#ifndef AliUEHistograms_H #define AliUEHistograms_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id: AliUEHistograms.h 20164 2007-08-14 15:31:50Z morsch $ */ // encapsulates several AliUEHist objects for a full UE analysis plus additional control histograms #include "TNamed.h" #include "AliUEHist.h" #include "TMath.h" class AliVParticle; class TList; class TSeqCollection; class TObjArray; class TH1F; class TH2F; class TH3F; class AliUEHistograms : public TNamed { public: AliUEHistograms(const char* name = "AliUEHistograms", const char* histograms = ""); virtual ~AliUEHistograms(); void Fill(Int_t eventType, Float_t zVtx, AliUEHist::CFStep step, AliVParticle* leading, TList* toward, TList* away, TList* min, TList* max); void FillCorrelations(Double_t centrality, Float_t zVtx, AliUEHist::CFStep step, TObjArray* particles, TObjArray* mixed = 0, Float_t weight = 1, Bool_t firstTime = kTRUE, Bool_t twoTrackEfficiencyCut = kFALSE, Float_t bSign = 0, Float_t twoTrackEfficiencyCutValue = 0.02); void Fill(AliVParticle* leadingMC, AliVParticle* leadingReco); void FillEvent(Int_t eventType, Int_t step); void FillEvent(Double_t centrality, Int_t step); void FillTrackingEfficiency(TObjArray* mc, TObjArray* recoPrim, TObjArray* recoAll, Int_t particleType, Double_t centrality = 0); void CopyReconstructedData(AliUEHistograms* from); void DeepCopy(AliUEHistograms* from); AliUEHist* GetUEHist(Int_t id); AliUEHist* GetNumberDensitypT() { return fNumberDensitypT; } AliUEHist* GetSumpT() { return fSumpT; } AliUEHist* GetNumberDensityPhi() { return fNumberDensityPhi; } void SetNumberDensitypT(AliUEHist* obj) { fNumberDensitypT = obj; } void SetSumpT(AliUEHist* obj) { fSumpT = obj; } void SetNumberDensityPhi(AliUEHist* obj) { fNumberDensityPhi = obj; } void SetRunNumber(Long64_t runNumber) { fRunNumber = runNumber; } TH2F* GetCorrelationpT() { return fCorrelationpT; } TH2F* GetCorrelationEta() { return fCorrelationEta; } TH2F* GetCorrelationPhi() { return fCorrelationPhi; } TH2F* GetCorrelationR() { return fCorrelationR; } TH2F* GetCorrelationLeading2Phi() { return fCorrelationLeading2Phi; } TH2F* GetCorrelationMultiplicity() { return fCorrelationMultiplicity; } TH2F* GetEventCount() { return fEventCount; } TH3F* GetEventCountDifferential() { return fEventCountDifferential; } TH1F* GetVertexContributors() { return fVertexContributors; } TH1F* GetCentralityDistribution() { return fCentralityDistribution; } Long64_t GetRunNumber() { return fRunNumber; } TH3F* GetTwoTrackDistance(Int_t i) { return fTwoTrackDistancePt[i]; } void Correct(AliUEHistograms* corrections); void SetEtaRange(Float_t etaMin, Float_t etaMax); void SetPtRange(Float_t ptMin, Float_t ptMax); void SetZVtxRange(Float_t min, Float_t max); void SetContaminationEnhancement(TH1F* hist); void SetCombineMinMax(Bool_t flag); void SetSelectCharge(Int_t selectCharge) { fSelectCharge = selectCharge; } void SetTriggerRestrictEta(Float_t eta) { fTriggerRestrictEta = eta; } void SetEtaOrdering(Bool_t flag) { fEtaOrdering = flag; } void SetPairCuts(Bool_t conversions, Bool_t resonances) { fCutConversions = conversions; fCutResonances = resonances; } void SetOnlyOneEtaSide(Int_t flag) { fOnlyOneEtaSide = flag; } void ExtendTrackingEfficiency(Bool_t verbose = kFALSE); void Reset(); AliUEHistograms(const AliUEHistograms &c); AliUEHistograms& operator=(const AliUEHistograms& c); virtual void Copy(TObject& c) const; virtual Long64_t Merge(TCollection* list); void Scale(Double_t factor); protected: void FillRegion(AliUEHist::Region region, Float_t zVtx, AliUEHist::CFStep step, AliVParticle* leading, TList* list, Int_t multiplicity); Int_t CountParticles(TList* list, Float_t ptMin); void DeleteContainers(); Float_t GetInvMassSquared(Float_t pt1, Float_t eta1, Float_t phi1, Float_t pt2, Float_t eta2, Float_t phi2, Float_t m0); inline Float_t GetDPhiStar(Float_t phi1, Float_t pt1, Float_t charge1, Float_t phi2, Float_t pt2, Float_t charge2, Float_t radius, Float_t bSign); static const Int_t fgkUEHists; // number of histograms AliUEHist* fNumberDensitypT; // d^2N/dphideta vs pT,lead AliUEHist* fSumpT; // d^2 sum(pT)/dphideta vs pT,lead AliUEHist* fNumberDensityPhi; // d^2N/dphideta vs delta phi,lead (in pT,lead bins) TH2F* fCorrelationpT; // pT,lead: true vs reco TH2F* fCorrelationEta; // #eta,lead; true vs reco TH2F* fCorrelationPhi; // #phi,lead; true vs reco TH2F* fCorrelationR; // R = sqrt(delta eta^2 + delta phi^2) (true vs reco) vs pT,lead,MC TH2F* fCorrelationLeading2Phi;// delta phi (true vs reco) vs pT,lead,MC TH2F* fCorrelationMultiplicity; // number of mc particls vs reco particles (for pT > 0.5 GeV/c) TH3F* fYields; // centrality vs pT vs eta TH2F* fEventCount; // event count as function of step, (for pp: event type (plus additional step -1 for all events without vertex range even in MC)) (for PbPb: centrality) TH3F* fEventCountDifferential;// event count as function of leading pT, step, event type TH1F* fVertexContributors; // number of contributors to the vertex TH1F* fCentralityDistribution; // distribution of the variable used for centrality selection TH2F* fCentralityCorrelation; // centrality vs multiplicity TH3F* fITSClusterMap; // its cluster map vs centrality vs pT TH3F* fTwoTrackDistancePt[2]; // control histograms for two-track efficiency study: dphi*_min vs deta (0 = before cut, 1 = after cut) Int_t fSelectCharge; // (un)like sign selection when building correlations: 0: no selection; 1: unlike sign; 2: like sign Float_t fTriggerRestrictEta; // restrict eta range for trigger particle (default: -1 [off]) Bool_t fEtaOrdering; // activate eta ordering to prevent shape distortions. see FillCorrelation for the details Bool_t fCutConversions; // cut on conversions (inv mass) Bool_t fCutResonances; // cut on resonances (inv mass) Int_t fOnlyOneEtaSide; // decides that only trigger particle from one eta side are considered (0 = all; -1 = negative, 1 = positive) Long64_t fRunNumber; // run number that has been processed ClassDef(AliUEHistograms, 15) // underlying event histogram container }; Float_t AliUEHistograms::GetDPhiStar(Float_t phi1, Float_t pt1, Float_t charge1, Float_t phi2, Float_t pt2, Float_t charge2, Float_t radius, Float_t bSign) { // // calculates dphistar // Float_t dphistar = phi1 - phi2 - charge1 * bSign * TMath::ASin(0.075 * radius / pt1) + charge2 * bSign * TMath::ASin(0.075 * radius / pt2); static const Double_t kPi = TMath::Pi(); // circularity // if (dphistar > 2 * kPi) // dphistar -= 2 * kPi; // if (dphistar < -2 * kPi) // dphistar += 2 * kPi; if (dphistar > kPi) dphistar = kPi * 2 - dphistar; if (dphistar < -kPi) dphistar = -kPi * 2 - dphistar; if (dphistar > kPi) // might look funny but is needed dphistar = kPi * 2 - dphistar; return dphistar; } #endif