
AliROOT Flow Package manual and documentation The FLOW team

The FLOW Analysis Package1

a short manual2

July 1, 20143

Redmer Alexander Bertens4

(rbertens @ cern.ch)5

with excerpts from other manuals, authors of those are mentioned in text6

Page i of 58

Contents7

1 Introduction 18

1.1 This manual . 19

1.2 Disclaimer . 110

2 A Quick Start 311

2.1 On the fly - getting started on a Toy MC . 312

2.2 What is in the output file ? . 513

2.2.1 AliFlowCommonHists - Output objects . 514

3 The Program 715

3.1 Overview . 716

3.2 Analysis in the ALICE analysis framework . 717

3.2.1 Input data . 718

3.2.2 Event selection . 819

3.2.3 Track cuts and the track cuts object . 1020

3.2.4 Additional options . 1221

3.2.5 Relevant pieces of code . 2122

3.2.6 Some words on the ALICE analysis framework . 2423

3.2.7 Example: π± vn . 2624

3.3 Flow analysis in ROOT: Using TTree’s and TNTuples . 2925

3.3.1 A custom class derived from AliFlowEventSimple . 2926

3.3.2 A realistic example: flow package analysis on STAR data . 3127

3.3.3 Getting started yourself . 3228

4 Methods 3529

4.1 AliFlowAnalysisWithMCEventPlane . 3530

4.1.1 Theory . 3531

4.1.2 Implementation . 3532

4.2 AliFlowAnalysisWithQCumulants . 3533

4.2.1 Implementation . 3534

4.3 AliFlowAnalysisWithScalarProduct . 3735

4.3.1 Theory . 3736

4.4 AliFlowAnalysisWithCumulants . 3837

4.4.1 Theory . 3838

4.4.2 Implementation . 3839

4.5 AliFlowAnalysisWithMixedHarmonics . 3840

4.5.1 Theory . 3841

4.5.2 Implementation . 3842

4.6 AliFlowAnalysisWithFittingQDistribution . 3843

4.6.1 Theory . 3844

4.6.2 Implementation . 3845

4.7 AliFlowAnalysisWithMultiparticleCorrelations . 3946

4.7.1 Theory . 3947

4.7.2 Implementation . 3948

4.8 AliFlowAnalysisWithLeeYangZeros . 3949

4.8.1 Theory . 3950

4.8.2 Implementation . 3951

4.9 AliFlowAnalysisWithLYZEventPlane . 3952

4.9.1 Theory . 3953

4.9.2 Implementation . 3954

4.10 Developing your own task . 3955

AliROOT Flow Package manual and documentation The FLOW team

5 More exotic uses 4156

5.1 Flow analysis in the LEGO framework: re-tagging your POI and RP selections 4157

5.1.1 Caveats . 4258

5.2 Flow analysis of resonances . 4259

5.3 Non-uniform acceptance correction . 4360

5.3.1 Caveats . 4361

6 Summary 4562

7 Bibliography 4763

A About this document 4964

A.1 Specifics and webpage . 4965

B Flow analysis ‘on-the-fly’ 5166

B.1 Introduction . 5167

B.2 Kickstart . 5168

B.2.1 AliRoot users . 5169

B.2.2 Root users . 5270

B.3 Making your own flow events . 5271

B.3.1 pT spectra . 5272

B.3.2 Azimuthal distribution . 5373

B.3.3 Nonflow . 5674

B.3.4 Detector inefficiencies . 5675

Index 5776

CONTENTS Page ii of 58

Chapter 177

Introduction78

The ALICE flow packagea contains most known flow analysis methods. The package itself consists of two parts79

1. The ‘tasks’ library, which can be considered to be the ALICE interface to the package and takes care of e.g. track80

cuts, event cuts, etc;81

2. The ‘base’ library, which is the core of the package and contains the actual implementation of flow analysis methods82

such as the scalar product method, Q-cumulant method, etc. This part of the package has no dependencies other83

than ROOT and can be used on any type of input data.84

1.1 This manual85

This manual is designed to get you started with using the flow package. It is written in the following way:86

• Chapter 2 is designed to get you started on a short Monte Carlo example. In this example you will use the flow87

package to generate toy Monte Carlo events and analyze them;88

• Chapter 3 describes the flow package itself in detail. This includes a brief discussion on the structure of the package,89

sections on track and event cuts, an explanation of some relevant code sections and ending with an example analysis90

of v2(pt) of charged pions with the Q-cumulant method. Most of this chapter pertains to the ‘tasks (the AliROOT)’91

part of the flow package (i.e. event cuts, track cuts, PID, etc), but it is also explained how to do flow analysis in92

ROOT only on a TTree;93

• Chapter 4 gives an overview of the available flow analysis methods. For the theory behind the methods references94

to papers are given. Settings relevant to the specific implementation are given as well.95

• Lastly, chapter 5 explains how the flow package can be put to use in more ‘exotic’ environments, such as an invariant96

mass method estimate of flow of rapidly decaying particles.97

1.2 Disclaimer98

What this manual is not designed for is letting the analyzer use the flow package as a ‘black box’. It is supposed to be99

a starting point, to give an overview of the design of the software and point you to relevant classes, but in the end, the100

analyzer is responsible for understanding what is happening and using the software in a proper way. Configurations of101

the package which may work on a technical level (i.e. produce output) do not necessarily mean that the output is what102

you expect it to be! Always make sure that you understand what you are doing, and when in doubt, browse through the103

source code or consult an expert. The package is not a static entity, users are encouraged to make additions, be it track104

cuts, bug fixes, additional analysis methods, etc, etc. If you have suggestions, questions, commit requests, send an email105

to the flow-pag mailing list or to rbertens @ cern.106

aThe ALICE flow package is part of AliROOT, the ALICE extension of the ROOT framework, which can be obtained from
http://git.cern.ch/pub/AliRoot. The flow package itself is located in the folder $ALICE ROOT/PWG/FLOW/, where $ALICE ROOT refers to the
source directory of AliROOT.

http://git.cern.ch/pub/AliRoot

AliROOT Flow Package manual and documentation The FLOW team

1.2. DISCLAIMER Page 2 of 58

Chapter 2107

A Quick Start108

We’ll begin with a hands-on exercise in which you’ll get acquainted with some aspects of the flow package in a few minutes.109

We’ll do this by generating a few simple toy Monte Carlo events and performing a flow analysis on these simulated events110

without writing them (the events) to disk, a so called ‘flow analysis on-the-fly’a.111

2.1 On the fly - getting started on a Toy MC112

The steps which will be followed in this example will be the same as the steps we take when performing an analysis on113

datab:114

1. Prepare your (Ali)ROOT session by loaded the necessary libraries115

2. Create the analysis method objects116

3. Initialize the methods (which creates their histograms)117

4. Define track cuts118

5. Create flow events, which is a container class holding all necessary information (e.g. tracks) for the flow analysis of119

an event (collision) and actually do the analysis120

6. Finish the analysis, which will calculate the final vn values121

7. Write the results to an output file122

In this Monte Carlo exercise, the flow event class will not receive data from a detector, but instead generate toy events123

itself.124

We will now go through these step one-by-one. All the code that is used can also be found in the macro125

runFlowOnTheFlyExample.Cc.126

1. To use the flow code the flow library needs to be loaded. In AliROOT:127

128

1 gSystem ->Load("libPWGflowBase");129
130

In root additional libraries need to be loaded:131

132

1 gSystem ->Load("libGeom");133

2 gSystem ->Load("libVMC");134

3 gSystem ->Load("libXMLIO");135

4 gSystem ->Load("libPhysics");136

5 gSystem ->Load("libPWGflowBase");137
138

2. We need to instantiate the flow analysis methods which we want to use. In this example we will instantiate two139

methods: one which calculates the flow versus the Monte Carlo event plane (this our reference value: as the event140

plane orientation is known by this method, the v2 value we retrieve should be equal to the input v2 by definition)141

and as a second method the so called Q-cumulant analysis.142

143

1 AliFlowAnalysisWithMCEventPlane *mcep = new AliFlowAnalysisWithMCEventPlane ();144

2 AliFlowAnalysisWithQCumulants *qc = new AliFlowAnalysisWithQCumulants ();145
146

aIn this example the AliFlowEventSimple class will be used to generate toy events (which is described in detail in section 3). Another on-
the-fly routine is available in the AliFlowEventSimpleMakerOnTheFly, the original on-the-fly manual for that class is reprinted in the appendix
(see B) of this document.

bIn data, some of these steps are actually taken care of by an analysis task, but this will be described in more detail in the next chapter.
cIn aliroot, this macro can be found at

$ALICE ROOT/PWGCF/FLOW/Documentation/examples/manual/runFlowOnTheFlyExample

AliROOT Flow Package manual and documentation The FLOW team

3. Each of the methods needs to be initialized (e.g. to define the histograms):147

148

1 mcep ->Init();149

2 qc->Init();150
151

4. To define the particles we are going to use as Reference Particles (RP’s, particles used for the Q vector) and the152

Particles Of Interest (POI’s, the particles of which we calculate the differential flow) we have to define two track cut153

objects:154

155

1 AliFlowTrackSimpleCuts *cutsRP = new AliFlowTrackSimpleCuts ();156

2 AliFlowTrackSimpleCuts *cutsPOI = new AliFlowTrackSimpleCuts ();157

3 cutsPOI ->SetPtMin (0.2);158

4 cutsPOI ->SetPtMax (2.0);159
160

Particles will be selected as either POI or RP depending on whether or not they pass these cuts.161

5. Now we are ready to start the analysis. For a quick start we create a toy Monte Carlo event, tag the reference162

particles and particles of interest (which means that, if a particle passes the POI or RP cuts, it is flagged as ‘POI’163

or ‘RP’) and pass it to the two flow methods.164

Since we want to analyze more than one event, this step is performed in loop. First define the number of events165

that need to be created, their multiplicity, and a value v2 value, which can either be supplied as a fixed number (no166

pt dependence) of a function (to generate pt differential flowd
167

168

1 Int_t nEvents = 1000; // generate 1000 events169

2 Int_t mult = 2000; // use track multiplicity of 2000170

3 Double_t v2 = .05; // 5 pct integrated flow171

4 // or sample differential flow172

5 TF1* diffv2 = new TF1("diffv2", "((x<1.) *(0.1/1.)*x+(x>=1.) *0.1)", 0., 20.);173
174

Now we have all the ingredients to our first flow analysis175

176

1 for(Int_t i=0; i<nEvents; i++) {177

2 // make an event with mult particles178

3 AliFlowEventSimple* flowevent = AliFlowEventSimple(mult ,AliFlowEventSimple :: kGenerate);179

4 // modify the tracks adding the flow value v2180

5 flowevent ->AddV2(diffv2);181

6 // select the particles for the reference flow182

7 flowevent ->TagRP(cutsRP);183

8 // select the particles for differential flow184

9 flowevent ->TagPOI(cutsPOI);185

10 // do flow analysis with various methods:186

11 mcep ->Make(flowevent);187

12 qc->Make(flowevent);188

13 // delete the event from memory189

14 delete flowevent;190

15 }191
192

6. To fill the histograms which contain the final results we have to call Finish for each method:193

194

1 mcep ->Finish ();195

2 qc->Finish ();196
197

7. This concludes the analysis and now we can write the results into a file. Two options for writing the input to a file198

are available:199

• Create a new output file and write the output to this file200

201

1 TFile *outputFile = new TFile("outputMCEPanalysis.root","RECREATE");202

2 mcep ->WriteHistograms ();203

3 TFile *outputFile = new TFile("outputQCanalysis.root","RECREATE");204

4 qc->WriteHistograms ();205
206

Please note that this will create a new output file, and overwrite any existing file called AnalysisResults.root.207

• To write the output of multiple analyses into sub-directories of one file, one can do the following:208

209

1 TFile *outputFile = new TFile("AnalysisResults.root","RECREATE");210

2 TDirectoryFile* dirQC = new TDiretoryFile("outputQCanalysis", "outputQCanalysis");211

3 qc->WriteHistograms(dirQC);212

4 TDirectoryFile* dirMCEP = new TDiretoryFile("outputMCEPanalysis", "outputMCEPanalysis");213

5 mcep ->WriteHistograms(dirMCEP);214
215

dThe on the fly event generator is not limited to the generation of the second harmonic v2, but to get started, this is a nice example.

2.1. ON THE FLY - GETTING STARTED ON A TOY MC Page 4 of 58

AliROOT Flow Package manual and documentation The FLOW team

Note that AnalysisResults.root is the default name given to analyses in AliROOT. Many macros in AliROOT will216

expect a file AnalyisResults.root as input, so for most users it will be convenient to follow this convention.217

When done with running the analysis, do not forget to write the file to disk by calling218

219

1 TFile:: Close(); // write the buffered file to disk220
221

2.2 What is in the output file ?222

Now we have written the results into a file, but what is in there?223

Although the output of different flow analysis techniques might differ slightly as a result of their different approaches224

at estimating v2, the output files containers are always constructed in a similar way.225

2.2.1 AliFlowCommonHists - Output objects226

Objects of two types are stored in the output of the flow analysise
227

1. AliFlowCommonHist, which is a class that contains common histograms for the flow analysis (e.g. QA histograms228

and histograms that contain the analysis flags which were used). Depending on the type of flow analysis that was229

used, this object contains histograms from the following list:230

231

1 Bool_t fBookOnlyBasic; // book and fill only control histos needed for all methods232

2 TH1F* fHistMultRP; // multiplicity for RP selection233

3 TH1F* fHistMultPOI; // multiplicity for POI selection234

4 TH2F* fHistMultPOIvsRP; // multiplicity for POI versus RP235

5 TH1F* fHistPtRP; // pt distribution for RP selection236

6 TH1F* fHistPtPOI; // pt distribution for POI selection237

7 TH1F* fHistPtSub0; // pt distribution for subevent 0238

8 TH1F* fHistPtSub1; // pt distribution for subevent 1239

9 TH1F* fHistPhiRP; // phi distribution for RP selection240

10 TH1F* fHistPhiPOI; // phi distribution for POI selection241

11 TH1F* fHistPhiSub0; // phi distribution for subevent 0242

12 TH1F* fHistPhiSub1; // phi distribution for subevent 1243

13 TH1F* fHistEtaRP; // eta distribution for RP selection244

14 TH1F* fHistEtaPOI; // eta distribution for POI selection245

15 TH1F* fHistEtaSub0; // eta distribution for subevent 0246

16 TH1F* fHistEtaSub1; // eta distribution for subevent 1247

17 TH2F* fHistPhiEtaRP; // eta vs phi for RP selection248

18 TH2F* fHistPhiEtaPOI; // eta vs phi for POI selection249

19 TProfile* fHistProMeanPtperBin; // mean pt for each pt bin (for POI selection)250

20 TH2F* fHistWeightvsPhi; // particle weight vs particle phi251

21 TH1F* fHistQ; // Qvector distribution252

22 TH1F* fHistAngleQ; // distribution of angle of Q vector253

23 TH1F* fHistAngleQSub0; // distribution of angle of subevent 0 Q vector254

24 TH1F* fHistAngleQSub1; // distribution of angle of subevent 1 Q vector255

25 TProfile* fHarmonic; // harmonic256

26 TProfile* fRefMultVsNoOfRPs; // <reference multiplicity > versus # of RPs257

27 TH1F* fHistRefMult; // reference multiplicity distribution258

28 TH2F* fHistMassPOI; // mass distribution for POI selection259
260

This information is from the header file of the AliFlowCommonHist objectf
261

2. AliFlowCommonHistResults is an object designed to hold the common results of the flow analysisg. The possible262

common histograms stored in this object are263

264

1 TH1D* fHistIntFlow; // reference flow265

2 TH1D* fHistChi; // resolution266

3 // RP = Reference Particles:267

4 TH1D* fHistIntFlowRP; // integrated flow of RPs268

5 TH1D* fHistDiffFlowPtRP; // differential flow (Pt) of RPs269

6 TH1D* fHistDiffFlowEtaRP; // differential flow (Eta) of RPs270

7 // POI = Particles Of Interest:271

8 TH1D* fHistIntFlowPOI; // integrated flow of POIs272

9 TH1D* fHistDiffFlowPtPOI; // differential flow (Pt) of POIs273

10 TH1D* fHistDiffFlowEtaPOI; // differential flow (Eta) of POIs274
275

The titles of the histograms in the output object differ from the names of the pointers given in the two lists printed276

above, but the lists give an overview of what is available; the easiest way however of getting acquainted with where to find277

histograms in the output is browsing them in ROOT’s TBrowser (see figure 2.2).278

eMake sure that libPWGflowBase.so is loaded in your (Ali)ROOT session, otherwise these objects will be unknown.
fThe headers of both output objects can be found in $ALICE ROOT/PWG/FLOW/Base/.
gThe word common here is used to indicate histograms that hold observables which are evaluated in all flow analysis methods. Specific

analysis methods may however store additional histograms which are not covered in this list!

2.2. WHAT IS IN THE OUTPUT FILE ? Page 5 of 58

AliROOT Flow Package manual and documentation The FLOW team

Figure 2.1: Example of output file
opened in a TBrowser, results of dif-
ferential v2 analysis with second order
Q-cumulant analysis are shown.

Figure 2.2: Example of inspecting
the output file of the on the fly anal-
ysis with the compareFlowResults.C

macro.

279

1 new TBrowser ();280
281

The AliFlowCommonHist and AliFlowCommonHistResults classes are derived from the generic TNamed ROOT object282

and can be written to a ROOT file. The flow analysis tasks will, as output, write the complete AliFlowCommonHist283

and AliFlowCommonHistResults objects to file at the end of an analysis. To read the content of these objects, the284

libPWGflowBase library must be loaded in your ROOT session.285

Comparing flow results286

A convenient way of comparing the results of the different flow analysis strategies that have been used is invoking the macro287

compareFlowResults.Ch. This macro will read the analysis output file AnalysisResults.root, extract the requested288

results from it and plot them. For a full overview of what can be done with the macro, the reader is referred to the macro289

itself and its ample documentation. To run the macro on the data-set that we have just generated, simply do290

291

1 .L compareFlowResults.C292

2 compareFlowResults(TSring("")) // the empty suffix indicates on the fly events293
294

h$ALICE ROOT/PWGCF/FLOW/macros/compareFlowResults.C

2.2. WHAT IS IN THE OUTPUT FILE ? Page 6 of 58

Chapter 3295

The Program296

The basic idea behind the flow package is that from whatever input you have, a flow event is constructed, which is then297

passed to one or more flow analysis methods (e.g. the scalar product method or Q-cumulant method). The flow event is298

a collection of flow tracks, which are simple objects carrying only the kinematic information that is necessary to do flow299

analysis. By setting up the flow package in this way, the flow analysis methods can analyze input from various sources,300

be it ALICE data, Monte Carlo events, STAR data, etc, etc, as long as the flow event is properly filled . This might all301

sound a bit abstract at this point; this chapter however will explain all details and relevant classes in detail. For those302

who are impatient and prefer seeing the flow package in action, section 3.2.7 gives a step-by-step example of doing a π±303

v2 analysis in the AliROOT analysis framework.304

3.1 Overview305

Figure 3.1 gives a simple schematic representation of the flow package. Input events (in the case of the figure this is306

either ESDs or AODs) pass a set of event cuts (the common cuts) and are then converted to a flow event (stored as307

an AliFlowEventSimple object). This flow event holds a collection of flow tracks (AliFlowTrackSimple objects) which308

are passed to flow analysis methods. The only steps of this flow chart which depend on AliROOT libraries are the ones309

handling ALICE data types (the ESDs or AODs). The rest of the analysis chain (the AliFlowEventSimle and the analysis310

methods) have no specific AliROOT dependence and are just simple c++ objects. Therefore, the flow package is split into311

two libraries312

libPWGflowBase The base library, which has no specific AliROOT dependencies. This library holds objects such as the313

AliFlowEventSimple and AliFlowTrackSimple, and analysis methods classes. The analysis methods classes follow314

the naming scheme: AliFlowAnalysisWith∗ where ∗ denotes a specific analysis method. All classes which end up315

in the libPWGflowBase.so shared object can be found in $ALICE ROOT/PWG/FLOW/Base;316

libPWGflowTasks The tasks library, which has specific AliROOT dependencies. Contrary to what the name suggests,317

this library does not just hold tasks, but actually comprises all classes of the flow package which need to include318

AliROOT specific classes. This ranges from classes to read the AOD or ESD input data (important examples are the319

AliFlowEvent and AliFlowTrackCuts, which will be discussed later on in this chapter) and the AliAnalysisTask∗320

classes, which are analysis tasks, derived from AliAnalysisTaskSE which can be used in the AliROOT analysis321

framework and are actually just interface classes to the underlying flow analysis methods of libPWGflowBase. The322

classes which are bundled into the libPWGflowTasks.so shared object can be found in $ALICE ROOT/PWG/FLOW/Tasks;323

Some tools, such as the flow event or track cuts, have a ‘base’ component which name ends with the suffix ‘simple’, and324

an ‘tasks’ (AliROOT) component which does not have this suffix. The ‘tasks’ class in these cases inherits from the ‘base’325

class.326

Every flow analysis in the flow package starts with the flow event. As mentioned earlier, the flow event is a simple327

container class which holds a collection of flow tracks, which are in turn fed to the flow analysis methods. In the next328

section it will be explained how the flow event can be filled with ALICE data in the AliROOT analysis framework. The329

section after that will explain how the flow event can be filled with any type of data using just ROOT330

3.2 Analysis in the ALICE analysis framework331

In this section, you will see how a flow analysis can be performed in the AliROOT analysis framework.332

3.2.1 Input data333

Before passing the flow event to the flow analysis methods, it needs to be filled with a set of flow tracks. In general, a334

distinction is made between reference particles (or RP’s), which are particles that are used to build the Q vector(s), and335

AliROOT Flow Package manual and documentation The FLOW team

Figure 3.1: Schematic presentation of the organization of the flow package. Input, which can come from any kind of source, is
converted to a generic AliFlowEventSimple object, which in turn is passed to the analysis methods.

particles of interest (or POI’s), which are the particles of which you’ll calculate the differential flow. The flow event and336

the flow analysis methods are designed to keep track of which flow tracks are POI’s, RP’s (or even both at the same time),337

which is important to avoid auto-correlation effects which can distort the vn measurement. The user of the flow package338

however is responsible for properly setting up the analysis!339

The flow event can be filled with input from many sources. In the second chapter of this manual, a simple method has340

been shown where the flow event (the AliFlowEventSimple object) fills itself by generating a set of Monte Carlo tracks by341

sampling kinematic variables from supplied p.d.f.’s. Using this method is a very effective tool for testing and developing342

new flow analysis methods (if you generate events with a certain v2(pt) and then retrieve the same v2(pt) from your flow343

analysis method, you can use that as a tool to proof the validation of your analysis method) but if you want to do a data344

analysis, a somewhat more advanced - but not difficult - approach is necessary.345

Filling a flow event from data can be performed either ‘by-hand’ (which is covered in section 5 on more exotic analyses),346

but the most commonly used method of filling a flow event in the AliROOT analysis framework is using the dedicated task347

AliAnalysisTaskFlowEvent.348

The idea behind this is the following:349

1. Setup the AliAnalysisTaskFlowEvent task to receive input events (e.g. AODs, ESDs, MC, . . .;350

2. Define two sets of track selection criteria (colloquially referred to as track cuts), one for POI’s and one for RP’s;351

3. Pass these two sets of track cuts to the AliAnalysisTaskFlowEvent;352

4. The AliAnalysisTaskFlowEvent will convert the tracks of each input event to a set of AliFlowSimpleTracks.353

Depending on whether or not a track passes the track selection for POI’s or RP’s, the AliFlowSimpleTrack is354

labeled as a POI or RP (or both. In the case where a track does not meet any of the track selection criteria, it is355

omitted from the AliFlowSimpleTrack collection and not added to the flow event);356

5. All the AliFlowSimpleTracks are added to the flow event which is passed to the flow analysis methods.357

3.2.2 Event selection358

When using the AliAnalysisTaskFlowEvent task to create your flow event, the AliAnalysisTaskFlowEvent task is359

responsible for ensuring that only good quality tracks enter into your analysis by making sensible track selections. The first360

step however at safeguarding track quality is making sure that the events that are accepted by AliAnalysisTaskFlowEvent361

pass sane event selection criteria.362

Trigger selection363

A certain combination a of detector signals (a trigger) is required for an event to be written to storage. Different types of364

analyses might require different types of events, and hence, different types of triggers.365

You can set a trigger by calling366

367

1 AliAnalysisTaskFlowEvent :: SelectCollisionCandidates(UInt_t offlineTriggerMask);368
369

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 8 of 58

AliROOT Flow Package manual and documentation The FLOW team

where offlineTriggerMask is the trigger mask corresponding to the desired trigger. A list of all available triggers, with370

a short descrption, can be found in the header file of the AliVEvent classa. This function, however, is not implement371

in the AliAnalysisTaskFlowEvent itself, but rather in the base class of which most of the analysis task classes within372

AliROOT are derived: the AliAnalysisTaskSE class (which is designed to handle a single event, hence the suffix ‘SE’).373

For each event that is written from a file, but function AliAnalysisTaskSE::Exec() is called, which - among other374

things - checks if an event passes the requested trigger selection, and if so, calls the UserExec() function of your analysis375

task. In the case of the AliAnalysisTaskFlowEvent this is the AliAnalysisTaskFlowEvent::UserExec(), which creates376

AliFlowSimpleTracks and fills the flow event.377

A general remark about trigger selection in flow analyses is that the non-uniform acceptance correction methods that378

are implemented in the flow package assume a flat Q vector distribution. Specific triggers (e.g. EMCal triggers) result379

in a Q vector bias which should not be corrected as they invalidate that assumption. A safe approach is therefore using380

a minimum bias trigger for your analysis (such as AliVEvent::kMB), other triggers selections will not a-priori lead to381

problems, but use them with caution!382

Event cuts383

In addition to trigger selection, generally one wants to perform additional event (quality) selection. The flow package384

contains an event cuts class which can be used to perform event selection, the AliFlowEventCuts objectb.385

To use the event cuts object in combination with the AliAnalysisTaskFlowEvent task, simply create the event cuts386

object, configure it and pass it to the AliAnalysisTaskFlowEvent:387

388

1 AliFlowEventCuts* cutsEvent = new AliFlowEventCuts("EventCuts");389

2 // configure some event cuts , e.g. centrality390

3 cutsEvent ->SetCentralityPercentileRange (20., 30.);391

4 // pass it to the flow event task via the setter392

5 AliAnalysisTaskFlowEvent :: SetCutsEvent(cutsEvent);393
394

The available cut parameters in the flow event cuts object are395

396

1 Bool_t fCutNumberOfTracks;// cut on # of tracks397

2 Int_t fNumberOfTracksMax; // limits398

3 Int_t fNumberOfTracksMin; // limits399

4 Bool_t fCutRefMult; // cut on refmult400

5 refMultMethod fRefMultMethod; // how do we calculate refmult?401

6 Bool_t fUseAliESDtrackCutsRefMult; // use AliESDtrackCuts for refmult calculation402

7 AliESDtrackCuts :: MultEstTrackType fRefMultMethodAliESDtrackCuts;403

8 Int_t fRefMultMax; // max refmult404

9 Int_t fRefMultMin; // min refmult405

10 AliFlowTrackCuts* fRefMultCuts; // cuts406

11 AliFlowTrackCuts* fMeanPtCuts; // mean pt cuts407

12 AliFlowTrackCuts* fStandardTPCcuts; // Standard TPC cuts408

13 AliFlowTrackCuts* fStandardGlobalCuts; // StandardGlobalCuts409

14 Bool_t fCutPrimaryVertexX; // cut on x of prim vtx410

15 Double_t fPrimaryVertexXmax; // max x prim vtx411

16 Double_t fPrimaryVertexXmin; // min x prim vtx412

17 Bool_t fCutPrimaryVertexY; // cut on y of prim vtx413

18 Double_t fPrimaryVertexYmax; // max y prim vtx414

19 Double_t fPrimaryVertexYmin; // min y prim vtx415

20 Bool_t fCutPrimaryVertexZ; // cut on z of prim vtx416

21 Double_t fPrimaryVertexZmax; // max z prim vtx417

22 Double_t fPrimaryVertexZmin; // min z prim vtx418

23 Bool_t fCutNContributors; // cut on number of contributors419

24 Int_t fNContributorsMax; // maximal number of contrib420

25 Int_t fNContributorsMin; // minimal number of contrib421

26 Bool_t fCutMeanPt; // cut on mean pt422

27 Double_t fMeanPtMax; // max mean pt423

28 Double_t fMeanPtMin; // min mean pt424

29 Bool_t fCutSPDvertexerAnomaly; // cut on the spd vertexer anomaly425

30 Bool_t fCutSPDTRKVtxZ; // require compatibility between SPDvertexz TRKvertexz426

31 Bool_t fCutTPCmultiplicityOutliers; // cut TPC multiplicity outliers427

32 Bool_t fCutTPCmultiplicityOutliersAOD; // cut TPC outliers in 10h or 11h aod428

33 Bool_t fUseCentralityUnchecked; // use the unchecked method429

34 refMultMethod fCentralityPercentileMethod; // where to get the percentile from430

35 Bool_t fCutZDCtiming; // cut on ZDC timing431

36 AliTriggerAnalysis fTrigAna; // trigger analysis object432

37 Bool_t fCutImpactParameter; // cut on impact parameter (MC header)433

38 Double_t fImpactParameterMin; // min impact parameter434

39 Double_t fImpactParameterMax; // max impact parameter435

40 TH2F *fhistTPCvsGlobalMult; //! correlation between TPCMult and GlobalMult436

41 Bool_t fData2011; // 2011 data is used437
438

all of which are accessible via dedicated setters,439

a$ALICE ROOT/...
b$ALICE ROOT/PWG/FLOW/Tasks/AliFlowEventCuts.cxx

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 9 of 58

AliROOT Flow Package manual and documentation The FLOW team

440

1 void SetNumberOfTracksMax(Int_t value) {fNumberOfTracksMax=value;fCutNumberOfTracks=kTRUE ;}441

2 void SetNumberOfTracksMin(Int_t value) {fNumberOfTracksMin=value;fCutNumberOfTracks=kTRUE ;}442

3 void SetNumberOfTracksRange(Int_t min , Int_t max) {fNumberOfTracksMin=min;fNumberOfTracksMax=max;443

fCutNumberOfTracks=kTRUE;}444

4 void SetRefMultMax(Int_t value) {fRefMultMax=value;fCutRefMult=kTRUE;}445

5 void SetRefMultMin(Int_t value) {fRefMultMin=value;fCutRefMult=kTRUE;}446

6 void SetRefMultRange(Int_t min , Int_t max) {fRefMultMin=min;fRefMultMax=max;fCutRefMult=kTRUE;}447

7 void SetImpactParameterMax(Double_t value) {fImpactParameterMax=value;fCutImpactParameter=kTRUE;}448

8 void SetImpactParameterMin(Double_t value) {fImpactParameterMin=value;fCutImpactParameter=kTRUE;}449

9 void SetImpactParameterRange(Double_t min , Double_t max) {fImpactParameterMin=min;450

fImpactParameterMax=max;fCutImpactParameter=kTRUE;}451

10 void SetPrimaryVertexXrange(Double_t min , Double_t max)452

11 void SetPrimaryVertexYrange(Double_t min , Double_t max)453

12 void SetPrimaryVertexZrange(Double_t min , Double_t max)454

13 void SetNContributorsRange(Int_t min , Int_t max=INT_MAX)455

14 void SetMeanPtRange(Double_t min , Double_t max) {fCutMeanPt=kTRUE; fMeanPtMax=max; fMeanPtMin=min456

;}457

15 void SetCutSPDvertexerAnomaly(Bool_t b=kTRUE) {fCutSPDvertexerAnomaly=b;}458

16 void SetCutZDCtiming(Bool_t c=kTRUE) {fCutZDCtiming=c;}459

17 void SetCutSPDTRKVtxZ(Bool_t b=kTRUE) {fCutSPDTRKVtxZ=b;}460

18 void SetCutTPCmultiplicityOutliers(Bool_t b=kTRUE) {fCutTPCmultiplicityOutliers=b;}461

19 void SetCutTPCmultiplicityOutliersAOD(Bool_t b=kTRUE) {fCutTPCmultiplicityOutliersAOD=b;}462

20 void SetRefMultMethod(refMultMethod m) {fRefMultMethod=m;}463

21 void SetRefMultMethod(AliESDtrackCuts :: MultEstTrackType m) { fRefMultMethodAliESDtrackCuts=m;464

22 void SetRefMultCuts(AliFlowTrackCuts* cuts) {fRefMultCuts=static_cast <AliFlowTrackCuts *>(cuts ->465

Clone());}466

23 void SetMeanPtCuts(AliFlowTrackCuts* cuts) {fMeanPtCuts=static_cast <AliFlowTrackCuts *>(cuts ->467

Clone());}468

24 void SetQA(Bool_t b=kTRUE) {if (b) DefineHistograms ();}469

25 void SetCentralityPercentileMethod(refMultMethod m) {fCentralityPercentileMethod=m;}470

26 void SetUseCentralityUnchecked(Bool_t b=kTRUE) {fUseCentralityUnchecked=b;}471

27 void SetUsedDataset(Bool_t b=kTRUE) {fData2011=b;} // confusing name , better use different472

interface473

28 void SetLHC10h(Bool_t b=kTRUE) {fData2011 =(!b);} // TODO let cut object determine runnumber474

and period475

29 void SetLHC11h(Bool_t b=kTRUE) {fData2011=b;} // use this only as ’manual override ’476
477

Caveats and remarks478

Some caveats and remarks about using the event cuts object479

Default behavior By default, the event cuts object accepts all events. All desired cuts have to be set by the user. This480

is also reflected in the design of the setters: most of the setters will, when called, set a Bool t to true which enables481

a cut on a certain parameter;482

Applicability of cuts to different data types Not all the cuts can be applied to all input data types. In e.g. the483

process of filtering AODs from ESDs, ‘technical’ event cuts are made and not all events are stored in the AOD format.484

Because of this, information that can be required from ESDs might not be available (as it is not necessary) in AODs.485

To see whether or not a cut you set is actually applied to the data type you’re using, take a look at486

487

1 Bool_t AliFlowEventCuts :: PassesCuts(AliVEvent *event , ALIMCEvent *mcevent)488
489

This function determines whether or not an event is accepted: it starts by converting the virtual event type that is490

passed as argument to either an ESD or AOD event, and goes through selection criteria accordingly.491

Event cuts outside of the AliAnalysisTaskFlowEvent class When you perform a flow analysis without using the492

AliAnalysisTaskFlowEvent class (which is done e.g. in the analyses explained in section 5), you can still use the493

event cuts class by creating an instance of the object, passing it to your analysis class and ‘manually’ checking the494

return value of the function495

496

1 Bool_t AliFlowEventCuts :: PassesCuts(AliVEvent *event , ALIMCEvent *mcevent)497
498

Data taking period Most event cuts will be tuned specifically to the LHC10h or LHC11h data taking periods. The499

event cuts class might need to be updated to accommodate specific cuts for different periods - do not hesitate write500

patches for this!501

for e.g. each event that is passed to your ::UserExec() function.502

3.2.3 Track cuts and the track cuts object503

As explained in the previous subsection, flow events are filled with tracks which fulfill certain track selection criteria.504

These criteria are checked using the AliFlowTrackCuts class. The AliFlowTrackCuts class can handle different types of505

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 10 of 58

AliROOT Flow Package manual and documentation The FLOW team

input from different data-types (e.g. ESD or AOD) and information from different sub-detector systems. All input is in the506

end converted to AliFlowSimpleTracks which are added to the flow event. To understand how the AliFlowTrackCuts507

object works and how it should be configured, it is good to make a few distinctions and remarks.508

The term ‘track’ is generally used for reconstructed particle trajectories which are constructed from information coming509

from the tracking detectors in central barrel of the ALICE detector (more specifically from information from the ITS and510

TPC detectors). Tracks are the most commonly used data source, and the translation from ‘track’ to AliFlowTrackSimple511

is trivial, as it merely comprises copying kinematic information (pt, ϕ, η) from the barrel track to the AliFlowTrackSimple512

object.513

When using information that is not coming from tracking detectors, e.g. information from the VZERO system, this514

procedure of simply copying variables is not suitable as the VZERO system does not measure pt, ϕ, η of particles, but is an515

array of scintillators with limited spatial resolution. Nevertheless, the AliFlowTrackCuts class converts the VZERO signal516

to AliFlowTrackSimples which are, to the flow event, indistinguishable from barrel tracks. As the procedure of accepting517

these tracks is very different from the procedure of accepting barrel tracks, they will be treated separately in the following518

subsections.519

ESD tracks as data source520

The safest and most convenient way of using ESD tracks as a data source is by using one of the pre-defined track cuts521

sets that are available in the AliFlowTrackCuts class. These sets of track cuts mimic the cuts that are defined in the522

AliESDtrackCuts classc. The following default track cuts sets are available:523

524

1 static AliFlowTrackCuts* GetStandardTPCStandaloneTrackCuts ();525

2 static AliFlowTrackCuts* GetStandardTPCStandaloneTrackCuts2010 ();526

3 static AliFlowTrackCuts* GetStandardGlobalTrackCuts2010 ();527

4 static AliFlowTrackCuts* GetStandardITSTPCTrackCuts2009(Bool_t selPrimaries=kTRUE);528

5 static AliFlowTrackCuts* GetStandardMuonTrackCuts(Bool_t isMC=kFALSE , Int_t passN =2);529

6530
531

All these are static methods which create a new track cuts object and configure it properly, so to use these track cuts it532

suffices to type e.g.533

534

1 AliFlowTrackCuts* myCuts = AliFlowTrackCuts :: GetStandardGlobalTrackCuts2010 ();535
536

To get a better understanding of what the AliFlowTrackCuts class actually does, let’s take a look at what how the cut537

object is configured in this case:538

539

1 AliFlowTrackCuts* AliFlowTrackCuts :: GetStandardGlobalTrackCuts2010 ()540

2 {541

3 // get standard cuts542

4 AliFlowTrackCuts* cuts = new AliFlowTrackCuts("standard Global tracks");543

5 cuts ->SetParamType(kGlobal);544

6 cuts ->SetPtRange (0.2 ,5.);545

7 cuts ->SetEtaRange (-0.8 ,0.8);546

8 cuts ->SetMinNClustersTPC (70);547

9 cuts ->SetMinChi2PerClusterTPC (0.1);548

10 cuts ->SetMaxChi2PerClusterTPC (4.0);549

11 cuts ->SetMinNClustersITS (2);550

12 cuts ->SetRequireITSRefit(kTRUE);551

13 cuts ->SetRequireTPCRefit(kTRUE);552

14 cuts ->SetMaxDCAToVertexXY (0.3);553

15 cuts ->SetMaxDCAToVertexZ (0.3);554

16 cuts ->SetAcceptKinkDaughters(kFALSE);555

17 cuts ->SetMinimalTPCdedx (10.);556

18 return cuts;557

19 }558
559

The configuration falls into three categories:560

1. A number of track quality cuts is set;561

2. Some kinematic cuts are set;562

3. The parameter type is set by calling AliFlowTrackCuts::SetParamType() (in this case to563

AliFlowTrackCuts::kGlobal). This last step is of particular importance as it takes care disentangling the564

POI and RP selection and removing a vn bias due to auto-correlations. When the flow event is filled (the relevant565

piece of code is printed under section 3.2.5), a check is done to see if the POI’s and RP’s are of the same type.566

If not, a track cannot be a POI and RP at the same time (as they are from different sources). However, if567

POI’s and RP’s originate from the same source, an AliFlowTrackSimple can be both a POI and RP at the same568

time if it satisfies both the POI and RP track selection criteria. By specifying the parameter type by calling569

AliFlowTrackCuts::SetParamType() the flow event is configured to properly deal with overlapping or exclusive570

POI and RP selections. A wrongly configured parameter type can lead to double counting of tracks and nonsensical571

analysis results! The following list of track parameter types is available as an enum in AliFlowTrackCuts.h572

c$ALICE ROOT/ANALYSIS/AliESDtrackCuts.cxx

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 11 of 58

AliROOT Flow Package manual and documentation The FLOW team

573

1 enum trackParameterType { kMC ,574

2 kGlobal ,575

3 kTPCstandalone ,576

4 kSPDtracklet ,577

5 kPMD ,578

6 kV0 , // neutral reconstructed v0 particle579

7 kVZERO , // forward VZERO detector580

8 kMUON ,581

9 kKink ,582

10 kAODFilterBit ,583

11 kUserA , // reserved for custom cuts584

12 kUserB // reserved for custom cuts585

13 };586
587

Note that kV0 is reserved to denote a decay vertex of a neutral particle, and kVZERO is used to indicate the VZERO588

detector system. kUserA and kUserB are additional flags which can selected for ‘custom’ track selection sets.589

AOD tracks as data source590

AOD tracks are derived from ESD tracks via process called ‘filtering’. If an ESD track meets a pre-defined set of track cuts,591

it is converted to an AOD track which is stored in an AOD event. The AOD track carries a specific flag (called filterbit)592

which corresponds to the specific set of cuts that was applied to create accept the track. A full list of track selection593

criteria corresponding to distinct filterbits can be found here. Note that different AOD productions might have different594

filterbit definitions!595

In AOD analysis it generally suffices to select tracks of a certain filterbit, instead of checking quality criteria ‘by-hand’596

as is done in ESD analyses (some variables which one would cut on in ESD tracks might not even be available in the AOD597

tracks as the AOD is designed to be a light-weight ‘end-user’ data format). To get an instance of the AliFlowTrackCuts598

object which only selects tracks based on a specific filterbit, one can call599

600

1 static AliFlowTrackCuts* GetAODTrackCutsForFilterBit(UInt_t bit = 1);601
602

which is defined as603

604

1 AliFlowTrackCuts* AliFlowTrackCuts :: GetAODTrackCutsForFilterBit(UInt_t bit)605

2 {606

3 // object which in its default form only cuts on filterbit (for AOD analysis)607

4 AliFlowTrackCuts* cuts = new AliFlowTrackCuts(Form("AOD fitlerbit %i", (int)bit));608

5 cuts ->SetMinimalTPCdedx (-999999999);609

6 cuts ->SetAODfilterBit(bit);610

7 cuts ->SetParamType(AliFlowTrackCuts :: kAODFilterBit);611

8 return cuts;612

9 }613
614

The SetMinimalTPCdedx(-999999999); is kept here for backward-compatibility.615

Note that also in the case of AOD analyses the parameter type is set to (if necessary) decouple POI and RP selections.616

3.2.4 Additional options617

As stated, input data needn’t necessarily come in the form of barrel tracks - we can use other detector systems as well.618

When dealing with barrel tracks, quality criteria might not be the only thing you want to select your tracks on: perhaps619

you want to do analysis on identified particles. The following sub-sections explain how the AliFlowTrackCuts object can620

be used to achieve this.621

Identified particles622

The AliFlowTrackCuts object can do particle selection for a number of particles that are defined in the AliPIDd. To623

enable particle identification as a selection criterion, call the function624

625

1 void AliFlowTrackCuts :: SetPID(626

2 AliPID :: EParticleType pid ,627

3 PIDsource s=kTOFpid ,628

4 Double_t prob =0.9)629

5 {fParticleID=pid; fPIDsource=s; fParticleProbability=prob; fCutPID=kTRUE; InitPIDcuts ();630

6 }631
632

The first argument specifies the particle species that will be selected via the EParticleType enum. The total list of633

particles as defined in the AliPID class reads634

d$ALICE ROOT/STEER/STEERBas/AliPID.h

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 12 of 58

AliROOT Flow Package manual and documentation The FLOW team

635

1 enum EParticleType {636

2 kElectron = 0,637

3 kMuon = 1,638

4 kPion = 2,639

5 kKaon = 3,640

6 kProton = 4,641

7642

8 kDeuteron = 5,643

9 kTriton = 6,644

10 kHe3 = 7,645

11 kAlpha = 8,646

12647

13 kPhoton = 9,648

14 kPi0 = 10,649

15 kNeutron = 11,650

16 kKaon0 = 12,651

17 kEleCon = 13,652

18653

19 kUnknown = 14654

20 };655
656

Note that not all these particles may be available for selection via AliFlowTrackCuts!657

The second argument tells the AliFlowTrackCuts class which particle identification method should be used. The658

available methods are659

660

1 enum PIDsource {661

2 kTPCpid , // default TPC pid (via GetTPCpid)662

3 kTOFpid , // default TOF pid (via GetTOFpid)663

4 kTOFbayesian , // TOF bayesian pid (F.Noferini)664

5 kTOFbeta , // asymmetric cuts of TOF beta signal665

6 kTPCdedx , // asymmetric cuts of TPC dedx signal666

7 kTOFbetaSimple , // simple TOF only cut667

8 kTPCbayesian , // bayesian cutTPC668

9 kTPCNuclei , // added by Natasha for Nuclei669

10 kTPCTOFNsigma // simple cut on combined tpc tof nsigma670

11 };671
672

The third argument (with a default value of 0.9) gives the analyzer control over the purity of the particle sample by673

setting a lower bound on the probability that a particle is of a certain species (where 0 would mean no selection and 1674

-theoretically - means a 100% pure sample). To see how - and if - this parameter is used in a certain identification routine,675

take a look at the source code.676

The best way of understanding how particles are identified is by just browsing the relevant pieces of the code in the677

AliFlowTrackCuts.cxx file (look at the list of Passes∗Cuts(), but to give a very short overview:678

kTPCpid Return particle identity as stored in the AliESDtrack, TPC information only;679

kTOFpid Return particle identify as stored in the AliESDtrack, TOF information only;680

kTOFbayesian Combined TPC and TOF Bayesian PID method;681

kTOFbeta PID based on asymmetric TOF β cut;682

kTPCdedx PID cut using TPC dE
dx measurements stored in the AliESDtrack,683

kTOFbetaSimple PID cut based on TOF time stored in the AliESDtrack;684

kTPCbayesian Bayesian cut based on TPC or TOF signal;685

kTPCNuclei PID selection for heavy nuclei;686

kTPCTOFNsigma Cut based in a simple combined cut on the n-σ signal from TPC and TOF, requires PID response687

object. The PID response object is created by the PID response task, and thus requires that the PID response task688

runs in an analysis train before the AliFlowTrackCuts class does its selection. To enable the PID response task,689

add the following lines to your run macro:690

691

1 gROOT ->LoadMacro("ANALYSIS/macros/AddTaskPIDResponse.C");692

2 AddTaskPIDResponse ();693
694

The default value for n-σ is 3, but it can be set to a different value using695

696

1 void AliFlowTrackCuts :: SetNumberOfSigmas(Float_t val);697
698

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 13 of 58

AliROOT Flow Package manual and documentation The FLOW team

Caveats and notes699

Applicability of cuts to different data types Just as not all event and track cuts that are available for all data types.700

For the track quality cuts this has been explained in the previous subsections, but one has to realize that in addition,701

not all particle identification methods are available for all types of data. At the time of writing, the ESD particle702

identification is more elaborate than the AOD counterpart. To see which PID methods exist for the different data703

types, check the AliFlowTrackCuts::Passes∗pidCut() functions, printed below for your convenience.704

705

1 Bool_t AliFlowTrackCuts :: PassesAODpidCut(const AliAODTrack* track)706

2 {707

3 if(!track ->GetAODEvent ()->GetTOFHeader ()){708

4 AliAODPid *pidObj = track ->GetDetPid ();709

5 if (! pidObj) fESDpid.GetTOFResponse ().SetTimeResolution (84.);710

6 else{711

7 Double_t sigmaTOFPidInAOD [10];712

8 pidObj ->GetTOFpidResolution(sigmaTOFPidInAOD);713

9 if(sigmaTOFPidInAOD [0] > 84.){714

10 fESDpid.GetTOFResponse ().SetTimeResolution(sigmaTOFPidInAOD [0]); // use the electron715

TOF PID sigma as time resolution (including the T0 used)716

11 }717

12 }718

13 }719

14720

15 // check if passes the selected pid cut for ESDs721

16 Bool_t pass = kTRUE;722

17 switch (fPIDsource)723

18 {724

19 case kTOFbeta:725

20 if (! PassesTOFbetaCut(track)) pass=kFALSE;726

21 break;727

22 case kTOFbayesian:728

23 if (! PassesTOFbayesianCut(track)) pass=kFALSE;729

24 break;730

25 case kTPCbayesian:731

26 if (! PassesTPCbayesianCut(track)) pass=kFALSE;732

27 break;733

28 case kTPCTOFNsigma:734

29 if (! PassesTPCTOFNsigmaCut(track)) pass = kFALSE;735

30 break;736

31 default:737

32 return kTRUE;738

33 break;739

34 }740

35 return pass;741

36742

37 }743

38 // ---744

39 Bool_t AliFlowTrackCuts :: PassesESDpidCut(const AliESDtrack* track)745

40 {746

41 // check if passes the selected pid cut for ESDs747

42 Bool_t pass = kTRUE;748

43 switch (fPIDsource)749

44 {750

45 case kTPCpid:751

46 if (! PassesTPCpidCut(track)) pass=kFALSE;752

47 break;753

48 case kTPCdedx:754

49 if (! PassesTPCdedxCut(track)) pass=kFALSE;755

50 break;756

51 case kTOFpid:757

52 if (! PassesTOFpidCut(track)) pass=kFALSE;758

53 break;759

54 case kTOFbeta:760

55 if (! PassesTOFbetaCut(track)) pass=kFALSE;761

56 break;762

57 case kTOFbetaSimple:763

58 if (! PassesTOFbetaSimpleCut(track)) pass=kFALSE;764

59 break;765

60 case kTPCbayesian:766

61 if (! PassesTPCbayesianCut(track)) pass=kFALSE;767

62 break;768

63 case kTOFbayesian:769

64 if (! PassesTOFbayesianCut(track)) pass=kFALSE;770

65 break;771

66 case kTPCNuclei:772

67 if (! PassesNucleiSelection(track)) pass=kFALSE;773

68 break;774

69 case kTPCTOFNsigma:775

70 if (! PassesTPCTOFNsigmaCut(track)) pass = kFALSE;776

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 14 of 58

AliROOT Flow Package manual and documentation The FLOW team

71 break;777

72 default:778

73 printf("AliFlowTrackCuts :: PassesCuts () this should never be called !\n");779

74 pass=kFALSE;780

75 break;781

76 }782

77 return pass;783

78 }784
785

In general, particle identification is not a trivial procedure, and one needs to find a balance between purity and786

efficiency. Which particle identification to choose depends heavily on the desired outcome of the analysis. In case of787

e.g. a high-precision measurement of π v2, a method which has a very high purity but low efficiency can be chosen:788

π’s are an abundant particle species and high precision requires high purity. On the other hand, if one does selection789

for kaons to reconstruct ϕ-mesons, loose cuts with high efficiency can be chosen, as the ϕ-meson is a rare probe and790

invariant mass requirements on the kaon pairs will take care of mis-identifications.791

To get access to QA information on track selection before and after PID cuts, the QA mode of the AliFlowTrackCuts792

can be selected.793

Track cuts outside of the AliAnalysisTaskFlowEvent class Just as the flow event cuts can be used outside of the794

AliAnalysisTaskFlowEvent class, one can use the AliFlowTrackCuts class in a similar way, by calling, for each795

track,796

797

1 Bool_t AliFlowTrackCuts :: IsSelected(TObject* obj , Int_t id)798
799

or directly one of the PassesCuts(∗) functions which IsSelected() calls.800

VZERO801

Now that the barrel tracks have been explained, let’s continue to the treatment of VZERO information. The VZERO802

detector consists of two scintillator arrays at opposite sides of the interaction point (VZEROA and VZEROC) each803

containing 32 readout channels. To convert the VZERO information to AliFlowTrackCuts, two steps are taken:804

1. A ‘track’ is built from a VZERO tile by taking the geometric mean of the tile as the track direction (from which η805

and ϕ can be constructed);806

2. The VZERO analogue signal strength within a VZERO tile (which is proportional to charge deposition) is taken as807

a weight when evaluating the total Q vector.808

As there is no straightforward way to convert VZERO multiplicity to pt, the VZERO signal can in principle not be used809

as POI in the flow analysis, neither can a pt range be selected when using the VZERO as RP selection. In addition to810

this, the ‘raw’ VZERO signal itself cannot be used directly for flow analysis but needs to be calibrated tile-by-tile. To811

understand how this calibration is performed in the flow package, we need to go into a little bit of detail on how to build812

a Q vector.813

In general, a Q vector is defined as814

Q =
∑

tracks

wi exp (inϕ) (3.2.4.1)

where wi is a track weight, n is the harmonic, and ϕ is the azimuthal angle of a track. As explained, in the case of815

VZERO tiles, ϕ is derived from the position of the VZERO tile and wi is the VZERO signal which is proportional to816

multiplicity. However, not all VZERO tiles are equally sensitive, and the sensitivity (can have) a run-number dependence,817

which results in a non-flat VZERO Q vector distribution. As this effect might be different run-by-run, it cannot be818

corrected by applying a non-uniform acceptance correction at the end of your analysis, as an analysis generally comprises819

running over multiple run-numbers and the non-uniform acceptance correction corrects only for non-uniformity which is820

equal for all runs. Hence, the VZERO non-uniformity needs to be corrected at the time of the construction of the Q821

vectors.822

The functions in the flow package which are responsible for building the Q vectors (or sub-event Q vectors, the use of823

which will be described in subsection 4.3) are824

825

1 // Q-vector calculation826

2 AliFlowVector AliFlowEventSimple ::GetQ(827

3 Int_t n, // harmonic828

4 TList *weightsList , // weight list829

5 Bool_t usePhiWeights , // use phi weights?830

6 Bool_t usePtWeights , // use pt weights?831

7 Bool_t useEtaWeights // use eta weights?832

8)833

9834

10 // Q-vectors of sub -events835

11 void AliFlowEventSimple :: Get2Qsub(836

12 AliFlowVector* Qarray , // array with q-vectors837

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 15 of 58

AliROOT Flow Package manual and documentation The FLOW team

13 Int_t n,838

14 TList *weightsList ,839

15 Bool_t usePhiWeights ,840

16 Bool_t usePtWeights ,841

17 Bool_t useEtaWeights842

18)843

19844

20 // overloaded implementation of Q-vectors of sub -events for VZERO information845

21 void AliFlowEvent :: Get2Qsub(846

22 AliFlowVector* Qarray ,847

23 Int_t n,848

24 TList *weightsList ,849

25 Bool_t usePhiWeights ,850

26 Bool_t usePtWeights ,851

27 Bool_t useEtaWeights852

28)853
854

These functions are called by the flow analysis tasks and generally not by the user directly, but it is good to know where855

they can be found. The first two functions merely loop over all tracks in a flow event and fill the Q vector. The last856

function is designed for building a Q vector from VZERO information, applying a calibration step to the VZERO signal.857

To make life complicated, the calibration of the VZERO Q vector in LHC10h is not the same as the calibration of the858

VZERO Q vector LHC11h data. Let’s start by taking a look at the LHC10h case.859

LHC10h The calibration of LHC10h data is a two-step procedure.860

• The first step is evaluating the Q vector using equation 3.2.4.1. However, the VZERO signal of each tile is861

re-weighted before it is used as a weight in equation 3.2.4.1. The re-weighting comprises862

1. Taking a TProfile with average multiplicity per cell (these profiles are stored in a OADB file for each863

run-number)864

2. Fitting a constant line per disc (or ring) y = a (see next slide for example)865

3. Evaluating the track weight for each VZERO cell is now calculated in a second iteration as866

track weight =
cell multiplicity ∗ a

average multiplicity in a cell
(3.2.4.2)

• After the Q vectors have been built, they are re-centered. Re-centering is basically a small adjustment of the867

components of the Q vector, changing its angle event-by-event so that on average a flat Q vector distribution868

is obtained. The steps that are taken for re-centering are the following:869

1. Retrieve the average mean and spread of the Q vector distribution from a database file;870

2. The corrected Q vectors can now be obtained by doing871

Qn −→
Qn − 〈Qn〉

σQn

(3.2.4.3)

where brackets denote the one-run average, and σQn
the standard deviation of Qn in the sample872

Note that the calibration is only available for n = 2 and n = 3. For higher harmonics, the flow package will use the873

equalized VZERO multiplicity874

875

1 AliVEvent :: GetVZEROEqMultiplicity(Int_t i);876
877

to build the Q vectors, whether this is satisfactory for an analysis, or if non-uniform acceptance effects can be878

reverted by performing a correction on a run-by-run basis is up to the analyzer. The Q vector distributions of total879

Q vectors and sub-event vectors can always be checked via the AliFlowCommonHists classes (see section 2.2.1) via880

881

1 TH1F* GetHistQ () {return fHistQ; } ;882

2 TH1F* GetHistAngleQ () {return fHistAngleQ; }883

3 TH1F* GetHistAngleQSub0 () {return fHistAngleQSub0; }884

4 TH1F* GetHistAngleQSub1 () {return fHistAngleQSub1; }885
886

LHC11h The calibration of the LHC11h VZERO information is not performed by the flow package, but by an external887

class, name the VZEROEPselection task, which will store the corrected Q vectors in the AliVEvent header, from888

which they are retrieved by the AliFlowTrackCuts class. To use this method, make sure that you run this889

VZEROEPselection task before your flow analysis tasks in an analysis train. To enable this task, add the following890

lines to your analysis macro891

892

1 gROOT ->LoadMacro("$ALICE_ROOT/ANALYSIS/macros/AddTaskVZEROEPSelection.C");893

2 AddTaskVZEROEPSelection ();894
895

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 16 of 58

AliROOT Flow Package manual and documentation The FLOW team

Note that for LHC11h data, calibration is performed only for the second harmonic (n = 2). For higher harmonics, the896

flow package uses equalized VZERO multiplicity to build Q vectors (as indicated for the LHC10h data).897

After describing how and why calibration is performed, it is now time to indicate how to set up this calibration routine.898

Just as selecting barrel tracks, this can be done by creating an AliFlowTrackCuts object via a static access method,899

900

1 AliFlowTrackCuts* cutsVZERO = GetStandardVZEROOnlyTrackCuts ();901
902

At run-time, the flow package will detector whether LHC10h or LHC11h data is used by reading the analyzed events’903

run-number. This can be convenient when having these cuts defined in a script which is designed to run on multiple types904

of input data. However, one can also call the LHC10h or LHC11h specific cuts directly via dedicated functions, which are905

reprinted here as the comments are important906

907

1 AliFlowTrackCuts* AliFlowTrackCuts :: GetStandardVZEROOnlyTrackCuts2010 ()908

2 {909

3 // get standard VZERO cuts910

4 // DISCLAIMER : LHC10h VZERO calibration consists (by default) of two steps911

5 //1) re -weigting of signal912

6 //2) re -centering of q-vectors913

7 // step 2 is available only for n==2 and n==3, for the higher harmonics the user914

8 //is repsonsible for making sure the q-sub distributions are (sufficiently) flat915

9 //or a sensible NUA procedure is applied !916

10 AliFlowTrackCuts* cuts = new AliFlowTrackCuts("standard vzero flow cuts");917

11 cuts ->SetParamType(AliFlowTrackCuts :: kVZERO);918

12 cuts ->SetEtaRange(-10, +10);919

13 cuts ->SetEtaGap (-1., 1.);920

14 cuts ->SetPhiMin(0);921

15 cuts ->SetPhiMax(TMath::TwoPi ());922

16 // options for the reweighting923

17 cuts ->SetVZEROgainEqualizationPerRing(kFALSE);924

18 cuts ->SetApplyRecentering(kTRUE);925

19 // to exclude a ring , do e.g.926

20 // cuts -> SetUseVZERORing (7, kFALSE);927

21 // excluding a ring will break the re - centering as re - centering relies on a928

22 // database file which tuned to receiving info from all rings929

23 return cuts;930

24 }931

25 // ---932

26 AliFlowTrackCuts* AliFlowTrackCuts :: GetStandardVZEROOnlyTrackCuts2011 ()933

27 {934

28 // get standard VZERO cuts for 2011 data935

29 //in this case , the vzero segments will be weighted by936

30 // VZEROEqMultiplicity ,937

31 //if recentering is enableded , the sub -q vectors938

32 // will be taken from the event header , so make sure to run939

33 // the VZERO event plane selection task before this task !940

34 // DISCLAIMER : recentering is only available for n==2941

35 // for the higher harmonics the user942

36 //is repsonsible for making sure the q-sub distributions are (sufficiently) flat943

37 //or a sensible NUA procedure is applied !944

38 // recentering replaces the already evaluated q-vectors , so945

39 // when chosen , additional settings (e.g. excluding rings)946

40 // have no effect. recentering is true by default947

41 //948

42 // NOTE user is responsible for running the vzero event plane949

43 // selection task in advance , e.g. add to your launcher macro950

44 //951

45 // gROOT -> LoadMacro (" $ALICE_ROOT /ANALYSIS/macros/ AddTaskVZEROEPSelection .C");952

46 // AddTaskVZEROEPSelection ();953

47 //954

48 AliFlowTrackCuts* cuts = new AliFlowTrackCuts("standard vzero flow cuts 2011");955

49 cuts ->SetParamType(kVZERO);956

50 cuts ->SetEtaRange(-10, +10);957

51 cuts ->SetEtaGap (-1., 1.);958

52 cuts ->SetPhiMin(0);959

53 cuts ->SetPhiMax(TMath::TwoPi ());960

54 cuts ->SetApplyRecentering(kTRUE);961

55 cuts ->SetVZEROgainEqualizationPerRing(kFALSE);962

56 return cuts;963

57 }964
965

Caveats and remarks966

Using the VZERO as reference detector in a flow analysis certainly has its benefits (such as suppressing the non-flow967

contribution to the vn signal) but a few remarks have to be made968

Applicability to flow analysis methods As the calibration affects the information that is returned by the function969

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 17 of 58

AliROOT Flow Package manual and documentation The FLOW team

970

1 void AliFlowEvent :: Get2Qsub ()971
972

only flow analysis methods which call this function (and thus use sub-events) can use the calibrated VZERO signal.973

Most notably, this is the scalar product method. In combination with this, one should keep in mind that the two974

VZERO detectors have different η coverage. For the recent ALICE paper on the flow of identified particles, the scalar975

product method with VZERO sub-events was used, where the two VZERO detectors comprised the two sub-events.976

For more information on this, take a look at the description of the scalar product method in subsection 4.3.977

VZERO as RP source The VZERO signal should only be used as source for reference flow. Although technically there978

is no objection to using the VZERO signal as POI’s (you will probably get output) there is no guarantee that this979

makes sense from a ‘physics’ viewpoint;980

Tuning of the calibration The calibration in the LHC11h data is taken from an external class and therefore, as far as981

the flow package is considered, as-is (although the calibration can be disabled). The LHC10h calibration however is982

done within the package, and can be tuned quite a bit.983

Tuning the calibration is done by functions of the AliFlowTrackCuts class. Some of these functions apply to both984

LHC10h and LHC11h data but can have slightly different effects:985

986

1 // to either enable or disable the recentering987

2 // (for 11h this will mean that no calibration is performed ,988

3 // for 10h it will result in only doing a re -weighting)989

4 void SetApplyRecentering(Bool_t r)990

5 // to enable a per -ring instead of per -disc gain equalization (=re - weighting)991

6 // (for 11h this has no effect)992

7 void SetVZEROgainEqualizationPerRing(Bool_t s)993

8 // exclude vzero rings: 0 through 7 can be excluded by calling this setter multiple times994

9 // 0 corresponds to segment ID 0 through 7, etc995

10 // disabled vzero rings get weight 0996

11 // with this function you can omit information from entire vzero rings997

12 // might be useful for runs where there is a bad signal in one of the tiles998

13 // (sometimes referred to as ’clipping ’)999

14 void SetUseVZERORing(Int_t i, Bool_t u)1000
1001

Be warned however: the databases which are read during the calibration however are tuned to the combination of re-1002

weighting of all rings with re-centering. Changing this combination might lead to biases in the Q vector distribution,1003

so: playing with the calibration settings might be interesting for e.g. evaluating systematic uncertainties, but keep1004

an eye on the control histograms!1005

Track weights1006

When it is a-priori know that a track sample needs to be weighted in ϕ, η or pt (e.g. to correct for a non-uniform acceptance1007

bias in azimuth by using weight which are inversely proportional to the azimuthal track distribution) histograms with1008

weight distributions can be supplied to the flow package. The weights are supplied to flow analysis tasks, which then1009

apply these weights by passing them to the Q vector calculation functions which are printed in the previous subsection.1010

The weights have to be supplied as TH1F objects (or objects which can be dynamically cast to a TH1F encapsulated1011

in TList. The histograms have to have specific names: "phi weights" for ϕ weights, "pt weights" for pt weights and1012

"eta weights" for η weights. The binning of the histograms is not important, as long as bins are of equal width. The1013

weights are disabled by default and have to be passed to specific flow analysis tasks (as not all tasks support weights) via1014

1015

1 // set weight list1016

2 AliFlowAnalysisWith *:: SetWeightsList(TList* const)1017

3 // toggle phi weights on / off1018

4 AliFlowAnalysisWith *:: SetUsePhiWeights(Bool_t const)1019

5 // toggle eta weighs on / off1020

6 AliFlowAnalysisWith *:: SetUseEtaWeights(Bool_t const)1021

7 // toggle pt weights on / off1022

8 AliFlowAnalysisWith *:: SetUsePtWeights(Bool_t const)1023
1024

and are applied to total Q vectors and sub-event Q vectors.1025

The tasks which support weights are1026

• AliFlowAnalysisWithNestedLoops1027

• AliFlowAnalysisWithScalarProduct1028

• AliFlowAnalysisWithQCumulants1029

• AliFlowAnalysisTemplate1030

• AliFlowAnalysisWithFittingQDistribution1031

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 18 of 58

AliROOT Flow Package manual and documentation The FLOW team

• AliFlowAnalysisWithCumulants1032

• AliFlowAnalysisWithMixedHarmonics1033

For details on how the weighting is implemented (and defined) the user is referred to the specific Q vector evaluation1034

functions given in the previous subsection.1035

AliFlowCommonConstants - The Common Constants class1036

All flow analysis use a common output container to store their histograms. To set the configuration for the histograms1037

in these containers - e.g. the pt ranges of histograms, the number of bins, etc, etc - all flow analysis methods initialize1038

their output containers using variables from a static (global) instance of the AliFlowCommonConstants class. This object,1039

which can be obtained via the a static function1040

1041

1 static AliFlowCommonConstants* GetMaster ();1042
1043

can be tuned to the user’s liking by requesting a pointer to it via the static access method, and using the available setter1044

functions, e.g. the following1045

1046

1 AliFlowCommonConstants* cc = AliFlowCommonConstants :: GetMaster ();1047

2 cc->SetNbinsPt (100);1048

3 cc->SetPtMin (0);1049

4 cc->SetPtMax (10);1050
1051

will result in an analysis which is performed in 100 pt bins of 0.1 GeV/c width. The full set of histogram sizes and limits1052

that can be set is1053

1054

1 // histogram sizes1055

2 Int_t fNbinsMult; // histogram size1056

3 Int_t fNbinsPt; // histogram size1057

4 Int_t fNbinsPhi; // histogram size1058

5 Int_t fNbinsEta; // histogram size1059

6 Int_t fNbinsQ; // histogram size1060

7 Int_t fNbinsMass; // histogram size1061

81062

9 // Histograms limits1063

10 Double_t fMultMin; // histogram limit1064

11 Double_t fMultMax; // histogram limit1065

12 Double_t fPtMin; // histogram limit1066

13 Double_t fPtMax; // histogram limit1067

14 Double_t fPhiMin; // histogram limit1068

15 Double_t fPhiMax; // histogram limit1069

16 Double_t fEtaMin; // histogram limit1070

17 Double_t fEtaMax; // histogram limit1071

18 Double_t fQMin; // histogram limit1072

19 Double_t fQMax; // histogram limit1073

20 Double_t fMassMin; // histogram limit1074

21 Double_t fMassMax; // histogram limit1075

22 Double_t fHistWeightvsPhiMin; // histogram limit1076

23 Double_t fHistWeightvsPhiMax; // histogram limit1077
1078

via the setters1079

1080

1 void SetNbinsMult(Int_t i) { fNbinsMult = i; }1081

2 void SetNbinsPt(Int_t i) { fNbinsPt = i; }1082

3 void SetNbinsPhi(Int_t i) { fNbinsPhi = i; }1083

4 void SetNbinsEta(Int_t i) { fNbinsEta = i; }1084

5 void SetNbinsQ(Int_t i) { fNbinsQ = i; }1085

6 void SetNbinsMass(Int_t i) { fNbinsMass = i; }1086

7 void SetMultMin(Double_t i) { fMultMin = i; }1087

8 void SetMultMax(Double_t i) { fMultMax = i; }1088

9 void SetPtMin(Double_t i) { fPtMin = i; }1089

10 void SetPtMax(Double_t i) { fPtMax = i; }1090

11 void SetPhiMin(Double_t i) { fPhiMin = i; }1091

12 void SetPhiMax(Double_t i) { fPhiMax = i; }1092

13 void SetEtaMin(Double_t i) { fEtaMin = i; }1093

14 void SetEtaMax(Double_t i) { fEtaMax = i; }1094

15 void SetQMin(Double_t i) { fQMin = i; }1095

16 void SetQMax(Double_t i) { fQMax = i; }1096

17 void SetMassMin(Double_t i) { fMassMin = i; }1097

18 void SetMassMax(Double_t i) { fMassMax = i; }1098

19 void SetHistWeightvsPhiMax(Double_t d) {fHistWeightvsPhiMax=d;}1099

20 void SetHistWeightvsPhiMin(Double_t d) {fHistWeightvsPhiMin=d;}1100
1101

Note that the common constants object is static, meaning that, within a process (e.g. an analysis train) just one1102

instance of the object is created. The histogram limits and sizes that are set via the common constants object therefore1103

affect all histograms within an analysis chain.1104

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 19 of 58

AliROOT Flow Package manual and documentation The FLOW team

AliFlowCommonHist and AliFlowCommonHistResults - details1105

Both the AliFlowCommonHist and AliFlowCommonHistResults classes do not only contain (pointers to) histograms and1106

profiles, but also have a collection of ‘getters’e which you can use to retrieve histograms of profiles using the ROOT command1107

line in stead of the TBrowser, which may come in handy when one needs to read the output of the flow analysis tasks in1108

a macro.1109

Using the output file that was generated in the example given in the previous sections of this chapter, reading the1110

objects of the common histogram classes is done in the following way. First, start an (Ali)ROOT session, and load the1111

prerequisite libraries,1112

1113

1 gSystem ->Load("libPWGflowBase");1114
1115

Then, open the analysis file and grab the common histogram objects1116

1117

1 // open the file1118

2 TFile f("AnalysisResults.root");1119

3 // get the qc analysis output directory1120

4 TDirectoryFile* dir = (TDirectoryFile *)f.Get("outputQCanalysis");1121

5 // and retrieve the output list of the analysis1122

6 TList* outputList = (TList *)dir ->Get("cobjQC")1123
1124

The TList that you have just obtained holds not only the common histogram objects, but can also hold additional1125

information that has been added to the analysis output by a specific flow analysis task. To read the entire content of the1126

TList, you can type1127

1128

1 outputList ->ls();1129
1130

However, in this example we want to retrieve the common histogram objects. To do so, type1131

1132

1 // get common histogram object from the TList1133

2 AliFlowCommonHist* commonHist = (AliFlowCommonHist *)outputList ->FindObject("AliFlowCommonHistQC");1134

3 // get the results for the 2 particle cumulant from the TList1135

4 AliFlowCommonHistResults* commonHistResults2 = (AliFlowCommonHistResults *)outputList ->FindObject("1136

AliFlowCommonHistResults2ndOrderQC");1137
1138

Once you have retrieved the pointers to the AliFlowCommonHist or AliFlowCommonHistResults objects, you can use the1139

getters to retrieve a histogram. To e.g. draw the η distribution of POI’s, type1140

1141

1 commonHist ->GetHistEtaPOI ()->Draw();1142
1143

The following getters are available in AliFlowCommonHist1144

1145

1 Double_t GetEntriesInPtBinRP(Int_t iBin); // gets entries from fHistPtRP1146

2 Double_t GetEntriesInPtBinPOI(Int_t iBin); // gets entries from fHistPtPOI1147

3 Double_t GetEntriesInEtaBinRP(Int_t iBin); // gets entries from fHistEtaRP1148

4 Double_t GetEntriesInEtaBinPOI(Int_t iBin); // gets entries from fHistEtaPOI1149

5 Double_t GetMeanPt(Int_t iBin); // gets the mean pt for this bin from1150

fHistProMeanPtperBin1151

6 TH1F* GetHistMultRP () {return fHistMultRP; } ;1152

7 TH1F* GetHistMultPOI () {return fHistMultPOI; } ;1153

8 TH2F* GetHistMultPOIvsRP () {return fHistMultPOIvsRP; } ;1154

9 TH1F* GetHistPtRP () {return fHistPtRP; } ;1155

10 TH1F* GetHistPtPOI () {return fHistPtPOI; } ;1156

11 TH1F* GetHistPtSub0 () {return fHistPtSub0; } ;1157

12 TH1F* GetHistPtSub1 () {return fHistPtSub1; } ;1158

13 TH1F* GetHistPhiRP () {return fHistPhiRP; } ;1159

14 TH1F* GetHistPhiPOI () {return fHistPhiPOI; } ;1160

15 TH1F* GetHistPhiSub0 () {return fHistPhiSub0; } ;1161

16 TH1F* GetHistPhiSub1 () {return fHistPhiSub1; } ;1162

17 TH1F* GetHistEtaRP () {return fHistEtaRP; } ;1163

18 TH1F* GetHistEtaPOI () {return fHistEtaPOI; } ;1164

19 TH1F* GetHistEtaSub0 () {return fHistEtaSub0; } ;1165

20 TH1F* GetHistEtaSub1 () {return fHistEtaSub1; } ;1166

21 TH2F* GetHistPhiEtaRP () {return fHistPhiEtaRP; } ;1167

22 TH2F* GetHistPhiEtaPOI () {return fHistPhiEtaPOI; } ;1168

23 TProfile* GetHistProMeanPtperBin () {return fHistProMeanPtperBin; } ;1169

24 TH2F* GetHistWeightvsPhi () {return fHistWeightvsPhi; } ;1170

25 TH1F* GetHistQ () {return fHistQ; } ;1171

26 TH1F* GetHistAngleQ () {return fHistAngleQ; }1172

27 TH1F* GetHistAngleQSub0 () {return fHistAngleQSub0; }1173

28 TH1F* GetHistAngleQSub1 () {return fHistAngleQSub1; }1174

29 TProfile* GetHarmonic () {return fHarmonic; } ;1175

30 TProfile* GetRefMultVsNoOfRPs () {return fRefMultVsNoOfRPs; } ;1176

31 TH1F* GetHistRefMult () {return fHistRefMult; } ;1177

32 TH2F* GetHistMassPOI () {return fHistMassPOI; }1178

33 TList* GetHistList () {return fHistList ;} ;1179
1180

eA ‘getter’ in this manual will be used to describe a function of the form Get∗() which returns a (pointer to) a member of a class and is
used to interface with the class.

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 20 of 58

AliROOT Flow Package manual and documentation The FLOW team

and in AliFlowCommonHistResults1181

1182

1 TH1D* GetHistChi (){return fHistChi ;};1183

2 TH1D* GetHistIntFlow (){return fHistIntFlow ;};1184

3 TH1D* GetHistIntFlowRP (){return fHistIntFlowRP ;};1185

4 TH1D* GetHistDiffFlowPtRP (){return fHistDiffFlowPtRP ;};1186

5 TH1D* GetHistDiffFlowEtaRP (){return fHistDiffFlowEtaRP ;};1187

6 TH1D* GetHistIntFlowPOI (){return fHistIntFlowPOI ;};1188

7 TH1D* GetHistDiffFlowPtPOI (){return fHistDiffFlowPtPOI ;};1189

8 TH1D* GetHistDiffFlowEtaPOI (){return fHistDiffFlowEtaPOI ;};1190

9 TList* GetHistList (){return fHistList ;};1191
1192

Afterburner1193

To e.g. test your analysis setup, an ‘afterburner’ can be called which adds user-defined flow to (isotropic) events. Two1194

afterburner techniques are implemented.1195

Differential v2 The first technique injects differential v2 into events, using the following steps: As a starting point, an1196

isotropic distribution of tracks is used1197

dN

dϕ0
=

1

2π
. (3.2.4.4)

Adding a periodic azimuthal modulation, this is translated to1198

dN

dϕ
=

1

2π
(1 + v2 cos [2 (ϕ−Ψ)]) (3.2.4.5)

which can be re-written as1199

dN

dϕ
=
dN

dϕ0

dϕ0

dϕ
=

1

2π

dϕ0

dϕ
(3.2.4.6)

so that for each track the following equation can be solved by Newton-Raphson iteration1200

ϕ = ϕ0 − v2 sin [2 (ϕ−Ψ)] . (3.2.4.7)

Integrated vn The second option is adding integrated vn by sampling the azimuthal distribution of an event from a1201

Fourier series1202

dN

dϕ
∝ 1 +

1

2

∑
n

vn (n∆ϕ) . (3.2.4.8)

In the ‘quick start’ of this manual you have already see how you can generate flow events with a certain vn value by1203

generating flow events by hand. The afterburner routine can also be called from the AliAnalysisTaskFlowEvent via the1204

functions1205

1206

1 // setters for adding by hand flow values (afterburner)1207

21208

3 // toggle the afterburner on / off1209

4 void SetAfterburnerOn(Bool_t b=kTRUE) {fAfterburnerOn=b;}1210

5 // set differential v2 via a TF11211

6 void SetPtDifferentialV2(TF1 *gPtV2) {fDifferentialV2 = gPtV2;}1212

7 // set integrated flow (used when the gPtV2 = NULL)1213

8 void SetFlow(Double_t v1, Double_t v2 , Double_t v3=0.0, Double_t v4=0.0, Double_t v5=0.0)1214

9 {fV1=v1;fV2=v2;fV3=v3;fV4=v4;fV5=v5;}1215
1216

To introduce non-flow effects to using the afterburner, tracks can be cloned. To clone, for each event, a given number n1217

of tracks, enable the afterburner and call1218

1219

1 void SetNonFlowNumberOfTrackClones(Int_t n) {fNonFlowNumberOfTrackClones=n;}1220
1221

Effectively this will result in n tracks appearing twice in the track sample, mimicking the effects of e.g. resonance decays1222

of track splitting on vn.1223

3.2.5 Relevant pieces of code1224

The best way of getting familiar with the flow package is perhaps browsing the source code, but it can be difficult to find1225

a good starting point for this. Two relevant pieces of code have been selected here which are at the heart of the flow1226

package:1227

1. The AliAnalysisTaskFlowEvent::UserExec() function, which is called for each event that enters an analysis train;1228

2. AliFlowEvent::Fill(), which selects POI’s and RP’s following the track selection criteria and fills the flow event which1229

is passed to the analysis methods. The functions are shortened and simplified and provided with additional lines of1230

comments.1231

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 21 of 58

AliROOT Flow Package manual and documentation The FLOW team

AliAnalysisTaskFlowEvent::UserExec()1232

This function is called for each event.1233

1234

1 void AliAnalysisTaskFlowEvent :: UserExec(Option_t *)1235

2 {1236

3 // Main loop1237

4 // Called for each event1238

5 // delete fFlowEvent ;1239

6 AliMCEvent* mcEvent = MCEvent (); // from TaskSE1240

7 AliESDEvent* myESD = dynamic_cast <AliESDEvent *>(InputEvent ()); // from TaskSE1241

8 AliAODEvent* myAOD = dynamic_cast <AliAODEvent *>(InputEvent ()); // from TaskSE1242

91243

10 // the rp and poi cuts will be used to fill the flow event1244

11 // so they have to be defined here1245

12 if (!(fCutsRP && fCutsPOI && fCutsEvent))1246

13 {1247

14 AliError("cuts not set");1248

15 return;1249

16 }1250

171251

18 // DEFAULT - automatically takes care of everything1252

19 // the flow package will determine the datatype that you are using1253

20 if (fAnalysisType == "AUTOMATIC")1254

21 {1255

22 // check event cuts1256

23 if (InputEvent () && !fCutsEvent ->IsSelected(InputEvent (),MCEvent ()))1257

24 return;1258

251259

26 // first attach all possible information to the cuts1260

27 // the track cuts will make the track selection , so they1261

28 // have to be supplied with the current event1262

29 // the mc event is NULL unless it is retrieved by AliAnalysisTaskSE1263

30 fCutsRP ->SetEvent(InputEvent (), MCEvent ()); // attach event1264

31 fCutsPOI ->SetEvent(InputEvent (), MCEvent ());1265

321266

33 // then make the event1267

34 // this function will fill the flow event with selected poi ’s and rp’s1268

35 // the implementation is printed below1269

36 fFlowEvent ->Fill(fCutsRP , fCutsPOI);1270

371271

38 // pass some event info to the flow event1272

39 fFlowEvent ->SetReferenceMultiplicity(fCutsEvent ->GetReferenceMultiplicity(InputEvent (),mcEvent))1273

;1274

40 fFlowEvent ->SetCentrality(fCutsEvent ->GetCentrality(InputEvent (),mcEvent));1275

41 if (mcEvent && mcEvent ->GenEventHeader ()) fFlowEvent ->SetMCReactionPlaneAngle(mcEvent);1276

42 }1277

431278

44 // a lot of code is omitted here //1279

451280

46 // //1281

47 // ///////////////////////// AFTERBURNER1282

48 if (fAfterburnerOn)1283

49 {1284

50 //if reaction plane not set from elsewhere randomize it before adding flow1285

51 if (!fFlowEvent ->IsSetMCReactionPlaneAngle ())1286

52 fFlowEvent ->SetMCReactionPlaneAngle(gRandom ->Uniform (0.0, TMath :: TwoPi()));1287

531288

54 if(fDifferentialV2)1289

55 fFlowEvent ->AddV2(fDifferentialV2);1290

56 else1291

57 fFlowEvent ->AddFlow(fV1 ,fV2 ,fV3 ,fV4 ,fV5); // add flow1292

58 fFlowEvent ->CloneTracks(fNonFlowNumberOfTrackClones); // add nonflow by cloning tracks1293

59 }1294

60 // //1295

611296

62 // tag subEvents1297

63 // some flow analysis methods (such as the scalar product)1298

64 // use sub -events. by calling this function , all tracks in the1299

65 // flow event are tagged as belonging to either sub -event a or b1300

66 fFlowEvent ->TagSubeventsInEta(fMinA ,fMaxA ,fMinB ,fMaxB);1301
1302

AliFlowEvent::Fill()1303

This function fills the flow event with AliFlowSimpleTracks. One important thing to notice here, is that both POI’s and1304

RP’s are stored in a common array of flow tracks, internally only referred to as POI’s. What distinguishes the POI’s and1305

RP’s is their type: RP’s are stored as type 0 POI’s, and POI’s are stored as non-zero type POI’s (where nonzero means1306

1, 2, 3 ...).1307

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 22 of 58

AliROOT Flow Package manual and documentation The FLOW team

1308

1 // ---1309

2 void AliFlowEvent ::Fill(AliFlowTrackCuts* rpCuts ,1310

3 AliFlowTrackCuts* poiCuts)1311

4 {1312

5 // Fills the event from a vevent: AliESDEvent ,AliAODEvent , AliMCEvent1313

6 // the input data needs to be attached to the cuts1314

7 //we have two cases , if we’re cutting the same collection of tracks1315

8 //(same param type) then we can have tracks that are both rp and poi1316

9 //in the other case we want to have two exclusive sets of rps and pois1317

10 //e.g. one tracklets , the other PMD or global - USER IS RESPOSIBLE1318

11 // FOR MAKING SURE THEY DONT OVERLAP OR ELSE THE SAME PARTICLE WILL BE1319

12 // TAKEN TWICE1320

131321

14 // remove the previous event1322

15 ClearFast ();1323

16 if (! rpCuts || !poiCuts) return;1324

17 // check the source of rp’s1325

18 AliFlowTrackCuts :: trackParameterType sourceRP = rpCuts ->GetParamType ();1326

19 // and ditto for the poi ’s1327

20 AliFlowTrackCuts :: trackParameterType sourcePOI = poiCuts ->GetParamType ();1328

211329

22 AliFlowTrack* pTrack=NULL;1330

231331

24 // if the source for rp’s or poi ’s is the VZERO detector , get the calibration1332

25 // and set the calibration parameters1333

26 if (sourceRP == AliFlowTrackCuts :: kVZERO) {1334

27 SetVZEROCalibrationForTrackCuts(rpCuts);1335

28 if(!rpCuts ->GetApplyRecentering ()) {1336

29 // if the user does not want to recenter , switch the flag1337

30 fApplyRecentering = -1;1338

31 }1339

32 // note: this flag is used in the overloaded implementation of Get2Qsub ()1340

33 // and tells the function to use as Qsub vectors the recentered Q-vectors1341

34 // from the VZERO oadb file or from the event header1342

35 }1343

36 if (sourcePOI == AliFlowTrackCuts :: kVZERO) {1344

37 // probably no -one will choose vzero tracks as poi ’s ...1345

38 SetVZEROCalibrationForTrackCuts(poiCuts);1346

39 }1347

401348

411349

42 if (sourceRP == sourcePOI)1350

43 {1351

44 // loop over tracks1352

45 Int_t numberOfInputObjects = rpCuts ->GetNumberOfInputObjects ();1353

46 for (Int_t i=0; i<numberOfInputObjects; i++)1354

47 {1355

48 // get input object (particle)1356

49 TObject* particle = rpCuts ->GetInputObject(i);1357

501358

51 Bool_t rp = rpCuts ->IsSelected(particle ,i);1359

52 Bool_t poi = poiCuts ->IsSelected(particle ,i);1360

531361

54 if (!(rp||poi)) continue;1362

551363

56 // make new AliFlowTrack1364

57 if (rp)1365

58 {1366

59 pTrack = rpCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1367

60 if (! pTrack) continue;1368

61 pTrack ->Tag(0); IncrementNumberOfPOIs (0);1369

62 if (poi) {pTrack ->Tag(1); IncrementNumberOfPOIs (1);}1370

63 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1371

64 }1372

65 else if (poi)1373

66 {1374

67 pTrack = poiCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1375

68 if (! pTrack) continue;1376

69 pTrack ->Tag(1); IncrementNumberOfPOIs (1);1377

70 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1378

71 }1379

72 fNumberOfTracks ++;1380

73 }// end of while (i < numberOfTracks)1381

74 }1382

75 else if (sourceRP != sourcePOI)1383

76 {1384

77 // here we have two different sources of particles , so we fill1385

78 // them independently1386

79 // POI1387

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 23 of 58

AliROOT Flow Package manual and documentation The FLOW team

80 for (Int_t i=0; i<poiCuts ->GetNumberOfInputObjects (); i++)1388

81 {1389

82 TObject* particle = poiCuts ->GetInputObject(i);1390

83 Bool_t poi = poiCuts ->IsSelected(particle ,i);1391

84 if (!poi) continue;1392

85 pTrack = poiCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1393

86 if (! pTrack) continue;1394

87 pTrack ->Tag(1);1395

88 IncrementNumberOfPOIs (1);1396

89 fNumberOfTracks ++;1397

90 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1398

91 }1399

92 //RP1400

93 Int_t numberOfInputObjects = rpCuts ->GetNumberOfInputObjects ();1401

94 for (Int_t i=0; i<numberOfInputObjects; i++)1402

95 {1403

96 TObject* particle = rpCuts ->GetInputObject(i);1404

97 Bool_t rp = rpCuts ->IsSelected(particle ,i);1405

98 if (!rp) continue;1406

99 pTrack = rpCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1407

100 if (! pTrack) continue;1408

101 pTrack ->Tag(0);1409

102 IncrementNumberOfPOIs (0);1410

103 fNumberOfTracks ++;1411

104 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1412

105 }1413

106 }1414

107 }1415
1416

3.2.6 Some words on the ALICE analysis framework1417

Many of the classes which are described in the previous section deal with ALICE data (e.g. event and track selection).1418

Generally, this data is analyzed in ALICE analysis framework. This framework is setup in the following way1419

1. An analysis manager analysis manager is created;1420

2. The manager is connected to a source of input data (this can be data that is stored on your local machine, but more1421

often data comes in the form of .xml files which point to data on GRID storage elements);1422

3. A number of analysis tasks is initialized, configured, and added to the analysis manager (so that you construct an1423

‘analysis train’);1424

4. The analysis is performed, which in effect means that the manager reads an event, passes it to the analysis tasks1425

(who analyze it sequentially), and repeats this until all events are read. In this way, an event can be analyzed by1426

many tasks whilst reading it from file just once;1427

5. The analysis outputs are gathered by the manager and written to an output file.1428

In this case of the flow package, the most common way of using this framework is1429

• Creating flow events using the dedicated flow event task AliAnalysisTaskFlowEvent;1430

• Analyzing these events using the AliROOT interface to the generic flow analysis tasks.1431

AliAnalysisTaskSE1432

All analysis tasks that are called by the analysis manager have to be derived from a common class, the AliAnalysisTaskSEf
1433

(where the suffix ‘SE’ stands for ‘single event’). AliAnalysisTaskSE has a few virtual functions which can be called in1434

user tasks by the analysis manager at specific times. Most notably these are1435

UserCreateOutputObjects This function is called before the analysis starts;1436

UserExec This function is called for each event;1437

Terminate Called at the end of the analysis (after the last event has been processed).1438

So, why is this important for the flow package? As said, the analysis manager can only handle tasks that derive from1439

AliAnalysisTaskSE. Therefore, all flow analysis in the flow package consist of two classes:1440

AliAnalysisTask∗ These can be found in the ‘tasks’ directory of the flow package and are derived of AliAnalysisTaskSE.1441

These classes interface with AliROOT;1442

fThis section is very brief an incomplete, but keep in mind that this is a flow package manual, and not an AliROOT tutorial.

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 24 of 58

AliROOT Flow Package manual and documentation The FLOW team

AliFlowAnalysisWith∗ These can be found in the ‘base’ folder of the flow package and perform the actual flow analysis.1443

In chapter 2 of this manual, you have seen that, using just the AliFlowAnalysisWith∗ class, a flow analysis basically1444

follows the path1445

1. Init(): called once to initialize the task and histograms;1446

2. Make(): called for each event, does the analysis;1447

3. Finish(): wrap up the analysis.1448

When doing the analysis in the analysis framework, you will not use the AliFlowAnalysisWith∗ class, but instead use1449

the AliAnalysisTask∗ which calls the AliFlowAnalysisWith∗ class for you via the calls from AliAnalysisTaskSE. To1450

be more specific:1451

1. Init() is called in UserCreateOutputObjects();1452

2. Make() is called in UserExec();1453

3. Finish() is called in Terminate().1454

All of this may still seem a bit abstract at this point, but in principle you now know all you need to know about the1455

structure of the flow package. It is recommended however that you take a look at the example in 3.2.7, to get a step-by-step1456

explanation of how these things work in the real world.1457

Analysys on grid: redoFinish.C1458

As explained in 2 and in the previous subsection, a flow analysis is finished by a call to Finish(). Although the exact1459

implementation of Finish() is different for each flow analysis method, the general principle method in most methods is1460

that calculations on event-averaged values are performed to end up with a final value for an observable.1461

When an analysis is run in parallel on many nodes (e.g. when running on GRID) the output of the flow analysis tasks1462

in AnalysisResults.root is typically wrong, as merging files via ROOT’s TFileMerger will trivially sum up results in all1463

histograms.1464

The redoFinish.Cg macro re-evaluates all output that cannot trivially be merged and re-calls the Finish() method.1465

To use redoFinish.C, make sure your analysis output file is called mergedAnalysisResults.root and simply run the1466

macro1467

1468

1 .L redoFinish.C1469

2 redoFinish ();1470
1471

redoFinish.C will produce a new AnalysisResults.root file with the corrected results by calling the ::Finish()1472

function on all known output structures in the mergedAnalysisResults.root file. Additionally redoFinish.C can be1473

used to repeat the call to ::Finish() with different settings, which might alter the outcome of the flow analysis (e.g. use1474

a different strategy to correct for non-uniform acceptance).1475

The macro itself is well documented and lists several options that are available at the time of running:1476

1477

1 // Macro redoFinish .C is typically used after the merging macros (mergeOutput .C or1478

2 // mergeOutputOnGrid .C) have been used to produce the merged , large statistics1479

3 // file of flow analysis. Results stored in merged file are WRONG because after1480

4 // merging the results from small statistics files are trivially summed up in all1481

5 // histograms . This is taken into account and corrected for with macro redoFinish .C.1482

6 // Another typical use of the macro redoFinish .C is to repeat the call to Finish ()1483

7 // in all classes , but with different values of some settings which might modify1484

8 // the final results (Example: redo the Finish () and apply correction for detector1485

9 // effects in QC code because by default this correction is switched off).1486

101487

11 // Name of the merged , large statistics file obtained with the merging macros:1488

12 TString mergedFileName = "mergedAnalysisResults.root";1489

13 // Final output file name holding correct final results for large statistics sample:1490

14 TString outputFileName = "AnalysisResults.root";1491

151492

16 Bool_t bApplyCorrectionForNUA = kFALSE; // apply correction for non -uniform acceptance1493

17 Bool_t bApplyCorrectionForNUAVsM = kFALSE; // apply correction for non -uniform acceptance in each1494

multiplicity bin independently1495

18 Bool_t bPropagateErrorAlsoFromNIT = kFALSE; // propagate error also from non -isotropic terms1496

19 Bool_t bMinimumBiasReferenceFlow = kTRUE; // store in CRH for reference flow the result obtained1497

wihout rebinning in multiplicity (kTRUE)1498

20 Bool_t checkForCommonHistResults = kTRUE; // check explicitely if the TList AliFlowCommonHistResults1499

is available in the output1500
1501

Flow analysis output is recognized by keywords in output list names (e.g. a Q-cumulant output needs to have the1502

letters ‘QC’ somewhere in the name to be recognized).1503

When your analysis output is in the form of a merged file, always run redoFinish.C to get your results!1504

g$ALICE ROOT/PWGCF/FLOW/macros/refoFinish.C

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 25 of 58

AliROOT Flow Package manual and documentation The FLOW team

3.2.7 Example: π± vn1505

As an example of how to do a flow analysis using the flow package within the AliROOT analysis framework, this section1506

will guide you through the process of measuring π± v2, v3 and v4 step-by-step, using the Q-vector cumulant flow analysis1507

method.1508

Generally, doing an analysis in the AliROOT is a ‘two-file process’, where one runs a run.C script in AliROOT (coloquially1509

referred to as ‘steering macro’), which sets up the analysis framework and takes care of the interface to the analysis GRID,1510

and calls an AddTask∗.C macro which in turn creates and configures instances of the relevant analysis tasks. In this1511

example, the distinction will not be so clear, but mentioned in the text. In practice of course, you would copy these1512

steps into macros and launch the macros from the AliROOT command line when doing analysis. We will not run this test1513

on GRID, but assume that you have some AliAOD.root files available on your local system. Note that this example is a1514

guideline, there are many ways leading to Rome, and many ways of setting up an analysis. Some of the variables that are1515

set in the code examples below are actually also set by default. This may seem a little bit redundant, but it is done to1516

make the reader aware of the fact that they exist.1517

A script which contains all the steps described below and should work ‘out-of-the-box’ can be found at1518

$ALICE ROOT/PWGCF/FLOW/Documentation/examples/manual/runFlowOnDataExample.C.1519

Preparing the session First, we need to prepare the framework and root session (these steps would go into your run.C1520

macro). Launch AliROOT and load the necessary libraries1521

1522

1 // load libraries1523

2 gSystem ->Load("libCore.so");1524

3 gSystem ->Load("libGeom.so");1525

4 gSystem ->Load("libVMC.so");1526

5 gSystem ->Load("libPhysics.so");1527

6 gSystem ->Load("libTree.so");1528

7 gSystem ->Load("libSTEERBase.so");1529

8 gSystem ->Load("libESD.so");1530

9 gSystem ->Load("libAOD.so");1531

10 gSystem ->Load("libANALYSIS.so");1532

11 gSystem ->Load("libANALYSISalice.so");1533

12 gSystem ->Load("libEventMixing.so");1534

13 gSystem ->Load("libCORRFW.so");1535

14 gSystem ->Load("libPWGTools.so");1536

15 gSystem ->Load("libPWGCFebye.so");1537

16 gSystem ->Load("libPWGflowBase.so");1538

17 gSystem ->Load("libPWGflowTasks.so");1539
1540

Creating the manager and connecting input data Create an analysis manager and create a TChain which we will1541

point to the data you have stored locally on your machine1542

1543

1 // create the analysis manager1544

2 AliAnalysisManager* mgr = new AliAnalysisManager("MyManager");1545

3 // create a tchain which will point to an aod tree1546

4 TChain* chain = new TChain("aodTree");1547

5 // add a few files to the chain1548

6 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1549

AOD086 /0003/ AliAOD.root");1550

7 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1551

AOD086 /0003/ AliAOD.root");1552

8 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1553

AOD086 /0004/ AliAOD.root");1554

9 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1555

AOD086 /0005/ AliAOD.root");1556

10 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1557

AOD086 /0006/ AliAOD.root");1558

11 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1559

AOD086 /0007/ AliAOD.root");1560

12 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1561

AOD086 /0008/ AliAOD.root");1562

13 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1563

AOD086 /0009/ AliAOD.root");1564

14 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1565

AOD086 /0010/ AliAOD.root");1566

15 // create an input handler1567

16 AliVEventHandler* inputH = new AliAODInputHandler ();1568

17 // and connect it to the manager1569

18 mgr ->SetInputEventHandler(inputH);1570
1571

Great, at this point we have created an analysis manager, which will read events from a chain of AliAOD.root files.1572

The next step will be adding specific analyses to the analysis manager. This is usually done by calling an AddTask∗.C1573

macro, which creates instances of analysis tasks, connects input (events from the analysis manager) to these tasks,1574

and then connects output from the task back to the analysis manager (which will take care of writing the analysis1575

to a common output file). These next steps show what would be in your AddTask∗.C macro.1576

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 26 of 58

AliROOT Flow Package manual and documentation The FLOW team

The heart of our flow analysis will be the flow event. To fill a flow event from the input AOD events, we will use1577

the AliAnalysisTaskFlowEvent class. The AOD input events have to be supplied by the analysis manager, so first1578

things first, retrieve the manager to which you will connect your flow analysis tasksh:1579

1580

1 // the manager is static , so get the existing manager via the static method1581

2 AliAnalysisManager *mgr = AliAnalysisManager :: GetAnalysisManager ();1582

3 if (!mgr) {1583

4 printf("No analysis manager to connect to!\n");1584

5 return NULL;1585

6 }1586

71587

8 // just to see if all went well , check if the input event handler has been connected1588

9 if (!mgr ->GetInputEventHandler ()) {1589

10 printf("This task requires an input event handler !\n");1590

11 return NULL;1591

12 }1592
1593

Setting up the flow event task The manager and input data are present, so we can create the flow event task and do1594

some basic configuration1595

1596

1 // create instance of the class. because possible qa plots are added in a second ouptut slot ,1597

2 // the flow analysis task must know if you want to save qa plots at the time of class1598

construction1599

3 Bool_t doQA = kTRUE;1600

4 // craete instance of the class1601

5 AliAnalysisTaskFlowEvent* taskFE = new AliAnalysisTaskFlowEvent("FlowEventTask", "", doQA);1602

6 // add the task to the manager1603

7 mgr ->AddTask(taskFE);1604

8 // set the trigger selection1605

9 taskFE ->SelectCollisionCandidates(AliVEvent ::kMB);1606
1607

Note that in the last step you have set the trigger configuration. Always make sure that you run on a trigger that1608

makes sense for your analysis. A general remark is that the non-uniform acceptance correction methods that are1609

implemented in the flow package, assume a flat Q vector distribution. Specific triggers (e.g. EMCal triggers) result1610

in a Q vector bias which should not be corrected as they invalidate that assumptioni.1611

In addition to the trigger selection, one might want to do some more event selection. The flow package has a common1612

event selection class, which we will add to your flow event1613

1614

1 // define the event cuts object1615

2 AliFlowEventCuts* cutsEvent = new AliFlowEventCuts("EventCuts");1616

3 // configure some event cuts , starting with centrality1617

4 cutsEvent ->SetCentralityPercentileRange (20., 30.);1618

5 // method used for centrality determination1619

6 cutsEvent ->SetCentralityPercentileMethod(AliFlowEventCuts ::kV0);1620

7 // vertex -z cut1621

8 cutsEvent ->SetPrimaryVertexZrange (-10. ,10.);1622

9 // enable the qa plots1623

10 cutsEvent ->SetQA(doQA);1624

11 // explicit multiplicity outlier cut1625

12 cutsEvent ->SetCutTPCmultiplicityOutliersAOD(kTRUE);1626

13 cutsEvent ->SetLHC10h(kTRUE);1627

141628

151629

16 // and , last but not least , pass these cuts to your flow event task1630

17 taskFE ->SetCutsEvent(cutsEvent);1631
1632

Track selection Now that the flow event task has been created and some basic configuration has been done, it’s time to1633

specify the POI and RP selection. This is done by defining sets of track selection criteria for both POI’s and RP’s:1634

tracks in an event that pass the track selection criteria are used as POI or RP. The track selection is defined in1635

AliFlowTrackCuts objects which are passed to the AliAnalysisTaskFlowEvent task which does the actual selection1636

based on the passed criteria. So, let’s create some track selection objects!1637

Starting with the RP’s, for which we’ll just use a uniform selection of charged tracks,1638

1639

1 // create the track cuts object using a static function of AliFlowTrackCuts1640

2 AliFlowTrackCuts* cutsRP = AliFlowTrackCuts :: GetAODTrackCutsForFilterBit (1, "RP cuts");1641

3 // specify the pt range1642

4 cutsRP ->SetPtRange (0.2, 5.);1643

hIn the example macro this is a not necessary as you already have a pointer to the manager in your macro. However, if you split the macro
into a steering macro and AddTask macro, the AddTask macro needs to retrieve a pointer to the manager which is created in the steering
macro.

iThe actual event selection based on triggers is done in the AliAnalysisTaskSE class (to be specific, the trigger is checked in
AliAnalysisTaskSE::Exec()) from which the AliAnalysisTaskFlowEvent is derived. The full set of available triggers can be found in the
virtual event header AliVEvent.h.

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 27 of 58

AliROOT Flow Package manual and documentation The FLOW team

5 // specify eta range1644

6 cutsRP ->SetEtaRange (-0.8, 0.8);1645

7 // specify track type1646

8 cutsRP ->SetParamType(AliFlowTrackCuts :: kAODFilterBit);1647

9 // enable saving qa histograms1648

10 cutsRP ->SetQA(kTRUE);1649
1650

The particles in this example of which we want to measure the differential v2 (the POI’s) are the charged pi-1651

ons. To measure the v2 of charged pions, one must of course identify tracks are pions: for this we will use the1652

AliFlowTrackCuts class. First, we do the basic setup, creating the cut object and setting some kinematic variables:1653

1654

1 // create the track cuts object using a static function of AliFlowTrackCuts1655

2 AliFlowTrackCuts* cutsPOI = AliFlowTrackCuts :: GetAODTrackCutsForFilterBit (1, "pion selection");1656

3 // specify the pt range1657

4 cutsPOI ->SetPtRange (0.2, 5.);1658

5 // specify eta range1659

6 cutsPOI ->SetEtaRange (-0.8, 0.8);1660

7 // specify the track type1661

8 cutsRP ->SetParamType(AliFlowTrackCuts :: kAODFilterBit);1662

9 // enable saving qa histograms1663

10 cutsPOI ->SetQA(kTRUE);1664
1665

Once this is done, the particle identification routine is defined. In this example, the particle identification will be1666

done using a Bayesian approach, combining the signals from the TPC and TOF detectors.1667

1668

1 // which particle do we want to identify ?1669

2 AliPID :: EParticleType particleType=AliPID ::kPion;1670

3 // specify the pid method that we want to use1671

4 AliFlowTrackCuts :: PIDsource sourcePID=AliFlowTrackCuts :: kTOFbayesian;1672

5 // define the probability (between 0 and 1)1673

6 Double_t probability = .9;1674

7 // pass these variables to the track cut object1675

8 cutsPOI ->SetPID(particleType , sourcePID , probability);1676

9 // the bayesian pid routine uses priors tuned to an average centrality1677

10 cutsPOI ->SetPriors (35.);1678
1679

Now that the track cuts for both POI’s and RP’s are defined, we can connect them to the flow event task,1680

1681

1 // connect the RP’s to the flow event task1682

2 taskFE ->SetCutsRP(cutsRP);1683

3 // connect the POI ’s to the flow event task1684

4 taskFE ->SetCutsPOI(cutsPOI);1685
1686

Connecting input and output At this point, the event and track cuts have been set and connected to the flow event1687

task. The next step will be connecting the flow event task to the analysis manager (so that it can receive input1688

events) and subsequently connecting the flow event task to flow analysis tasks, so that the flow events can be analyzed1689

by our favorite flow analysis methods.1690

1691

1 // get the default name of the output file (" AnalysisResults .root ")1692

2 TString file = GetCommonFileName ();1693

3 // get the common input container from the analysis manager1694

4 AliAnalysisDataContainer *cinput = mgr ->GetCommonInputContainer ();1695

5 // create a data container for the output of the flow event task1696

6 // the output of the task is the AliFlowEventSimle class which will1697

7 // be passed to the flow analysis tasks. note that we use a kExchangeContainer here ,1698

8 // which exchanges data between classes of the analysis chain , but is not1699

9 // written to the output file1700

10 AliAnalysisDataContainer *coutputFE = mgr ->CreateContainer(1701

11 "FlowEventContainer",1702

12 AliFlowEventSimple ::Class (),1703

13 AliAnalysisManager :: kExchangeContainer);1704

14 // connect the input data to the flow event task1705

15 mgr ->ConnectInput(taskFE ,0,cinput);1706

16 // and connect the output to the flow event task1707

17 mgr ->ConnectOutput(taskFE ,1, coutputFE);1708

18 // create an additional container for the QA output of the flow event task1709

19 // the QA histograms will be stored in a sub -folder of the output file called ’QA’1710

20 TString taskFEQAname = file;1711

21 taskFEQAname += ":QA";1712

22 AliAnalysisDataContainer* coutputFEQA = mgr ->CreateContainer(1713

23 "FlowEventContainerQA",1714

24 TList:: Class(),1715

25 AliAnalysisManager :: kOutputContainer ,1716

26 taskFEQAname.Data()1717

27);1718

28 // and connect the qa output container to the flow event.1719

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 28 of 58

AliROOT Flow Package manual and documentation The FLOW team

29 // this container will be written to the output file1720

30 mgr ->ConnectOutput(taskFE ,2, coutputFEQA);1721
1722

Flow analysis tasks Now that the flow event task is connected to input data, the flow analysis tasks can be set up:1723

1724

1 // declare necessary pointers1725

2 AliAnalysisDataContainer *coutputQC [3];1726

3 AliAnalysisTaskQCumulants *taskQC [3];1727

41728

5 // the tasks will be created and added to the manager in a loop1729

6 for(Int_t i = 0; i < 3; i++) {1730

7 // create the flow analysis tasks1731

8 taskQC[i] = new AliAnalysisTaskQCumulants(Form("TaskQCumulants_n =%i", i+2));1732

9 // set thei triggers1733

10 taskQC[i]->SelectCollisionCandidates(AliVEvent ::kMB);1734

11 // and set the correct harmonic n1735

12 taskQC[i]->SetHarmonic(i+2);1736

131737

14 // connect the task to the analysis manager1738

15 mgr ->AddTask(taskQC[i]);1739

161740

17 // create and connect the output containers1741

18 TString outputQC = file;1742

19 // create a sub -folder in the output file for each flow analysis task ’s output1743

20 outputQC += Form(":QC_output_for_n =%i", i+2);1744

21 /// create the output containers1745

22 coutputQC[i] = mgr ->CreateContainer(1746

23 outputQC.Data(),1747

24 TList::Class (),1748

25 AliAnalysisManager :: kOutputContainer ,1749

26 outputQC);1750

27 // connect the output of the flow event task to the flow analysis task1751

28 mgr ->ConnectInput(taskQC[i], 0, coutputFE);1752

29 // and connect the output of the flow analysis task to the output container1753

30 // which will be written to the output file1754

31 mgr ->ConnectOutput(taskQC[i], 1, coutputQC[i]);1755

32 }1756
1757

Launching the analysis With this, the AddTask∗.C is concluded. The only thing that is left to do, is (from the run.C1758

macro) see if all tasks and containers are properly connected and initialized and launch the analysis locally:1759

1760

1 // check if we can initialize the manager1761

2 if(!mgr ->InitAnalysis ()) return;1762

3 // print the status of the manager to screen1763

4 mgr ->PrintStatus ();1764

5 // print to screen how the analysis is progressing1765

6 mgr ->SetUseProgressBar (1, 25);1766

7 // start the analysis locally , reading the events from the tchain1767

8 mgr ->StartAnalysis("local", chain);1768
1769

3.3 Flow analysis in ROOT: Using TTree’s and TNTuples1770

As stated at the beginning of this chapter, every flow analysis in the flow package starts by filling the flow event. The flow1771

event base class, AliFlowEventSimple, is a class in libPWGflowBase which has no dependencies other than some ROOT1772

libraries; the same is true for the implementation of the flow analysis methods. This means that when you do not need the1773

AliROOT interface for e.g. track and event selection, the flow package can be used by just invoking the libPWGflowBase.so1774

library in ROOTj. The steps that are necessary to use the flow package in a bare ROOT environment are similar to those1775

explained in chapter 2, with the exception that instead of generating events on-the-fly, we need to fill the flow event with1776

information from the source of data which we want to analyze. In the next two subsections we will take a look at how to1777

do a flow analysis on generic data in just ROOT. To start, pseudo-code of how to setup an analysis on a TTree will filled1778

with particles be given. This example can be used as a starting point for running the flow package on any kind of input1779

data. After this, we will work through an example of reading and analyzing STAR data. The last subsection of this chapter1780

will point you to a fully working starting point for doing flow analysis on TTree’s, which firstly converts data to a TTree1781

and after this reads the stored TTree from file and performs flow analysis in it in ROOT.1782

3.3.1 A custom class derived from AliFlowEventSimple1783

In this example, an analysis on a TTree is performed by deriving a class from the flow event class AliFlowEventSimple,1784

MyFlowEvent, which can read a specific input format (in this case a branchTTree!branch of a TTree) and fills the flow1785

jA makefile to compile the libPWGflowBase.so library from the command line will be added to $ALICE ROOT/PWGCF/FLOW/macros/ ...

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 29 of 58

AliROOT Flow Package manual and documentation The FLOW team

event from this input. Of course you can design your task in a different way, but in this section we will stick to that1786

example. Note that the following suggestions are all written in pseudo-code, so copy-pasting it will lead to nothing ...1787

Let’s start with writing an an event loop. In this example the assumption is made that you have a TTree with1788

events, called ‘myTree’, which contains a branch holding a TClonesArray of ‘myParticle’ objects, which contain kinematic1789

information. The ‘myParticle’ class could look a bit like1790

1791

1 class myParticle : public TObject1792

2 {1793

3 public:1794

4 myParticle(Float_t eta , Float_t phi , Float_t pt, Int_t charge) : fEta(eta), fPhi(phi), fpT(1795

pt), fCharge(charge) { }1796

5 ~myParticle () {}1797

6 virtual Double_t P() const { return fp; }1798

7 virtual Double_t Pt() const { return fpT; }1799

8 virtual Double_t Phi() const { return fPhi; }1800

9 virtual Double_t Eta() const { return fEta; }1801

10 virtual Int_t Charge () const { return fCharge; }1802

11 private:1803

12 Float_t fEta; // eta1804

13 Float_t fPhi; // phi1805

14 Float_t fpT; // pT1806

15 Int_t fCharge; // charge1807

16 ClassDef(myParticle , 1); // example class1808

17 };1809
1810

Note that the members of this class (pt, η, ϕ, charge) are all the information that an AliFlowTrackSimple needs to hold.1811

In the event loop, we’ll retrieve the track array from the TTree and pass it to your derived flow event class. As we1812

have seen in earlier examples, tracks in a flow event are classified as POI’s or RP’s via track cuts objects. We’ll initialize1813

these classes as well.1814

1815

1 // first , define a set of simple cuts (the kinematic cuts)1816

2 // which will define our poi and rp selection1817

3 AliFlowTrackSimpleCuts *cutsRP = new AliFlowTrackSimpleCuts ();1818

4 AliFlowTrackSimpleCuts *cutsPOI = new AliFlowTrackSimpleCuts ();1819

5 cutsPOI ->SetPtMin (0.2);1820

6 cutsPOI ->SetPtMax (2.0);1821

7 // get number of entries from your ttree1822

8 Int_t nEvents = myTree ->GetEntries ();1823

9 // loop over all entries1824

10 for(Int_t i = 0; i < nEvents; i++) {1825

11 // get the track array from the ttree1826

12 TClonesArray* particleArray = 0x0;1827

13 // get the branch address by name1828

14 myTree ->SetBranchAddress("myParticles", &particleArray);1829

15 // switch to the tree ’s i-th entry1830

16 myTree ->GetEntry(i);1831

17 // now we do some magic: with a dedicated inherited class1832

18 // we construct a flow event from your ttree1833

19 AliFlowEventSimple* flowEvent = new MyFlowEvent(particleArray , cutsPOI , cutsRP);1834

20 // and from here we know how to proceed: connect the flow event1835

21 // to the flow analysis classes , and do the analysis1836

22 qc->Make(flowEvent);1837

23 // memory management1838

24 delete flowEvent;1839

25 }1840

26 qc->Finish ();1841

27 }1842
1843

So what is ‘the magic’? This is filling your flow event from the TTree. As we have seen in the previous sections, filling1844

means that need to select our tracks, tag them as POI’s and RP’s, and add them to the flow event. Our derived class,1845

AliFlowEventSimple::MyFlowEvent will take care of this. A possible constructor for this class, which performs the ‘magic’,1846

could look like the following piece of pseudo-code:1847

1848

1 // class constructor of an example class which reads a ttree ,1849

2 // selects poi ’s and rp’s and fills a flow event.1850

3 // this class is derived from the flow event simple class1851

4 // and therefore can be passed to the flow analysis methods1852

51853

6 // we’ll feed to class with your custom particles ,1854

7 // so this include will be necessary1855

8 #include myParticle.h1856

91857

10 // this is the class constructor1858

11 MyFlowEvent :: MyFlowEvent(1859

12 // start with the input tracks1860

13 TClonesArray* particleArray ,1861

14 // and pass the poi and rp cuts1862

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 30 of 58

AliROOT Flow Package manual and documentation The FLOW team

15 const AliStarTrackCuts* cutsRP ,1863

16 const AliStarTrackCuts* cutsPOI) :1864

17 // derived from AliFlowEventSimple , initialized to hold a certain number of1865

18 // tracks1866

19 AliFlowEventSimple(particleArray ->GetEntries ())1867

20 {1868

21 // the next step will be filling the flow event1869

22 // with POI ’s and RP’s according to our1870

23 // POI and RP cuts1871

241872

25 for (Int_t i = 0; i < particleArray ->GetEntries (); i++)1873

26 {1874

27 // get a particle from the particle array1875

28 const myParticle* part = static_cast <myParticle*>particleArray ->At(i);1876

29 if (! myParticle) continue;1877

301878

31 // build flow track simple (for the flow event)1879

32 AliFlowTrackSimple* flowtrack = new AliFlowTrackSimple ();1880

33 // copy the kinematic information from the star track1881

34 flowtrack ->SetPhi(part ->Phi());1882

35 flowtrack ->SetEta(part ->Eta());1883

36 flowtrack ->SetPt(part ->Pt());1884

37 flowtrack ->SetCharge(part ->Charge ());1885

38 // see if the track is a reference track1886

39 if (cutsRP)1887

40 {1888

41 Bool_t pass = rpCuts ->PassesCuts(flowtrack);1889

42 flowtrack ->TagRP(pass); // tag RPs1890

43 if (pass) IncrementNumberOfPOIs (0);1891

44 }1892

45 // see if the track is a particle of interest1893

46 if (poiCuts)1894

47 {1895

48 flowtrack ->TagPOI(poiCuts ->PassesCuts(flowtrack));1896

49 }1897

50 // add the track to the flow event1898

51 AddTrack(flowtrack);1899

52 }1900

53 }1901
1902

That’s it! Following (variations on) these steps, you’ll be able to connect any type of input data to the flow package. Note1903

that compiling the scripts in which you define these steps will be much faster than running your code in the interpreter1904

mode of ROOT. The next subsection will show these steps in action in the for of a flow analysis on STAR data.1905

3.3.2 A realistic example: flow package analysis on STAR data1906

The following section will show you how to use non-ALICE data in a realistic example, using events from the STAR exper-1907

iment at RHIC. STAR data is stored in a TTree. To use the flow package for flow analysis on this data, the information1908

from the TTree needs to be converted into an AliFlowEventSimple. In the specific case of the STAR data, things are a bit1909

more complicated than in the pseudo-code example given in the previous section. Event- and track-level cuts still have1910

to be applied to the STAR data, therefore a reader class is written which reads data from file, applies track and event1911

cuts and converts the STAR data to ‘star flow events’. This reading is left to a dedicated class, AliStarEventReader,1912

which reads a TTree and for each event creates an AliStarEvent. The AliStarEvent is a derived class which in-1913

herits from AliFlowEventSimple (similar to the MyFlowEvent class from the example in the previous subsection). To1914

understand this process a bit better, we’ll take a look at a few code snippets from the relevant classes and macros1915

which are currently present in AliROOT. A macro which reads STAR data and performs a flow analysis can be found at1916

$ALICE ROOT/PWGCF/FLOW/macros/runStarFlowAnalysis.C.1917

1918

1 // connect the class which can read and understand your ttree to1919

2 // the input data1920

3 AliStarEventReader starReader(inputDataFiles) ;1921

4 // loop as long as there are events1922

5 while (starReader.GetNextEvent ()) // Get next event1923

6 {1924

7 // read a star event from the ttree1925

8 AliStarEvent* starEvent = starReader.GetEvent ();1926

9 // see if the event meets event cuts (of course these are1927

10 // specific for STAR analysis , whether or not your ttree would1928

11 // need such a cut is up to you1929

12 if (!starEventCuts ->PassesCuts(starEvent)) continue;1930

131931

14 // this is where flow package comes into play.1932

15 // at this moment , a star event has been read from a ttree ,1933

16 // and is stored as a ’AliStarEvent ’1934

17 // in the next step , we’ll create an AliFlowEventSimple from1935

18 // this star event using the AliFlowEventStar class , which is derived1936

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 31 of 58

AliROOT Flow Package manual and documentation The FLOW team

19 // from the AliFlowEventSimple class.1937

20 // as input , the AliFlowEventStar class receives the star event ,1938

21 // and a set of poi and rp cuts1939

22 AliFlowEventSimple* flowEvent = new AliFlowEventStar(starEvent ,rpCuts ,poiCuts); // make a flow1940

event from a star event (aka "the magic ")1941

23 // for the scalar product method , we need to tag subevents1942

24 flowEvent ->TagSubeventsInEta(minA , maxA , minB , maxB);1943

251944

26 qc->Make(flowEvent);1945

27 delete flowEvent;1946

28 }1947
1948

The most important piece of the code snippet printed here is the routine where the AliFlowEventSimple is formed from1949

the AliStarEvent. What happens in the AliFlowEventStar class is the following:1950

1951

1 // class constructor1952

2 AliFlowEventStar :: AliFlowEventStar(const AliStarEvent* starevent ,1953

3 const AliStarTrackCuts* rpCuts ,1954

4 const AliStarTrackCuts* poiCuts):1955

5 // derived from AliFlowEventSimple , initialized to hold a certain number of1956

6 // tracks1957

7 AliFlowEventSimple(starevent ->GetNumberOfTracks ())1958

8 {1959

9 // construct the flow event from the star event information1960

10 SetReferenceMultiplicity(starevent ->GetRefMult ());1961

11 // track loop1962

12 for (Int_t i=0; i<starevent ->GetNumberOfTracks (); i++)1963

13 {1964

14 // get star track from the star event1965

15 const AliStarTrack* startrack = starevent ->GetTrack(i);1966

16 if (! startrack) continue;1967

17 // build flow track simple (for the flow event)1968

18 AliFlowTrackSimple* flowtrack = new AliFlowTrackSimple ();1969

19 // copy the kinematic information from the star track1970

20 flowtrack ->SetPhi(startrack ->GetPhi ());1971

21 flowtrack ->SetEta(startrack ->GetEta ());1972

22 flowtrack ->SetPt(startrack ->GetPt());1973

23 flowtrack ->SetCharge(startrack ->GetCharge ());1974

24 // see if the track is a reference track1975

25 if (rpCuts)1976

26 {1977

27 Bool_t pass = rpCuts ->PassesCuts(startrack);1978

28 flowtrack ->TagRP(pass); // tag RPs1979

29 if (pass) IncrementNumberOfPOIs (0);1980

30 }1981

31 // see if the track is a particle of interest1982

32 if (poiCuts)1983

33 {1984

34 flowtrack ->TagPOI(poiCuts ->PassesCuts(startrack)); // tag POIs1985

35 }1986

36 // add the track to the flow event1987

37 AddTrack(flowtrack);1988

38 }1989

39 }1990
1991

3.3.3 Getting started yourself1992

To get started with flow analysis on TTree’s yourself, a set of example macros and classes is provided at1993

$ALICE ROOT/PWGCF/FLOW/Documentation/examples/manual/ttree. These classes and macros will guide you through1994

creating a TTree with data from ALICE events in the analysis framework, and performing a flow analysis on them using1995

only ROOT. The example is set up as follows:1996

• There are two macros (in macros folder)1997

– run: runs (in AliROOT) and fills a TTree with kinematic info from AliVEvent1998

– read: reads (in just ROOT) the TTree info and performs a flow analysis with the flow package1999

• There are two analysis classes2000

– AliAnalysisTaskTTreeFilter, an analysis task for AliROOT which converts input events to a TTree2001

– AliFlowEventSimpleFromTTree a task for ROOT, fills flow events with TTree input2002

• and lastly two helper classes which should serve as a starting point2003

– AliFlowTTreeEvent, a simple event class2004

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 32 of 58

AliROOT Flow Package manual and documentation The FLOW team

– AliFlowTTreeTrack, a simple track class2005

As these are helper classes designed to get the user started, they are not compiled by default. The run and read macro2006

will them compile on-the-fly.2007

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 33 of 58

AliROOT Flow Package manual and documentation The FLOW team

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 34 of 58

Chapter 42008

Methods2009

The flow package aims at providing the user with most of the known flow analysis methods. Detailed the-2010

oretical overview of the methods can be found in the following papers, which are included in the folder2011

$ALICE ROOT/PWGCF/FLOW/Documentation/otherdocs/2012

• Scalar Product Method2013

EventPlaneMethod/FlowMethodsPV.pdf2014

• Generating Function Cumulants2015

GFCumulants/Borghini GFCumulants PracticalGuide.pdf2016

• Q-vector Cumulant method2017

QCumulants/QCpaperdraft.pdf2018

• Lee-Yang Zero Method2019

LeeYangZeroes/Borghini LYZ PracticalGuide.pdf2020

• Lee-Yang Zero Method2021

LeeYangZeroesEP/LYZ RP.pdf2022

The structure of this chapter is as follows: of each of the available methods a short description is given in the theory2023

subsection (for more detailed information, see the papers listed above) followed by details which are specific to the2024

implementation in the subsection implementation. Caveats, possible issues, etc, are listed in the caveats subsections.2025

4.1 AliFlowAnalysisWithMCEventPlane2026

4.1.1 Theory2027

From the .cxx of the task:2028

2029

1 // Description : Maker to analyze Flow from the generated MC reaction plane.2030

2 // This class is used to get the real value of the flow2031

3 // to compare the other methods to when analysing simulated events.2032
2033

This method can be used to check what vn was generated in an on-the-fly flow study or using the2034

AliAnalysisTaskFlowEvent with afterburner.2035

4.1.2 Implementation2036

There is no specific information on the implementation here, for details the reader is referred to the source code.2037

4.2 AliFlowAnalysisWithQCumulants2038

4.2.1 Implementation2039

A how-to of the QC method in the flow-package is written by the author of the analysis software and is available on the2040

FLOW-PAG twiki page (https://twiki.cern.ch/twiki/bin/view/ALICE/FlowPackageHowto). This section is copied from2041

the twiki page (and may therefore overlap with other parts of this manual).2042

To get the first feeling how the FLOW package and QC output are organized, perhaps you can just trivially execute2043

one ’on-the-fly’ example2044

Essentially, you have to do two things:2045

https://twiki.cern.ch/twiki/bin/view/ALICE/FlowPackageHowto

AliROOT Flow Package manual and documentation The FLOW team

2046

1 cp $ALICE_ROOT/PWGCF/FLOW/macros/runFlowAnalysisOnTheFly.C .2047

2 aliroot runFlowAnalysisOnTheFly.C2048
2049

In the analysis on-the-fly particles are sampled from hardwired Fourier-like p.d.f, so input vn harmonics are completely2050

under control. Please have a look at the steering macro runFlowAnalysisOnTheFly.C and corresponding class AliFlow-2051

EventSimpleMakerOnTheFly.cxx in the FLOW package, which are easily written (no fancy C++ features in my code!),2052

and well documented.2053

If you have landed successfully, you will get an output AnalysisResults.root, where the results from each method are2054

structured in directories.2055

To make a size of the file lighter (which matters a lot during merging!), you may want not to use all the methods. You2056

can make your selection of the methods via:2057

2058

1 Bool_t MCEP = kTRUE; // Monte Carlo Event Plane2059

2 Bool_t SP = kTRUE; // Scalar Product (a.k.a ’flow analysis with eta gaps ’)2060

3 Bool_t GFC = kTRUE; // Generating Function Cumulants2061

4 Bool_t QC = kTRUE; // Q- cumulants2062

5 Bool_t FQD = kTRUE; // Fitted q- distribution2063

6 Bool_t LYZ1SUM = kTRUE; // Lee -Yang Zero (sum generating function), first pass over the data2064

7 Bool_t LYZ1PROD = kTRUE; // Lee -Yang Zero (product generating function), first pass over the data2065

8 Bool_t LYZ2SUM = kFALSE; // Lee -Yang Zero (sum generating function), second pass over the data2066

9 Bool_t LYZ2PROD = kFALSE; // Lee -Yang Zero (product generating function), second pass over the data2067

10 Bool_t LYZEP = kFALSE; // Lee -Yang Zero Event Plane2068

11 Bool_t MH = kFALSE; // Mixed Harmonics (used for strong parity violation studies)2069

12 Bool_t NL = kFALSE; // Nested Loops (neeed for debugging , only for developers)2070
2071

Next important remark, if you want to browse through AnalysisResults.root, make sure that in AliROOT prompt you2072

have loaded the FLOW library:2073

2074

1 root [0] gSystem ->Load("libPWGflowBase");2075
2076

In the AnalysisResults.root, the QC output is stored in ”outputQCanalysis”. Just browse there, browse in ”cobjQC”, and2077

you will see the directory structure. ”Integrated Flow” ⇒ contains all results needed for reference flow. Browse in, and2078

explore the directory (in fact, TList) ”Results”. The names of the histos should be self-explanatory; ”Differential Flow”2079

⇒ browse further into ”Results”, and you will find a bunch of things that you can explore. For instance, in the directory2080

”Differential Q-cumulants (POI,pT)” you will find histos holding differential QC{2} vs pt, QC{4} vs pT , etc. On the other2081

hand, the flow estimates themselves, namely differential vn{2} vs pt, vn{4} vs pt you can fetch from TList ”Differential2082

Flow (POI,pT)” I hope that the names for all other things you might need are self-explanatory. You configure QC method2083

in the steering macro via setters:2084

2085

1 qc->SetHarmonic (2);2086

2 qc->SetCalculateDiffFlow(kTRUE);2087

3 qc->SetCalculate2DDiffFlow(kFALSE); // vs (pt ,eta)2088

4 qc->SetApplyCorrectionForNUA(kFALSE);2089

5 qc->SetFillMultipleControlHistograms(kFALSE);2090

6 qc->SetMultiplicityWeight("combinations"); // default (other supported options are "unit" and "2091

multiplicity ")2092

7 qc->SetCalculateCumulantsVsM(kFALSE);2093

8 qc->SetCalculateAllCorrelationsVsM(kFALSE); // calculate all correlations in mixed harmonics "vs M"2094

9 qc->SetnBinsMult (10000);2095

10 qc->SetMinMult (0);2096

11 qc->SetMaxMult (10000);2097

12 qc->SetBookOnlyBasicCCH(kFALSE); // book only basic common control histograms2098

13 qc->SetCalculateDiffFlowVsEta(kTRUE); // if you set kFALSE only differential flow vs pt is2099

calculated2100

14 qc->SetCalculateMixedHarmonics(kFALSE); // calculate all multi -partice mixed -harmonics correlators2101
2102

You can make QC output lighter by setting2103

2104

1 qc->SetBookOnlyBasicCCH(kTRUE);2105
2106

(to book only basic control histograms, and disabling lot of 2D beasts), and2107

2108

1 qc->SetCalculateDiffFlowVsEta(kFALSE);2109
2110

(if not interested in differential flow vs eta ⇒ this will make the final output smaller) In the ”cobjQC” you might also2111

consider ”AliFlowCommonHistQC” to be useful thing, which contains a lot of trivial but still important control histograms2112

(eg multiplicity distribution of RPs, POIs, etc). I think this is the best and fastest way for you to get familiar with the2113

FLOW package =¿ once you send the QC code over the real data, you get the output organized in the very same way. I2114

will send you shortly an example set of macros which get be used for the analysis on Grid over the real data. Differential2115

QC{2} and QC{4} implementation is generic. You can tag as RP and POI whatever you want, and it will give you2116

results automatically decoupled from any autocorrelation effects. For this reason, it is important that if you have certain2117

particles which is classified both as RP and POI, to be explicitly tagged also as RPs and POI once you are building the2118

”flow event”. The basic feature in the FLOW package is that from whichever input you start, we have to build the same2119

4.2. ALIFLOWANALYSISWITHQCUMULANTS Page 36 of 58

AliROOT Flow Package manual and documentation The FLOW team

intermediate step called ”flow event”, with which than we feed all methods (SP, QC, etc) in the very same way. To see2120

what ”flow event” does, and what does it need as an input, you may want to consult task AliAnalysisTaskFlowEvent.cxx2121

and classes needed there-in.2122

4.3 AliFlowAnalysisWithScalarProduct2123

4.3.1 Theory2124

2125

1 // ///2126

2 // Description : Maker to analyze Flow from the Event Plane method.2127

3 // Adaptation based on Scalar Product2128

4 // authors: Naomi van del Kolk2129

5 // Ante Bilandzic2130

6 // mods: Carlos Perez2131

7 // ///2132
2133

The scalar product method2134

The scalar product method estimates vn directly from Q vectors:2135

vn =
〈u·Q〉√
〈QA·QB〉

(4.3.1.1)

The denominator of equation 4.3.1.1 consists of two sub-event Q vectors, QA and QB . Sub-events are built from RP’s.2136

These sub-event vectors are in the flow package defined as coming from different η ranges.2137

To setup the different η ranges, one can use the AliAnalysisTaskFlowEvent directly by calling2138

2139

1 AliAnalysisTaskFlowEvent :: void SetSubeventEtaRange(Double_t minA , Double_t maxA , Double_t minB ,2140

Double_t maxB)2141

2 {this ->fMinA = minA; this ->fMaxA = maxA; this ->fMinB = minB; this ->fMaxB = maxB; }2142
2143

Sub-events can be re-tagged using the filter task, which will be described in section 5. Internally, the tagging is performed2144

by the function2145

2146

1 AliFlowEventSimple :: TagSubEventsInEta(Double_t etaMinA , Double_t etaMaxA , Double_t etaMinB , Double_t2147

etaMaxB);2148
2149

which should be called when you fill your flow events ‘by-hand’ and want to tag sub-events.2150

The numerator of equation 4.3.1.1 is the correlator of the POI Q vector (u) and a sub-event Q vector which is generally2151

referred to as the reference detector. In the flow package, this sub-event Q vector is called ‘total q-vector’. The user of2152

the task needs to specify what part of the RP selection (that is, which sub-events) are used as total Q vector. Passing2153

this information to the scalar product task is done in the following way2154

2155

1 AliAnalysisTaskScalarProduct :: void SetTotalQvector(const char *tqv) {*this ->fTotalQvector = tqv ;};2156
2157

where the following options are available2158

2159

1 TString *fTotalQvector; // total Q-vector is: "QaQb" (means Qa+Qb), "Qa" or "Qb"2160
2161

In general, one has to be a bit careful with setting up sub-events. Make sure that the combination of reference detector2162

and sub-events is mathematically sound! An example of how to deal with complex setups is given in the VZERO scalar2163

product subsection (4.3.1).2164

VZERO scalar product2165

The VZEROA and VZEROC detectors have different η coverage w.r.t the TPC, so to evaluate v2 from VZERO-SP, do2166

vn =

√
〈ui·QA〉√
〈QA·QB〉

· 〈uj ·QB〉√
〈QA·QB〉

(4.3.1.2)

• QA and QB are the VZEROC and VZEROA RP’s2167

What is up for debate is the following: how do we defined the POI’s?2168

• Take u = full TPC = uj = ui, or do uj = η < 0, ui = η > 0 ?2169

In the elliptic flow analysis of identified particles, majority vote has yielded the following:2170

• u = full TPC = uj = ui2171

4.3. ALIFLOWANALYSISWITHSCALARPRODUCT Page 37 of 58

AliROOT Flow Package manual and documentation The FLOW team

so that in the end the published points were obtained using2172

vn =

√
〈u·QA〉√
〈QA·QB〉

· 〈u·QB〉√
〈QA·QB〉

(4.3.1.3)

Note that this requires running two scalar product tasks in the flow package (one for each reference detector) the output2173

v2 of which was in turn multiplied point-by-point in pt.2174

Extension to Event Plane method2175

By normalizing the Q vectors, the scalar product method is essentially reduced to the ‘classic’ event plane method.2176

Normalization of the Q vectors can be set using2177

2178

1 AliAnalysisTaskScalarProduct :: SetBehaveAsEP ()2179
2180

4.4 AliFlowAnalysisWithCumulants2181

4.4.1 Theory2182

2183

1 /* **2184

2 * Flow analysis with cumulants. In this class *2185

3 * cumulants are calculated by making use of the *2186

4 * formalism of generating functions proposed by *2187

5 * Ollitrault et al. *2188

6 * *2189

7 * Author: Ante Bilandzic *2190

8 ** */2191
2192

4.4.2 Implementation2193

There is no specific information on the implementation here, for details the reader is referred to the source code. Do not2194

confuse this method with the often used Q-cumulant method!2195

4.5 AliFlowAnalysisWithMixedHarmonics2196

4.5.1 Theory2197

There is no specific information on the theory here, for details the reader is referred to the source code.2198

4.5.2 Implementation2199

There is no specific information on the implementation here, for details the reader is referred to the source code.2200

4.6 AliFlowAnalysisWithFittingQDistribution2201

4.6.1 Theory2202

2203

1 /* *******************************2204

2 * estimating reference flow by *2205

3 * fitting q- distribution *2206

4 * *2207

5 * author: Ante Bilandzic *2208

6 * *2209

7 * based on the macro written *2210

8 * by Sergei Voloshin *2211

9 ****************************** */2212
2213

4.6.2 Implementation2214

There is no specific information on the implementation here, for details the reader is referred to the source code.2215

4.4. ALIFLOWANALYSISWITHCUMULANTS Page 38 of 58

AliROOT Flow Package manual and documentation The FLOW team

4.7 AliFlowAnalysisWithMultiparticleCorrelations2216

4.7.1 Theory2217

2218

1 /* ***2219

2 * In this class azimuthal correlators in mixed harmonics *2220

3 * are implemented in terms of Q-vectors. This approach *2221

4 * doesn ’t require evaluation of nested loops. This class *2222

5 * can be used to: *2223

6 * *2224

7 * a) Extract subdominant harmonics (like v1 and v4); *2225

8 * b) Study flow of two -particle resonances ; *2226

9 * c) Study strong parity violation . *2227

10 * *2228

11 * Author: Ante Bilandzic *2229

12 ** */2230
2231

4.7.2 Implementation2232

There is no specific information on the implementation here, for details the reader is referred to the source code.2233

4.8 AliFlowAnalysisWithLeeYangZeros2234

4.8.1 Theory2235

2236

1 // //2237

2 // Description : Maker to analyze Flow by the LeeYangZeros method2238

3 // One needs to do two runs over the data;2239

4 // First to calculate the integrated flow2240

5 // and in the second to calculate the differential flow2241

6 // Author: Naomi van der Kolk2242

7 // //2243
2244

4.8.2 Implementation2245

There is no specific information on the implementation here, for details the reader is referred to the source code. This2246

method requires two passes over the data. You can take a look at the on-the-fly analysis example macro to see how these2247

two steps can be set up:2248

2249

1 Bool_t LYZ1SUM = kTRUE; // Lee -Yang Zero (sum generating function), first pass over the data2250

2 Bool_t LYZ1PROD = kTRUE; // Lee -Yang Zero (product generating function), first pass over the data2251

3 Bool_t LYZ2SUM = kFALSE; // Lee -Yang Zero (sum generating function), second pass over the data2252

4 Bool_t LYZ2PROD = kFALSE; // Lee -Yang Zero (product generating function), second pass over the data2253
2254

4.9 AliFlowAnalysisWithLYZEventPlane2255

4.9.1 Theory2256

2257

1 // AliFlowAnalysisWithLYZEventPlane :2258

2 // Class to do flow analysis with the event plane2259

3 // from the LYZ method2260
2261

4.9.2 Implementation2262

There is no specific information on the implementation here, for details the reader is referred to the source code.2263

4.10 Developing your own task2264

Of course this list of flow analysis methods could be extended. Adding a new flow analysis method means developing two2265

classes: a ‘base’ class where the method is implemented and a ‘tasks’ class to interface with the analysis manager. As a2266

starting point, ‘templates’ have been developed, which are just empty base and task classes in the flow package. You can2267

find these at2268

base $ALICE ROOT/PWG/FLOW/Base/AliFlowAnalysisTemplate.cxx (h)2269

tasks $ALICE ROOT/PWG/FLOW/Tasks/AliAnalysisTaskTemplate.cxx (h)2270

4.7. ALIFLOWANALYSISWITHMULTIPARTICLECORRELATIONS Page 39 of 58

AliROOT Flow Package manual and documentation The FLOW team

4.10. DEVELOPING YOUR OWN TASK Page 40 of 58

Chapter 52271

More exotic uses2272

This chapter deals with more ‘exotic’ uses of the flow package.2273

5.1 Flow analysis in the LEGO framework: re-tagging your POI and RP2274

selections2275

To save resources, it is beneficial to construct analysis trains in which just one flow event is created which is passed2276

to multiple analysis tasks. This can be inconvenient when the different analysis tasks require different POI and RP2277

selectionsa. To overcome this, a filter task, AliAnalysisTaskFilterFE, has been developed, which can run between the2278

AliAnalysisTaskFlowEvent and a specific flow analysis task, and can re-tag POI’s and RP’s. The re-tagging is performed2279

by looping over all tracks in an event and checking whether or not these tracks pass a selection of simple cuts. The filter2280

task can only re-tag existing tracks in the flow event, it cannot add new tracks to the flow event. To illustrate the2281

functionality of the filtertask, we’ll take the example of section 3.2.7 but perform the analysis using different |η| windows2282

for RP’s.2283

The first step towards filtering is setting up the filtering criteria. These are defined using the AliFlowTrackSimpleCuts2284

object:2285

2286

1 // create the simple cuts object2287

2 AliFlowTrackSimpleCuts* filterRP = new AliFlowTrackSimpleCuts("filterRP");2288

3 // specify a rapidity interval2289

4 filterRP ->SetEtaMin (-0.4);2290

5 filterRP ->SetEtaMax (0.4);2291
2292

All available filtering options in AliFlowTrackSimpleCuts are:2293

2294

1 // setters2295

2 void SetPtMax(Double_t max) {this ->fPtMax = max; fCutPt=kTRUE; }2296

3 void SetPtMin(Double_t min) {this ->fPtMin = min; fCutPt=kTRUE; }2297

4 void SetEtaMax(Double_t max) {this ->fEtaMax = max; fCutEta=kTRUE; }2298

5 void SetEtaMin(Double_t min) {this ->fEtaMin = min; fCutEta=kTRUE; }2299

6 void SetEtaGap(Double_t min , Double_t max)2300

7 {fEtaGapMin = min , fEtaGapMax = max , fCutEtaGap = kTRUE; }2301

8 void SetPhiMax(Double_t max) {this ->fPhiMax = max; fCutPhi=kTRUE; }2302

9 void SetPhiMin(Double_t min) {this ->fPhiMin = min; fCutPhi=kTRUE; }2303

10 void SetPID(Int_t pid) {this ->fPID = pid; fCutPID=kTRUE; }2304

11 void SetCharge(Int_t c) {this ->fCharge = c; fCutCharge=kTRUE; }2305

12 void SetMassMax(Double_t max) {this ->fMassMax = max; fCutMass=kTRUE; }2306

13 void SetMassMin(Double_t min) {this ->fMassMin = min; fCutMass=kTRUE; }2307
2308

All cuts are disabled by default.2309

The second step is constructing the filter class object itself:2310

2311

1 // create the filter task object. note that the desired cuts have to be passed2312

2 // in the constructor , the 0x0 that is passed means that POI ’s will not be filtered2313

3 AliAnalysisTaskFilterFE* filterTask = AliAnalysisTaskFilterFE("filter task", filterRP , 0x0);2314
2315

Sub-events can also be re-defined using the filter task. To do so, call2316

2317

1 AliAnalysisTaskFilterFE :: SetSubeventEtaRange(Double_t minA , Double_t maxA , Double_t minB , Double_t2318

maxB)2319

2 {this ->fMinA = minA; this ->fMaxA = maxA; this ->fMinB = minB; this ->fMaxB = maxB; }2320
2321

If yo use the filter task for a flow analysis method which uses sub-events, make sure that you set the correct η ranges!2322

Otherwise, the default values will be used, which may (or may not) be correct for your analysis.2323

The UserExec() of the filter task is as follows:2324

aA notable example of this is doing an invariant mass analysis, which will briefly be touched in the next section.

AliROOT Flow Package manual and documentation The FLOW team

2325

1 void AliAnalysisTaskFilterFE :: UserExec(Option_t *)2326

2 {2327

3 // Main loop2328

4 fFlowEvent = dynamic_cast <AliFlowEventSimple *>(GetInputData (0)); // from TaskSE2329

5 if (! fFlowEvent) return;2330

6 if(fCutsRFP) fFlowEvent ->TagRP(fCutsRFP);2331

7 if(fCutsPOI) fFlowEvent ->TagPOI(fCutsPOI);2332

8 fFlowEvent ->TagSubeventsInEta(fMinA ,fMaxA ,fMinB ,fMaxB);2333

9 PostData(1, fFlowEvent);2334

10 }2335
2336

Now that the filter task has been configured, it needs to be added to the analysis chain. As stated, the task needs to2337

be put in between the flow event task and the flow analysis method.2338

2339

1 // get the analysis manager2340

2 AliAnalysisManager *mgr = AliAnalysisManager :: GetAnalysisManager ();2341

3 // add the fitler task to the manager (should be done before the2342

4 // analysis task is added !)2343

5 mgr ->AddTask(filterTask);2344

6 // create a temporary container which the filter task will pass to the2345

7 // analysis task2346

8 AliAnalysisDataContainer *coutputFilter = mgr ->CreateContainer(2347

9 "FilterContainer",2348

10 AliFlowEventSimple ::Class (),2349

11 AliAnalysisManager :: kExchangeContainer);2350

12 // connect the output of the flow analysis task as input to the filter task2351

13 mgr ->ConnectInput(filterTask , 0, coutputFE);2352

14 // and connect the filter container as output2353

15 mgr ->ConnectOutput(filterTask , 1, coutputFilter);2354

16 // pass the filter task output to the analysis method2355

17 // (this is assuming you already have setup the analysis task as2356

18 // explained in the example in section 3.4.32357

19 mgr ->ConnectInput(taskQC[i], 0, coutputFilter);2358
2359

5.1.1 Caveats2360

Note that the filter task will change the tags of the flow tracks in the flow event. Every analysis task that runs after the2361

filter task in an analysis train will therefore be affected by the re-taggging that is performed by the filter task. Often it2362

can be useful to run multiple filter tasks with different configurations in an analysis train.2363

5.2 Flow analysis of resonances2364

One notable case in which the filter task is useful, is the flow analysis of rapidly decaying particles via the invariant mass2365

method. If a particle decays to daughter particles, e.g.2366

Λ −→ π + p (5.2.0.1)

one can do an invariant mass flow analysis, which basically comprises2367

1. Take all the π + p pairs in an event and plot their invariant mass2368

2. Extract the signal yield NS and total yield NT from this distribution2369

3. Measure v2 of all π + p pairs2370

Under the assumption that signal and background flow are additive, their contributions can be disentangled by solving2371

vT2 (minv) = vS2
NS

NS +NB
(minv) + vB2 (minv)

NB

NS +NB
(minv) (5.2.0.2)

for vS2 . To do so, vT2 (minv) must be measured. This can be done by measuring the v2 of all possible π +2372

p pairs in different invariant mass intervals. When a flow event is filled by-hand with π + p pairs, the fil-2373

ter task can then be in turn be used to split the flow event into invariant mass intervals and perform flow2374

analysis on those separately, thereby extracting all necessary information. Examples of such analyses are e.g.2375

the -meson flow analysis ($ALICE ROOT/PWG/FLOW/Tasks/AliAnalylsisTaskPhiFlow) or the Λ and K0 flow task2376

($ALICE ROOT/PWG/FLOW/Tasks/AliAnalysisTaskFlowStrange).2377

5.2. FLOW ANALYSIS OF RESONANCES Page 42 of 58

AliROOT Flow Package manual and documentation The FLOW team

5.3 Non-uniform acceptance correction2378

In practice a detector can have inefficiencies which result in a non-uniform acceptance which might bias the measured vn2379

signal. One way of compensating for this is using track weights (as explained in section 3.2.4. Another way of correcting2380

for these effects is by adjusting the Q vectors based on the assumption that the underlying Q vector distribution itself is2381

flat.2382

By default all necessary information to perform such a correction is stored when running a flow analysis task. The2383

actual correction itself is performed when Finish() is called, depending whether or not the flag to perform the correction2384

is set to kTRUE.2385

The effects of the acceptance correction can always be checked by running the redoFinish.C macro, by toggling the2386

flag2387

2388

1 Bool_t bApplyCorrectionForNUA = kFALSE; // apply correction for non -uniform acceptance2389
2390

to either false or true.2391

5.3.1 Caveats2392

The non-uniform acceptance correction is based on the assumption that the physical Q vector distribution in your event2393

sample is flat. This works for minimum bias events, but might not work for e.g. triggered events or for event samples2394

where the detector efficiency varies event-by-event. Details pertaining to the implementation can be found in the Finish()2395

methods of the various flow analysis tasks.2396

5.3. NON-UNIFORM ACCEPTANCE CORRECTION Page 43 of 58

AliROOT Flow Package manual and documentation The FLOW team

5.3. NON-UNIFORM ACCEPTANCE CORRECTION Page 44 of 58

Chapter 62397

Summary2398

After reading the documentation, you should have a general feeling of how the flow package is organized and be able to2399

do a standard flow analysis. This however is just where the fun begins! Connect your classes, write a new method, add2400

new routines · · · and publish your paper!2401

AliROOT Flow Package manual and documentation The FLOW team

Page 46 of 58

Chapter 72402

Bibliography2403

[1] J. Y. Ollitrault, Phys. Rev. D 46 (1992) 229.2404

[2] P. Danielewicz, Nucl. Phys. A 661 (1999) 82.2405

[3] D. H. Rischke, Nucl. Phys. A 610 (1996) 88C.2406

[4] J. Y. Ollitrault, Nucl. Phys. A 638 (1998) 195.2407

[5] S. Voloshin and Y. Zhang, Z. Phys. C 70 (1996) 665.2408

[6] K. H. Ackermann et al. [STAR Collaboration], Phys. Rev. Lett. 86 (2001) 4022409

[7] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 87 (2001) 1823012410

[8] T.D. Lee et al., New Discoveries at RHIC: Case for the Strongly Interacting Quark-Gluon Plasma. Contributions2411

from the RBRC Workshop held May 14-15, 2004. Nucl. Phys. A 750 (2005) 1-1712412

AliROOT Flow Package manual and documentation The FLOW team

Page 48 of 58

Appendix A2413

About this document2414

A.1 Specifics and webpage2415

Typeset using LATEX, converted to HTML using pandoc via pandoc -r latex -w html -S -s -m2416

-N --toc --highlight-style tango --indented-code-classes numberLines --self-contained -o2417

FlowPackageManual.html FlowPackageManual.tex2418

AliROOT Flow Package manual and documentation The FLOW team

A.1. SPECIFICS AND WEBPAGE Page 50 of 58

Appendix B2419

Flow analysis ‘on-the-fly’2420

The original ‘on-the-fly’ manual by Ante Bilandžić is reprinted here in this appendix2421

B.1 Introduction2422

Flow analysis ‘on the fly’ is a feature in the ALICE flow packagea which can serve both as a demo for the potential users2423

of the package and as an important debugging tool for the core flow code developers. Underlying idea is very simple: To2424

simulate events of interest for flow analysis (in what follows we shall refer to such events as flow events) in the computers2425

memory and than pass them ‘on the fly’ to the implemented methods for flow analysis. Benefits of this approach include:2426

1. No need to store data on disk (storing only the output files with the final results and not the simulated events2427

themselves);2428

2. Enormous gain in statistics;2429

3. Speed (no need to open the files from disk to read the events);2430

4. Random generators initialized with the same and random seed (if the same seed is used simulations are reproducible) .2431

In Section B.2 we indicate how the user can immediately in a few simple steps start flow analysis ‘on the fly’ with the2432

default settings both within AliRoot and Root. In Section B.3 we explain how the user can modify the default settings2433

and create ‘on the fly’ different flow events by following the guidance of his own taste.2434

B.2 Kickstart2435

We divide the potential users of ALICE flow package into two groups, namely the users which are using AliRoot (default)2436

and the users which are using only Root.2437

B.2.1 AliRoot users2438

To run flow analysis ‘on the fly’ with the default settings within AliRoot and to see the final results obtained from various2439

implemented methods for flow analysis, the user should execute the following steps:2440

Step 1: Turn off the lights ...2441

Step 2: ... take a deep breath ...2442

Step 3: ... start to copy macros runFlowAnalysisOnTheFly.C and2443

compareFlowResults.C from AliRoot/PWG2/FLOW/macros to your favorite directory slowly.2444

Step 4: Once you have copied those macros in your favorite directory simply go to that directory and type2445

aliroot runFlowAnalysisOnTheFly.C2446

Step 5: If you have a healthy AliRoot version the flow analysis ‘on the fly’ will start. Once it is finished in your2447

directory you should have the following files:2448

ahttp://alisoft.cern.ch/viewvc/trunk/PWG2/FLOW/?root=AliRoot .

AliROOT Flow Package manual and documentation The FLOW team

runFlowAnalysisOnTheFly.C

compareFlowResults.C

outputLYZ1PRODanalysis.root

outputQCanalysis.root

outputFQDanalysis.root

outputLYZ1SUManalysis.root

outputSPanalysis.root

outputGFCanalysis.root

outputMCEPanalysis.root

2449

Each implemented method for flow analysis produced its own output file holding various output histograms. The final2450

flow results are stored in the common histogram structure implemented in the class AliFlowCommonHistResults.2451

Step 6: To access and compare those final flow results automatically there is a dedicated macro available, so execute2452

> aliroot

root [0] .x compareFlowResults.C("")

2453

Step 7: If you want to rerun and get larger statistics modify2454

Int t nEvts=4402455

in the macro runFlowAnalysisOnTheFly.C .2456

Step 8: Have fun!2457

In the next section we outline the steps for the Root users.2458

B.2.2 Root users2459

To be written at Nikhef...2460

B.3 Making your own flow events2461

This section is common both for AliRoot and Roor users. In this section we outline the procedure the user should2462

follow in order to simulate ‘on the fly’ the events with his own settings by making use of the available setters.2463

Those setters are implemented in the class AliFlowEventSimpleMakerOnTheFly and user shall use them in the macro2464

runFlowAnalysisOnTheFly.C.2465

B.3.1 pT spectra2466

Transverse momentum of particles is sampled from the predefined Boltzmann distribution2467

dN

dpT
= MpT exp

(
−
√
m2 + p2

T

T

)
, (B.3.1.1)

where M is the multiplicity of the event, T is “temperature” and m is the mass of the particle. By increasing the parameter2468

T one is increasing the number of high pT particles and this parameter is the same for all events. On the other hand,2469

multiplicity M will in general vary from event to event. In the macro runFlowAnalysisOnTheFly.C one can modify2470

distribution (B.3.1.1) by using setter for “temperature” T and various setters for multiplicity M .2471

Example: If one wants to increase/decrease the number of high pT particles, one should modify the line2472

Double t dTemperatureOfRP = 0.44;2473

Examples of pT spectra for two different values of T are shown in Figures B.1 and B.2.2474

What is shown in Figures B.1 and B.2 is only one example of the so called common control histograms. They are the2475

histograms organized in the same structure and implemented in the class AliFlowCommonHist. In output file of each2476

method one can access those histograms with TBrowser.2477

When it comes to multiplicity M , one has a choice to sample it event-by-event from two different distributions before2478

plugging its value into Eq. (B.3.1.1) which than will be used to sample transverse momenta of M particles in that event.2479

Example: If one wants to sample multiplicity event-by-event from Gaussian distribution with mean 500 and spread 10,2480

one should have the following relevant settings2481

B.3. MAKING YOUR OWN FLOW EVENTS Page 52 of 58

AliROOT Flow Package manual and documentation The FLOW team

 (GeV/c) for RP selectiontP
0 1 2 3 4 5

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure B.1: T = 0.2 GeV/c .

 (GeV/c) for RP selectiontP
0 1 2 3 4 5

C
o

u
n

ts

0

500

1000

1500

2000

2500

3000

3500

Figure B.2: T = 0.5 GeV/c .

Multiplicity for RP selection
460 470 480 490 500 510 520 530

C
o

u
n

ts

0

50

100

150

200

250

300

350

400

Figure B.3: Gaussian multiplicity distribution.

Multiplicity for RP selection
400 450 500 550 600

C
o

u
n

ts
0

10

20

30

40

50

60

70

Figure B.4: Uniform multiplicity distribution.

Bool t bMultDistrOfRPsIsGauss = kTRUE;

Int t iMultiplicityOfRP = 500;

Double t dMultiplicitySpreadOfRP = 10;

2482

Example plot for multiplicity distribution with these settings is shown in Figure B.3.2483

Another way to sample multiplicity event-by-event is by using uniform distribution.2484

Example: If one wants to sample multiplicity event-by-event from uniform distribution in the interval [400,600], one2485

must have the following relevant settings2486

Bool t bMultDistrOfRPsIsGauss = kFALSE;

Int t iMinMultOfRP = 400;

Int t iMaxMultOfRP = 600;

2487

Example plot for multiplicity distribution with these settings is shown in Figure B.4.2488

One can also fix multiplicity to be the same for each event.2489

Example: If one wants to have the same fixed multiplicity of 500 for each event one can use the following settings:2490

Bool t bMultDistrOfRPsIsGauss = kTRUE;

Int t iMultiplicityOfRP = 500;

Double t dMultiplicitySpreadOfRP = 0;

2491

These are all manipulations available at the moment with pT spectra given in Eq. (B.3.1.1).2492

B.3.2 Azimuthal distribution2493

If the anisotropic flow exists, it will manifest itself in the anisotropic azimuthal distribution of outgoing particles measured2494

with respect to the reaction plane:2495

E
d3N

d3~p
=

1

2π

d2N

pT dpT dη

(
1 +

∞∑
n=1

2vn(pT , η) cos (n (φ−ΨRP))

)
. (B.3.2.1)

B.3. MAKING YOUR OWN FLOW EVENTS Page 53 of 58

AliROOT Flow Package manual and documentation The FLOW team

Flow harmonics vn quantify anisotropic flow and are in general function of transverse momentum pT and pseudorapidity2496

η. Orientation of reaction plane ΨRP fluctuates randomly event-by-event and cannot be measured directly. In the2497

implementation ‘on the fly’ reaction plane is sampled uniformly event-by-event from the interval [0o, 360o]. When it comes2498

to flow harmonics, there are two modes which we outline next.2499

Constant flow harmonics2500

In this mode all flow harmonics are treated as a constant, event-wise quantities, meaning that for a particular event2501

azimuthal angles of all particles will be sampled from the same azimuthal distribution in which flow harmonics appear2502

just as fixed parameters. The implemented most general azimuthal distribution for this mode reads2503

dN

dφ
= 1 + 2v1 cos(φ−ΨRP) + 2v2 cos(2(φ−ΨRP)) + 2v4 cos(4(φ−ΨRP)) . (B.3.2.2)

In the macro runFlowAnalysisOnTheFly.C one can use the dedicated setters and have handle on the flow harmonics v1,2504

v2 and v4. The most important harmonic is v2, the so called elliptic flow, so we start with it first.2505

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized only with constant2506

elliptic flow of 5%, namely2507

dN

dφ
= 1 + 2 · 0.05 · cos(2(φ−ΨRP)) , (B.3.2.3)

then one should use the following settings2508

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.0;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

2509

In this mode the flow coefficients are constant for all particles within particular event, but still the flow coefficients can2510

fluctuate event-by-event.2511

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized only with elliptic2512

flow which fluctuates event-by-event according to Gaussian distribution with mean 5% and spread 1%, than one should use2513

the following settings2514

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.01;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

2515

On can also study uniform flow fluctuations.2516

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized only with elliptic2517

flow which fluctuates event-by-event according to uniform distribution in interval [4%,6%], than one should use the following2518

settings2519

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kFALSE;

Double t dMinV2RP = 0.04;

Double t dMinV2RP = 0.06;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

2520

B.3. MAKING YOUR OWN FLOW EVENTS Page 54 of 58

AliROOT Flow Package manual and documentation The FLOW team

T
p

0 1 2 3 4 5 6 7 8 9 10

2v

0

0.05

0.1

0.15

0.2

0.25

Figure B.5: pT dependent elliptic flow.

It is of course possible to simulate simultanously nonvanishing v1, v2 and v4.2521

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized by harmonics2522

v1 = 2%, v2 = 5% and v4 = 1%, namely2523

dN

dφ
= 1 + 2 · 0.02 · cos(φ−ΨRP) + 2 · 0.05 · cos(2(φ−ΨRP))

+ 2 · 0.01 · cos(4(φ−ΨRP)) (B.3.2.4)

then one should use the following settings2524

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.0;

Double t dV1RP = 0.02;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.01;

Double t dV4SpreadRP = 0.0;

2525

In the next section we outline the procedure for simulating flow events with pT dependent flow harmonics.2526

pT dependent flow harmonics2527

In this mode the functional dependence of flow harmonics on transverse momentum is treated as an event-wise quantity,2528

while within the particular event the flow harmonics will change from particle to particle depending on its transverse2529

momentum. The implemented azimuthal distribution for this case reads2530

dN

dφ
= 1 + 2v2(pT) cos(2(φ−ΨRP)) , (B.3.2.5)

and the functional dependence v2(pT) is implemented as follows:2531

v2(pT) =

{
vmax(pT /pcutoff) pT < pcutoff ,
vmax pT ≥ pcutoff .

(B.3.2.6)

In the macro runFlowAnalysisOnTheFly.C one can have the handle on the parameters vmax and pcutoff .2532

Example: If one wants to set vmax = 0.2 and pcutoff = 2 GeV/c, than one should use the following settings:2533

Bool t bConstantHarmonics = kFALSE;

Double t dV2RPMax = 0.20;

Double t dPtCutOff = 2.0;

2534

Example plot is given in Figure B.5.2535

(Remark: Add further explanation here.)2536

B.3. MAKING YOUR OWN FLOW EVENTS Page 55 of 58

AliROOT Flow Package manual and documentation The FLOW team

 for RP selectionφ
0 1 2 3 4 5 6

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

Figure B.6: Non-uniform acceptance.

 for RP selectionφ
0 1 2 3 4 5 6

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

Figure B.7: Non-uniform acceptance.

B.3.3 Nonflow2537

One can simply simulate strong 2-particle nonflow correlations by taking each particle twice.2538

Example: If one wants to simulate strong 2-particle nonflow correlations one should simply set2539

Int t iLoops = 2;2540

B.3.4 Detector inefficiencies2541

In reality we never deal with a detector with uniform azimuthal coverage, hence a need for a thorough studies of the2542

systematic bias originating from the non-uniform acceptance.2543

Example: One wants to simulate a detector whose acceptance is uniform except for the sector which spans the azimuthal2544

interval [60o, 120o]. In this sector there are some issues, so only half of the particles are reconstructed. To simulate this2545

acceptance one should use the following settings:2546

Bool t uniformAcceptance = kFALSE;

Double t phimin1 = 60;

Double t phimax1 = 120;

Double t p1 = 1/2.;

Double t phimin2 = 0.0;

Double t phimax2 = 0.0;

Double t p2 = 0.0;

2547

The resulting azimuthal profile is shown in Figure (B.6).2548

One can also simulate two problematic sectors.2549

Example: One wants to simulate a detector whose acceptance is uniform except for the two sectors which span azimuth2550

[60o, 120o] and [270o, 330o], respectively. In the first sector only 1/2 of the particles are reconstructed and only 1/3 of the2551

particles are reconstructed in the second. To simulate this acceptance one should use the following settings:2552

Bool t uniformAcceptance = kFALSE;

Double t phimin1 = 60;

Double t phimax1 = 120;

Double t p1 = 1/2.;

Double t phimin2 = 270.0;

Double t phimax2 = 330.0;

Double t p2 = 1/3.;

2553

The resulting azimuthal profile is shown in Figure (B.7).2554

B.3. MAKING YOUR OWN FLOW EVENTS Page 56 of 58

Index

AddTask macro, 262555

afterburner, 212556

AliAnalysisManager, 262557

AliAnalysisTaskFilterFE, 412558

AliAnalysisTaskFlowEvent, 82559

AliAnalysisTaskFlowEvent::UserExec(), 212560

AliAnalysisTaskTTreeFilter, 322561

ALICE flow package, see flow package2562

AliFlowAnalysisWithCumulants, 382563

AliFlowAnalysisWithFittingQDistribution, 382564

AliFlowAnalysisWithLeeYangZeros, 392565

AliFlowAnalysisWithLYZEventPlane, 392566

AliFlowAnalysisWithMCEventPlane, 352567

AliFlowAnalysisWithMixedHarmonics, 382568

AliFlowAnalysisWithMultiparticleCorrelations, 392569

AliFlowAnalysisWithQCumulants, 352570

AliFlowAnalysisWithScalarProduct, 372571

AliFlowCommonConstants, 192572

AliFlowCommonHist, 52573

details, 202574

AliFlowCommonHistResults, 52575

details, 202576

AliFlowEvent, 72577

AliFlowEvent::Fill(), 222578

AliFlowEventCuts, 92579

AliFlowEventSimple, 7, 292580

AliFlowEventSimpleFromTTree, 322581

AliFlowTrackCuts, 7, 112582

AliFlowTrackSimple, 72583

AliFlowTrackSimpleCuts, 412584

AliFlowTTreeEvent, 322585

AliFlowTTreeTrack, 332586

AliROOT, 12587

AliStarEvent, 312588

AliStarEventReader, 312589

AliVEventHandler, 262590

AliAODInputHandler, 262591

analysis framework, 262592

analysis manager, 262593

analysis train, 242594

AnalysisResults.root, 52595

compareFlowResults, 62596

connecting containers, 282597

event selection, 82598

caveats, 102599

data types, 102600

event cuts, 92601

parameters, 92602

setters, 92603

trigger selection, 82604

example, 262605

AliAnalysisTaskFlowEvent, 272606

connecting containers, 282607

event selection, 272608

launch analysis, 292609

track selection, 272610

trigger selection, 272611

ExchangeContainer, 282612

filterbit, 122613

Finish(), 252614

flow analysis method, 72615

flow analysis methods, 352616

flow event, 72617

flow package, 12618

flow track, 72619

flowchart, 72620

GRID, 252621

initialize methods, 42622

input data, 72623

InputContainer, 282624

LEGO framework, 412625

libPWGflowBase, 72626

libPWGflowTasks, 72627

libraries, AliROOT, 32628

libraries, ROOT, 32629

mergedAnalysisResults, 252630

methods, 352631

AliFlowAnalysisWithCumulants, 382632

AliFlowAnalysisWithFittingQDistribution, 382633

AliFlowAnalysisWithLeeYangZeros, 392634

AliFlowAnalysisWithLYZEventPlane, 35, 392635

AliFlowAnalysisWithMixedHarmonics, 382636

AliFlowAnalysisWithMultiparticleCorrelations, 392637

AliFlowAnalysisWithQCumulants, 352638

AliFlowAnalysisWithScalarProduct, 372639

Monte Carlo input, 72640

non uniform acceptance, 432641

NUA, 432642

On the fly, 32643

output file, 52644

OutputContainer, 282645

particle identification, 122646

caveats, 142647

methods, 132648

particles of interest, 42649

POI, see particles of interest2650

Q-cumulant, 72651

AliROOT Flow Package manual and documentation The FLOW team

redoFinish.C, 252652

reference particles, 42653

RP, see reference particles2654

run.C, 262655

runFlowOnTheFlyExample.C, 32656

runStarFlowAnalysis.C, 312657

scalar product, 72658

STAR input, 72659

steering macro, 262660

TBrowser, 52661

TChain, 262662

TClonesArray, 302663

Terminate, 242664

TFileMerger, 252665

TNamed, 62666

track cut object, simple, 42667

track selection, 102668

AOD filterbit, 122669

AOD tracks, 122670

ESD tracks, 112671

parameter type, 112672

particle identification, 122673

VZERO, 152674

track weights, 182675

TTree, 12676

UserCreateOutputObjects, 242677

UserExec, 242678

VZERO, 11, 152679

calibration, 152680

LHC10h, 162681

LHC11h, 162682

caveats, 172683

xml, 242684

INDEX Page 58 of 58

	1 Introduction
	1.1 This manual
	1.2 Disclaimer

	2 A Quick Start
	2.1 On the fly - getting started on a Toy MC
	2.2 What is in the output file ?
	2.2.1 AliFlowCommonHists - Output objects

	3 The Program
	3.1 Overview
	3.2 Analysis in the ALICE analysis framework
	3.2.1 Input data
	3.2.2 Event selection
	3.2.3 Track cuts and the track cuts object
	3.2.4 Additional options
	3.2.5 Relevant pieces of code
	3.2.6 Some words on the ALICE analysis framework
	3.2.7 Example: vn

	3.3 Flow analysis in ROOT: Using TTree's and TNTuples
	3.3.1 A custom class derived from AliFlowEventSimple
	3.3.2 A realistic example: flow package analysis on STAR data
	3.3.3 Getting started yourself

	4 Methods
	4.1 AliFlowAnalysisWithMCEventPlane
	4.1.1 Theory
	4.1.2 Implementation

	4.2 AliFlowAnalysisWithQCumulants
	4.2.1 Implementation

	4.3 AliFlowAnalysisWithScalarProduct
	4.3.1 Theory

	4.4 AliFlowAnalysisWithCumulants
	4.4.1 Theory
	4.4.2 Implementation

	4.5 AliFlowAnalysisWithMixedHarmonics
	4.5.1 Theory
	4.5.2 Implementation

	4.6 AliFlowAnalysisWithFittingQDistribution
	4.6.1 Theory
	4.6.2 Implementation

	4.7 AliFlowAnalysisWithMultiparticleCorrelations
	4.7.1 Theory
	4.7.2 Implementation

	4.8 AliFlowAnalysisWithLeeYangZeros
	4.8.1 Theory
	4.8.2 Implementation

	4.9 AliFlowAnalysisWithLYZEventPlane
	4.9.1 Theory
	4.9.2 Implementation

	4.10 Developing your own task

	5 More exotic uses
	5.1 Flow analysis in the LEGO framework: re-tagging your POI and RP selections
	5.1.1 Caveats

	5.2 Flow analysis of resonances
	5.3 Non-uniform acceptance correction
	5.3.1 Caveats

	6 Summary
	7 Bibliography
	A About this document
	A.1 Specifics and webpage

	B Flow analysis `on-the-fly'
	B.1 Introduction
	B.2 Kickstart
	B.2.1 AliRoot users
	B.2.2 Root users

	B.3 Making your own flow events
	B.3.1 pT spectra
	B.3.2 Azimuthal distribution
	B.3.3 Nonflow
	B.3.4 Detector inefficiencies

	Index

