsec->Close(); } } // no tree pyxsec.root else { TTree *xtree = (TTree*)fxsec->Get("Xsection"); if(!xtree){ fxsec->Close(); return kFALSE; } UInt_t ntrials = 0; Double_t xsection = 0; xtree->SetBranchAddress("xsection",&xsection); xtree->SetBranchAddress("ntrials",&ntrials); xtree->GetEntry(0); fTrials = ntrials; fXsec = xsection; fxsec->Close(); } return kTRUE; } //________________________________________________________________________ Bool_t AliPWG4HighPtTrackQA::Notify() { // // Implemented Notify() to read the cross sections // and number of trials from pyxsec.root // Copied from AliAnalysisTaskJetSpectrum2 // TTree *tree = AliAnalysisManager::GetAnalysisManager()->GetTree(); Float_t xsection = 0; Float_t ftrials = 1; fAvgTrials = 1; if(tree){ TFile *curfile = tree->GetCurrentFile(); if (!curfile) { Error("Notify","No current file"); return kFALSE; } if(!fh1Xsec||!fh1Trials){ // Printf("%s%d No Histogram fh1Xsec",(char*)__FILE__,__LINE__); return kFALSE; } PythiaInfoFromFile(curfile->GetName(),xsection,ftrials); fh1Xsec->Fill("<#sigma>",xsection); // construct a poor man average trials Float_t nEntries = (Float_t)tree->GetTree()->GetEntries(); if(ftrials>=nEntries && nEntries>0.)fAvgTrials = ftrials/nEntries; } return kTRUE; } //________________________________________________________________________ AliGenPythiaEventHeader* AliPWG4HighPtTrackQA::GetPythiaEventHeader(AliMCEvent *mcEvent){ if(!mcEvent)return 0; AliGenEventHeader* genHeader = mcEvent->GenEventHeader(); AliGenPythiaEventHeader* pythiaGenHeader = dynamic_cast(genHeader); if(!pythiaGenHeader){ // cocktail ?? AliGenCocktailEventHeader* genCocktailHeader = dynamic_cast(genHeader); if (!genCocktailHeader) { // AliWarningGeneral(Form(" %s:%d",(char*)__FILE__,__LINE__),"Unknown header type (not Pythia or Cocktail)"); // AliWarning(Form("%s %d: Unknown header type (not Pythia or Cocktail)",(char*)__FILE__,__LINE__)); return 0; } TList* headerList = genCocktailHeader->GetHeaders(); for (Int_t i=0; iGetEntries(); i++) { pythiaGenHeader = dynamic_cast(headerList->At(i)); if (pythiaGenHeader) break; } if(!pythiaGenHeader){ AliWarningGeneral(Form(" %s:%d",(char*)__FILE__,__LINE__),"Pythia event header not found"); return 0; } } return pythiaGenHeader; } //_______________________________________________________________________ Float_t AliPWG4HighPtTrackQA::GetTPCClusterInfo(AliAODTrack *tr,Int_t nNeighbours/*=3*/, Int_t type/*=0*/, Int_t row0, Int_t row1) const { //MV: copied from AliESDtrack since method is not available in AliAODTrack // // TPC cluster information // type 0: get fraction of found/findable clusters with neighbourhood definition // 1: findable clusters with neighbourhood definition // 2: found clusters // // definition of findable clusters: // a cluster is defined as findable if there is another cluster // within +- nNeighbours pad rows. The idea is to overcome threshold // effects with a very simple algorithm. // TBits fTPCClusterMap = tr->GetTPCClusterMap(); if (type==2) return fTPCClusterMap.CountBits(); Int_t found=0; Int_t findable=0; Int_t last=-nNeighbours; for (Int_t i=row0; i0) fraction=(Float_t)found/(Float_t)findable; else fraction=0; return fraction; } return 0; // undefined type - default value } //________________________________________________________________________ void AliPWG4HighPtTrackQA::Terminate(Option_t *) { // The Terminate() function is the last function to be called during // a query. It always runs on the client, it can be used to present // the results graphically or save the results to file. } #endif