#ifndef ALICALOTRACKREADER_H #define ALICALOTRACKREADER_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id: $ */ //_________________________________________________________________________ // Base class for reading data: MonteCarlo, ESD or AOD, of PHOS EMCAL and // Central Barrel Tracking detectors. // Not all MC particles/tracks/clusters are kept, some kinematical restrictions are done. // Mother class of : AliCaloTrackESDReader: Fills ESD data in 3 TObjArrays (PHOS, EMCAL, CTS) // : AliCaloTrackMCReader : Fills Kinematics data in 3 TObjArrays (PHOS, EMCAL, CTS) // : AliCaloTrackAODReader: Fills AOD data in 3 TObjArrays (PHOS, EMCAL, CTS) // -- Author: Gustavo Conesa (INFN-LNF) ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- #include #include class TObjArray ; class TTree ; //--- ANALYSIS system --- #include "AliVCaloCells.h" class AliStack ; class AliHeader ; class AliGenEventHeader ; #include "AliVEvent.h" class AliAODEvent; class AliMCEvent; class AliMixedEvent; class AliAODMCHeader; class AliESDtrackCuts; class AliCentrality; class AliTriggerAnalysis; class AliEventplane; // --- PartCorr #include "AliCalorimeterUtils.h" #include "AliFiducialCut.h" class AliCaloTrackReader : public TObject { public: AliCaloTrackReader() ; // ctor virtual ~AliCaloTrackReader() ;//virtual dtor private: AliCaloTrackReader(const AliCaloTrackReader & g) ; // cpy ctor AliCaloTrackReader & operator = (const AliCaloTrackReader & g) ;//cpy assignment public: //-------------------------------- // General methods //-------------------------------- virtual void Init(); virtual void InitParameters(); virtual void Print(const Option_t * opt) const; virtual void ResetLists(); virtual Int_t GetDebug() const { return fDebug ; } virtual void SetDebug(Int_t d) { fDebug = d ; } enum inputDataType {kESD, kAOD, kMC}; virtual Int_t GetDataType() const { return fDataType ; } virtual void SetDataType(Int_t data ) { fDataType = data ; } virtual Int_t GetEventNumber() const { return fEventNumber ; } TString GetTaskName() const { return fTaskName ; } void SetTaskName(TString name) { fTaskName = name ; } //--------------------------------------- //Input/output event setters and getters //--------------------------------------- virtual void SetInputEvent(AliVEvent* const input) ; virtual void SetOutputEvent(AliAODEvent* const aod) { fOutputEvent = aod ; } virtual void SetMC(AliMCEvent* const mc) { fMC = mc ; } virtual void SetInputOutputMCEvent(AliVEvent* /*esd*/, AliAODEvent* /*aod*/, AliMCEvent* /*mc*/) { ; } // Delta AODs virtual TList * GetAODBranchList() const { return fAODBranchList ; } void SetDeltaAODFileName(TString name ) { fDeltaAODFileName = name ; } TString GetDeltaAODFileName() const { return fDeltaAODFileName ; } void SwitchOnWriteDeltaAOD() { fWriteOutputDeltaAOD = kTRUE ; } void SwitchOffWriteDeltaAOD() { fWriteOutputDeltaAOD = kFALSE ; } Bool_t WriteDeltaAODToFile() const { return fWriteOutputDeltaAOD ; } //------------------------------------------------------------ //Clusters/Tracks arrays filtering/filling methods and switchs //------------------------------------------------------------ //Minimum pt setters and getters Float_t GetEMCALPtMin() const { return fEMCALPtMin ; } Float_t GetPHOSPtMin() const { return fPHOSPtMin ; } Float_t GetCTSPtMin() const { return fCTSPtMin ; } Float_t GetEMCALPtMax() const { return fEMCALPtMax ; } Float_t GetPHOSPtMax() const { return fPHOSPtMax ; } Float_t GetCTSPtMax() const { return fCTSPtMax ; } void SetEMCALPtMin(Float_t pt) { fEMCALPtMin = pt ; } void SetPHOSPtMin (Float_t pt) { fPHOSPtMin = pt ; } void SetCTSPtMin (Float_t pt) { fCTSPtMin = pt ; } void SetEMCALPtMax(Float_t pt) { fEMCALPtMax = pt ; } void SetPHOSPtMax (Float_t pt) { fPHOSPtMax = pt ; } void SetCTSPtMax (Float_t pt) { fCTSPtMax = pt ; } Float_t GetEMCALEMin() const { return GetEMCALPtMin() ; } Float_t GetPHOSEMin() const { return GetPHOSPtMin() ; } Float_t GetEMCALEMax() const { return GetEMCALPtMax() ; } Float_t GetPHOSEMax() const { return GetPHOSPtMax() ; } void SetEMCALEMin (Float_t e) { SetEMCALPtMin(e) ; } void SetPHOSEMin (Float_t e) { SetPHOSPtMin (e) ; } void SetEMCALEMax (Float_t e) { SetEMCALPtMax(e) ; } void SetPHOSEMax (Float_t e) { SetPHOSPtMax (e) ; } // Fidutial cuts virtual AliFiducialCut * GetFiducialCut() { if(!fFiducialCut) fFiducialCut = new AliFiducialCut(); return fFiducialCut ; } virtual void SetFiducialCut(AliFiducialCut * const fc) { fFiducialCut = fc ; } virtual Bool_t IsFiducialCutOn() const { return fCheckFidCut ; } virtual void SwitchOnFiducialCut() { fCheckFidCut = kTRUE ; fFiducialCut = new AliFiducialCut() ; } virtual void SwitchOffFiducialCut() { fCheckFidCut = kFALSE ; } // Cluster origin Bool_t IsEMCALCluster(AliVCluster *clus) const; Bool_t IsPHOSCluster (AliVCluster *clus) const; //Patch for cluster origin for Old AODs implementation void SwitchOnOldAODs() { fOldAOD = kTRUE ; } void SwitchOffOldAODs() { fOldAOD = kFALSE ; } // Cluster/track/cells switchs Bool_t IsCTSSwitchedOn() const { return fFillCTS ; } void SwitchOnCTS() { fFillCTS = kTRUE ; } void SwitchOffCTS() { fFillCTS = kFALSE ; } Bool_t IsEMCALSwitchedOn() const { return fFillEMCAL ; } void SwitchOnEMCAL() { fFillEMCAL = kTRUE ; } void SwitchOffEMCAL() { fFillEMCAL = kFALSE ; } Bool_t IsPHOSSwitchedOn() const { return fFillPHOS ; } void SwitchOnPHOS() { fFillPHOS = kTRUE ; } void SwitchOffPHOS() { fFillPHOS = kFALSE ; } Bool_t IsEMCALCellsSwitchedOn() const { return fFillEMCALCells ; } void SwitchOnEMCALCells() { fFillEMCALCells = kTRUE ; } void SwitchOffEMCALCells() { fFillEMCALCells = kFALSE ; } Bool_t IsPHOSCellsSwitchedOn() const { return fFillPHOSCells ; } void SwitchOnPHOSCells() { fFillPHOSCells = kTRUE ; } void SwitchOffPHOSCells() { fFillPHOSCells = kFALSE ; } Bool_t AreClustersRecalculated() const { return fRecalculateClusters ; } void SwitchOnClusterRecalculation() { fRecalculateClusters = kTRUE ; } void SwitchOffClusterRecalculation() { fRecalculateClusters = kFALSE ; } Bool_t IsEmbeddedClusterSelectionOn() const { return fSelectEmbeddedClusters ; } void SwitchOnEmbeddedClustersSelection() { fSelectEmbeddedClusters = kTRUE ; } void SwitchOffEmbeddedClustersSelection() { fSelectEmbeddedClusters = kFALSE ; } // Filling/ filtering / detector information access methods virtual Bool_t FillInputEvent(const Int_t iEntry, const char *currentFileName) ; virtual void FillInputCTS() ; virtual void FillInputEMCAL() ; virtual void FillInputEMCALAlgorithm(AliVCluster * clus, const Int_t iclus) ; virtual void FillInputPHOS() ; virtual void FillInputEMCALCells() ; virtual void FillInputPHOSCells() ; virtual void FillInputVZERO() ; Int_t GetV0Signal(Int_t i) const { return fV0ADC[i] ; } Int_t GetV0Multiplicity(Int_t i) const { return fV0Mul[i] ; } void SetEMCALClusterListName(TString &name) {fEMCALClustersListName = name ; } // Arrayes with clusters/track/cells access method virtual TObjArray* GetCTSTracks() const { return fCTSTracks ; } virtual TObjArray* GetEMCALClusters() const { return fEMCALClusters ; } virtual TObjArray* GetPHOSClusters() const { return fPHOSClusters ; } virtual AliVCaloCells* GetEMCALCells() const { return fEMCALCells ; } virtual AliVCaloCells* GetPHOSCells() const { return fPHOSCells ; } //------------------------------------- // Event/track selection methods //------------------------------------- void SetFiredTriggerClassName(TString name ) { fFiredTriggerClassName = name ; } TString GetFiredTriggerClassName() const { return fFiredTriggerClassName ; } virtual TString GetFiredTriggerClasses() { return "" ; } // look the ESD/AOD reader void SwitchOnEventSelection() { fDoEventSelection = kTRUE ; } void SwitchOffEventSelection() { fDoEventSelection = kFALSE ; } Bool_t IsEventSelectionDone() const { return fDoEventSelection ; } void SwitchOnV0ANDSelection() { fDoV0ANDEventSelection = kTRUE ; } void SwitchOffV0ANDSelection() { fDoV0ANDEventSelection = kFALSE ; } Bool_t IsV0ANDEventSelectionDone() const { return fDoV0ANDEventSelection ; } void SwitchOnPrimaryVertexSelection() { fUseEventsWithPrimaryVertex = kTRUE ; } void SwitchOffPrimaryVertexSelection() { fUseEventsWithPrimaryVertex = kFALSE ; } Bool_t IsPrimaryVertexSelectionDone() const { return fUseEventsWithPrimaryVertex ; } // Track selection ULong_t GetTrackStatus() const { return fTrackStatus ; } void SetTrackStatus(ULong_t bit) { fTrackStatus = bit ; } ULong_t GetTrackFilterMask() const {return fTrackFilterMask ; } void SetTrackFilterMask(ULong_t bit) { fTrackFilterMask = bit ; } AliESDtrackCuts* GetTrackCuts() const { return fESDtrackCuts ; } void SetTrackCuts(AliESDtrackCuts * cuts) { fESDtrackCuts = cuts ; } Int_t GetTrackMultiplicity() const { return fTrackMult ; } Float_t GetTrackMultiplicityEtaCut() const { return fTrackMultEtaCut ; } void SetTrackMultiplicityEtaCut(Float_t eta) { fTrackMultEtaCut = eta ; } // Calorimeter specific and patches void AnalyzeOnlyLED() { fAnaLED = kTRUE ; } void AnalyzeOnlyPhysics() { fAnaLED = kFALSE ; } void SwitchOnCaloFilterPatch() { fCaloFilterPatch = kTRUE ; fFillCTS = kFALSE ; } void SwitchOffCaloFilterPatch() { fCaloFilterPatch = kFALSE ; } Bool_t IsCaloFilterPatchOn() const { if(fDataType == kAOD) { return fCaloFilterPatch ; } else { return kFALSE ; } } //------------------------------- //Vertex methods //------------------------------- virtual void GetVertex(Double_t v[3]) const ; virtual Double_t* GetVertex(const Int_t evtIndex) const { return fVertex[evtIndex] ; } virtual void GetVertex(Double_t vertex[3], const Int_t evtIndex) const ; virtual void FillVertexArray(); virtual Bool_t CheckForPrimaryVertex(); // virtual void GetSecondInputAODVertex(Double_t *) const {;} virtual Float_t GetZvertexCut() const { return fZvtxCut ; } //cut on vertex position virtual void SetZvertexCut(Float_t zcut=10.) { fZvtxCut=zcut ; } //cut on vertex position //------------------------ // Centrality / Event Plane //------------------------ virtual AliCentrality* GetCentrality() const { return fInputEvent->GetCentrality() ; } //Look in AOD reader, different there virtual void SetCentralityClass(TString name) { fCentralityClass = name ; } virtual void SetCentralityOpt(Int_t opt) { fCentralityOpt = opt ; } virtual TString GetCentralityClass() const { return fCentralityClass ; } virtual Int_t GetCentralityOpt() const { return fCentralityOpt ; } virtual Int_t GetEventCentrality() const ; virtual void SetCentralityBin(Int_t min, Int_t max) //Set the centrality bin to select the event. If used, then need to get percentile { fCentralityBin[0]=min; fCentralityBin[1]=max; if(min>=0 && max > 0) fCentralityOpt = 100 ; } virtual Float_t GetCentralityBin(Int_t i) const { if(i < 0 || i > 1) return 0 ; else return fCentralityBin[i] ; } virtual AliEventplane* GetEventPlane() const { return fInputEvent->GetEventplane() ; } virtual void SetEventPlaneMethod(TString m) { fEventPlaneMethod = m ; } virtual TString GetEventPlaneMethod() const { return fEventPlaneMethod ; } //------------------------------------- // Other methods //------------------------------------- AliCalorimeterUtils * GetCaloUtils() const { return fCaloUtils ; } void SetCaloUtils(AliCalorimeterUtils * caloutils) { fCaloUtils = caloutils ; } virtual Double_t GetBField() const { return fInputEvent->GetMagneticField() ; } //------------------------------------------------ // MC analysis specific methods //------------------------------------------------- //Kinematics and galice.root available virtual AliStack* GetStack() const ; virtual AliHeader* GetHeader() const ; virtual AliGenEventHeader* GetGenEventHeader() const ; //Filtered kinematics in AOD virtual TClonesArray* GetAODMCParticles(Int_t input = 0) const ; virtual AliAODMCHeader* GetAODMCHeader(Int_t input = 0) const ; virtual AliVEvent* GetInputEvent() const { return fInputEvent ; } virtual AliVEvent* GetOriginalInputEvent() const { return 0x0 ; } virtual AliAODEvent* GetOutputEvent() const { return fOutputEvent ; } virtual AliMCEvent* GetMC() const { return fMC ; } virtual AliMixedEvent* GetMixedEvent() const { return fMixedEvent ; } virtual Int_t GetNMixedEvent() const { return fNMixedEvent ; } void SwitchOnStack() { fReadStack = kTRUE ; } void SwitchOffStack() { fReadStack = kFALSE ; } void SwitchOnAODMCParticles() { fReadAODMCParticles = kTRUE ; } void SwitchOffAODMCParticles() { fReadAODMCParticles = kFALSE ; } Bool_t ReadStack() const { return fReadStack ; } Bool_t ReadAODMCParticles() const { return fReadAODMCParticles ; } //Select generated events, depending on comparison of pT hard and jets. virtual Bool_t ComparePtHardAndJetPt() ; virtual Bool_t IsPtHardAndJetPtComparisonSet() const { return fComparePtHardAndJetPt ; } virtual void SetPtHardAndJetPtComparison(Bool_t compare) { fComparePtHardAndJetPt = compare ; } virtual Float_t GetPtHardAndJetFactor() const { return fPtHardAndJetPtFactor ; } virtual void SetPtHardAndJetPtFactor(Float_t factor) { fPtHardAndJetPtFactor = factor ; } //MC reader methods, declared there to allow compilation, they are only used in the MC reader: virtual void AddNeutralParticlesArray(TArrayI & /*array*/) { ; } virtual void AddChargedParticlesArray(TArrayI & /*array*/) { ; } virtual void AddStatusArray(TArrayI & /*array*/) { ; } virtual void SwitchOnPi0Decay() { ; } virtual void SwitchOffPi0Decay() { ; } virtual void SwitchOnStatusSelection() { ; } virtual void SwitchOffStatusSelection() { ; } virtual void SwitchOnOverlapCheck() { ; } virtual void SwitchOffOverlapCheck() { ; } virtual void SwitchOnOnlyGeneratorParticles() { ; } virtual void SwitchOffOnlyGeneratorParticles() { ; } virtual void SetEMCALOverlapAngle(Float_t /*angle*/) { ; } virtual void SetPHOSOverlapAngle(Float_t /*angle*/) { ; } protected: Int_t fEventNumber; // Event number Int_t fDataType ; // Select MC:Kinematics, Data:ESD/AOD, MCData:Both Int_t fDebug; // Debugging level AliFiducialCut * fFiducialCut; //! Acceptance cuts Bool_t fCheckFidCut ; // Do analysis for clusters in defined region Bool_t fComparePtHardAndJetPt; // In MonteCarlo, jet events, reject fake events with wrong jet energy. Float_t fPtHardAndJetPtFactor; // Factor between ptHard and jet pT to reject/accept event. Float_t fCTSPtMin; // pT Threshold on charged particles Float_t fEMCALPtMin; // pT Threshold on emcal clusters Float_t fPHOSPtMin; // pT Threshold on phos clusters Float_t fCTSPtMax; // pT Threshold on charged particles Float_t fEMCALPtMax; // pT Threshold on emcal clusters Float_t fPHOSPtMax; // pT Threshold on phos clusters TList * fAODBranchList ; //-> List with AOD branches created and needed in analysis TObjArray * fCTSTracks ; //-> temporal array with tracks TObjArray * fEMCALClusters ; //-> temporal array with EMCAL CaloClusters TObjArray * fPHOSClusters ; //-> temporal array with PHOS CaloClusters AliVCaloCells * fEMCALCells ; //! temporal array with EMCAL CaloCells AliVCaloCells * fPHOSCells ; //! temporal array with PHOS CaloCells AliVEvent * fInputEvent; //! pointer to esd or aod input AliAODEvent * fOutputEvent; //! pointer to aod output AliMCEvent * fMC; //! Monte Carlo Event Handler Bool_t fFillCTS; // use data from CTS Bool_t fFillEMCAL; // use data from EMCAL Bool_t fFillPHOS; // use data from PHOS Bool_t fFillEMCALCells; // use data from EMCAL Bool_t fFillPHOSCells; // use data from PHOS Bool_t fRecalculateClusters; // Correct clusters, recalculate them if recalibration parameters is given Bool_t fSelectEmbeddedClusters; // Use only simulated clusters that come from embedding. ULong_t fTrackStatus ; // Track selection bit, select tracks refitted in TPC, ITS ... ULong_t fTrackFilterMask ; // Track selection bit, for AODs (any difference with track status?) AliESDtrackCuts *fESDtrackCuts ; // Track cut Int_t fTrackMult ; // Track multiplicity Float_t fTrackMultEtaCut ; // Track multiplicity eta cut Bool_t fReadStack ; // Access kine information from stack Bool_t fReadAODMCParticles ; // Access kine information from filtered AOD MC particles TString fDeltaAODFileName ; // Delta AOD file name TString fFiredTriggerClassName; // Name of trigger event type used to do the analysis Bool_t fAnaLED; // Analyze LED data only. TString fTaskName; // Name of task that executes the analysis AliCalorimeterUtils * fCaloUtils ; // Pointer to CalorimeterUtils AliMixedEvent * fMixedEvent ; //! mixed event object. This class is not the owner Int_t fNMixedEvent ; // number of events in mixed event buffer Double_t ** fVertex ; //! vertex array 3 dim for each mixed event buffer Bool_t fWriteOutputDeltaAOD; // Write the created delta AOD objects into file Bool_t fOldAOD; // Old AODs, before revision 4.20 Int_t fV0ADC[2] ; // Integrated V0 signal Int_t fV0Mul[2] ; // Integrated V0 Multiplicity Bool_t fCaloFilterPatch; // CaloFilter patch TString fEMCALClustersListName; // Alternative list of clusters produced elsewhere and not from InputEvent Float_t fZvtxCut ; // Cut on vertex position Bool_t fDoEventSelection; // Select events depending on V0, pileup, vertex well reconstructed, at least 1 track ... Bool_t fDoV0ANDEventSelection; // Select events depending on V0, fDoEventSelection should be on Bool_t fUseEventsWithPrimaryVertex ; // Select events with primary vertex AliTriggerAnalysis* fTriggerAnalysis; // Access to trigger selection algorithm for V0AND calculation //Centrality/Event plane TString fCentralityClass; // Name of selected centrality class Int_t fCentralityOpt; // Option for the returned value of the centrality, possible options 5, 10, 100 Int_t fCentralityBin[2]; // Minimum and maximum value of the centrality for the analysis TString fEventPlaneMethod; // Name of event plane method, by default "Q" ClassDef(AliCaloTrackReader,33) } ; #endif //ALICALOTRACKREADER_H