//DEFINITION OF A FEW CONSTANTS // // binning method from C.Zampolli // // general const Double_t ymin = -2.1 ; const Double_t ymax = 2.1 ; //soft pion const Double_t ptmin_0_1 = 0.0 ; const Double_t ptmax_0_1 = 1.0 ; const Double_t ptmin_1_2 = 1.0 ; const Double_t ptmax_1_2 = 2.0 ; const Double_t ptmin_2_10 = 2.0 ; const Double_t ptmax_2_10 = 15.0 ; //D0 and D0 prongs const Double_t ptmin_0_4 = 0.0 ; const Double_t ptmax_0_4 = 4.0 ; const Double_t ptmin_4_8 = 4.0 ; const Double_t ptmax_4_8 = 8.0 ; const Double_t ptmin_8_10 = 8.0 ; const Double_t ptmax_8_10 = 20.0 ; const Double_t cosmin = -1.05; const Double_t cosmax = 1.05; const Double_t cTmin = 0; // micron const Double_t cTmax = 500; // micron const Double_t dcamin = 0; // micron const Double_t dcamax = 500; // micron const Double_t d0min = -1000; // micron const Double_t d0max = 1000; // micron const Double_t d0xd0min = -100000; // micron const Double_t d0xd0max = 100000; // micron const Double_t phimin = 0.0; const Int_t mintrackrefsTPC = 2 ; const Int_t mintrackrefsITS = 3 ; const Int_t charge = 1 ; const Int_t minclustersTPC = 50 ; // cuts const Double_t ptmin = 0.05; const Double_t ptmax = 9999.; const Double_t etamin = -0.9; const Double_t etamax = 0.9; const Double_t zmin = -15; const Double_t zmax = 15; const Int_t minITSClusters = 3; const Int_t minITSClustersSoft = 2; //---------------------------------------------------- AliCFTaskForDStarAnalysis *AddTaskCFDStar() { //CONTAINER DEFINITION Info("AliCFTaskForDStarAnalysis","SETUP CONTAINER"); //the sensitive variables, their indices UInt_t ipt = 0; UInt_t iy = 1; UInt_t icosThetaStar = 2; UInt_t ipTpi = 3; UInt_t ipTD0 = 4; UInt_t icT = 5; UInt_t idca = 6; UInt_t id0pi = 7; UInt_t id0K = 8; UInt_t id0xd0 = 9; UInt_t ipointing = 10; UInt_t iphi = 11; UInt_t iz = 12; UInt_t ipTD0pi = 13; UInt_t ipTD0K = 14; const Double_t phimax = 2*TMath::Pi(); //Setting up the container grid... UInt_t nstep = 8; //number of selection steps const Int_t nvar = 15 ; //number of variables on the grid:pt, y, cosThetaStar, pTpi, pTk, cT, dca, d0pi, d0K, d0xd0, cosPointingAngle, phi const Int_t nbin0_0_4 = 8 ; //bins in pt from 0 to 4 GeV const Int_t nbin0_4_8 = 4 ; //bins in pt from 4 to 8 GeV const Int_t nbin0_8_10 = 2 ; //bins in pt from 8 to 10 GeV const Int_t nbin1 = 30 ; //bins in y const Int_t nbin2 = 30 ; //bins in cosThetaStar // soft pion and D0 from D* const Int_t nbin3_0_1 = 8 ; //bins in ptPi from 0 to 4 GeV const Int_t nbin3_1_2 = 1 ; //bins in ptPi from 4 to 8 GeV const Int_t nbin3_2_10 = 1 ; //bins in ptPi from 8 to 10 GeV const Int_t nbin4_0_4 = 8 ; //bins in ptD0 from 0 to 4 GeV const Int_t nbin4_4_8 = 3 ; //bins in ptD0 from 4 to 8 GeV const Int_t nbin4_8_10 = 1 ; //bins in ptD0 from 8 to 10 GeV // D0 prongs - cutting variables const Int_t nbin5 = 20 ; //bins in cT const Int_t nbin6 = 20 ; //bins in dca const Int_t nbin7 = 100 ; //bins in d0pi const Int_t nbin8 = 100 ; //bins in d0K const Int_t nbin9 = 80 ; //bins in d0xd0 const Int_t nbin10 = 100 ; //bins in cosPointingAngle const Int_t nbin11 = 15 ; //bins in Phi const Int_t nbin12 = 60 ; //bins in z vertex // D0 prongs pt and phi const Int_t nbin5_0_4 = 8 ; //bins in ptPi from 0 to 4 GeV const Int_t nbin5_4_8 = 4 ; //bins in ptPi from 4 to 8 GeV const Int_t nbin5_8_10 = 8 ; //bins in ptPi from 8 to 10 GeV const Int_t nbin6_0_4 = 8 ; //bins in ptk from 0 to 4 GeV const Int_t nbin6_4_8 = 4 ; //bins in ptk from 4 to 8 GeV const Int_t nbin6_8_10 = 8 ; //bins in ptk from 8 to 10 GeV //arrays for the number of bins in each dimension Int_t iBin[nvar]; iBin[0]=nbin0_0_4+nbin0_4_8+nbin0_8_10; iBin[1]=nbin1; iBin[2]=nbin2; iBin[3]=nbin3_0_1+nbin3_1_2+nbin3_2_10; iBin[4]=nbin4_0_4+nbin4_4_8+nbin4_8_10; iBin[5]=nbin5; iBin[6]=nbin6; iBin[7]=nbin7; iBin[8]=nbin8; iBin[9]=nbin9; iBin[10]=nbin10; iBin[11]=nbin11; iBin[12]=nbin12; iBin[13]=nbin5_0_4+nbin5_4_8+nbin5_8_10; iBin[14]=nbin6_0_4+nbin6_4_8+nbin6_8_10; //arrays for lower bounds : Double_t *binLim0 = new Double_t[iBin[0]+1]; Double_t *binLim1 = new Double_t[iBin[1]+1]; Double_t *binLim2 = new Double_t[iBin[2]+1]; Double_t *binLim3 = new Double_t[iBin[3]+1]; Double_t *binLim4 = new Double_t[iBin[4]+1]; Double_t *binLim5 = new Double_t[iBin[5]+1]; Double_t *binLim6 = new Double_t[iBin[6]+1]; Double_t *binLim7 = new Double_t[iBin[7]+1]; Double_t *binLim8 = new Double_t[iBin[8]+1]; Double_t *binLim9 = new Double_t[iBin[9]+1]; Double_t *binLim10 = new Double_t[iBin[10]+1]; Double_t *binLim11 = new Double_t[iBin[11]+1]; Double_t *binLim12 = new Double_t[iBin[12]+1]; Double_t *binLim13 = new Double_t[iBin[13]+1]; Double_t *binLim14 = new Double_t[iBin[14]+1]; // checking limits if (ptmax_0_4 != ptmin_4_8) { Error("AliCFTaskForDStarAnalysis","max lim 1st range != min lim 2nd range, please check!"); } if (ptmax_4_8 != ptmin_8_10) { Error("AliCFTaskForDStarAnalysis","max lim 2nd range != min lim 3rd range, please check!"); } // values for bin lower bounds // pt ----------------------------------------------------------------------------------------- for(Int_t i=0; i<=nbin0_0_4; i++) binLim0[i]=(Double_t)ptmin_0_4 + (ptmax_0_4-ptmin_0_4)/nbin0_0_4*(Double_t)i ; if (binLim0[nbin0_0_4] != ptmin_4_8) { Error("AliCFDStar","Calculated bin lim for pt - 1st range - differs from expected!\n"); } for(Int_t i=0; i<=nbin0_4_8; i++) binLim0[i+nbin0_0_4]=(Double_t)ptmin_4_8 + (ptmax_4_8-ptmin_4_8)/nbin0_4_8*(Double_t)i ; if (binLim0[nbin0_0_4+nbin0_4_8] != ptmin_8_10) { Error("AliCFDStar","Calculated bin lim for pt - 2nd range - differs from expected!\n"); } for(Int_t i=0; i<=nbin0_8_10; i++) binLim0[i+nbin0_0_4+nbin0_4_8]=(Double_t)ptmin_8_10 + (ptmax_8_10-ptmin_8_10)/nbin0_8_10*(Double_t)i ; // y ----------------------------------------------------------------------------------------- for(Int_t i=0; i<=nbin1; i++) binLim1[i]=(Double_t)ymin + (ymax-ymin) /nbin1*(Double_t)i ; // cosThetaStar ----------------------------------------------------------------------------- for(Int_t i=0; i<=nbin2; i++) binLim2[i]=(Double_t)cosmin + (cosmax-cosmin) /nbin2*(Double_t)i ; // Soft ptPi --------------------------------------------------------------------------------- for(Int_t i=0; i<=nbin3_0_1; i++) binLim3[i]=(Double_t)ptmin_0_1 + (ptmax_0_1-ptmin_0_1)/nbin3_0_1*(Double_t)i ; if (binLim3[nbin3_0_1] != ptmin_1_2) { Error("AliCFDStar","Calculated bin lim for ptPi - 1st range - differs from expected!"); } for(Int_t i=0; i<=nbin3_1_2; i++) binLim3[i+nbin3_0_1]=(Double_t)ptmin_1_2 + (ptmax_1_2-ptmin_1_2)/nbin3_1_2*(Double_t)i ; if (binLim3[nbin3_0_1+nbin3_1_2] != ptmin_2_10) { Error("AliCFDStar","Calculated bin lim for ptPi - 2nd range - differs from expected!\n"); } for(Int_t i=0; i<=nbin3_2_10; i++) binLim3[i+nbin3_0_1+nbin3_1_2]=(Double_t)ptmin_2_10 + (ptmax_2_10-ptmin_2_10)/nbin3_2_10*(Double_t)i ; // ptD0 -------------------------------------------------------------------------------------- for(Int_t i=0; i<=nbin4_0_4; i++) binLim4[i]=(Double_t)ptmin_0_4 + (ptmax_0_4-ptmin_0_4)/nbin4_0_4*(Double_t)i ; if (binLim4[nbin4_0_4] != ptmin_4_8) { Error("AliCFDStar","Calculated bin lim for ptKa - 1st range - differs from expected!"); } for(Int_t i=0; i<=nbin4_4_8; i++) binLim4[i+nbin4_0_4]=(Double_t)ptmin_4_8 + (ptmax_4_8-ptmin_4_8)/nbin4_4_8*(Double_t)i ; if (binLim4[nbin4_0_4+nbin4_4_8] != ptmin_8_10) { Error("AliCFDStar","Calculated bin lim for ptKa - 2nd range - differs from expected!\n"); } for(Int_t i=0; i<=nbin4_8_10; i++) binLim4[i+nbin4_0_4+nbin4_4_8]=(Double_t)ptmin_8_10 + (ptmax_8_10-ptmin_8_10)/nbin4_8_10*(Double_t)i ; // D0 ptPi -------------------------------------------------------------------------------------------------------- for(Int_t i=0; i<=nbin5_0_4; i++) binLim13[i]=(Double_t)ptmin_0_4 + (ptmax_0_4-ptmin_0_4)/nbin5_0_4*(Double_t)i ; if (binLim13[nbin5_0_4] != ptmin_4_8) { Error("AliCFDStar","Calculated bin lim for ptPi - 1st range - differs from expected!"); } for(Int_t i=0; i<=nbin5_4_8; i++) binLim13[i+nbin5_0_4]=(Double_t)ptmin_4_8 + (ptmax_4_8-ptmin_4_8)/nbin5_4_8*(Double_t)i ; if (binLim13[nbin5_0_4+nbin5_4_8] != ptmin_8_10) { Error("AliCFDStar","Calculated bin lim for ptPi - 2nd range - differs from expected!\n"); } for(Int_t i=0; i<=nbin5_8_10; i++) binLim13[i+nbin5_0_4+nbin5_4_8]=(Double_t)ptmin_8_10 + (ptmax_8_10-ptmin_8_10)/nbin5_8_10*(Double_t)i ; // D0 ptK ---------------------------------------------------------------------------------------------------------- for(Int_t i=0; i<=nbin6_0_4; i++) binLim14[i]=(Double_t)ptmin_0_4 + (ptmax_0_4-ptmin_0_4)/nbin6_0_4*(Double_t)i ; if (binLim14[nbin6_0_4] != ptmin_4_8) { Error("AliCFDStar","Calculated bin lim for ptKa - 1st range - differs from expected!"); } for(Int_t i=0; i<=nbin6_4_8; i++) binLim14[i+nbin6_0_4]=(Double_t)ptmin_4_8 + (ptmax_4_8-ptmin_4_8)/nbin6_4_8*(Double_t)i ; if (binLim14[nbin6_0_4+nbin6_4_8] != ptmin_8_10) { Error("AliCFDStar","Calculated bin lim for ptKa - 2nd range - differs from expected!\n"); } for(Int_t i=0; i<=nbin6_8_10; i++) binLim14[i+nbin6_0_4+nbin6_4_8]=(Double_t)ptmin_8_10 + (ptmax_8_10-ptmin_8_10)/nbin6_8_10*(Double_t)i ; // cT --------------------------------------------------------------------------------------------------------------- for(Int_t i=0; i<=nbin5; i++) binLim5[i]=(Double_t)cTmin + (cTmax-cTmin) /nbin5*(Double_t)i ; // dca for(Int_t i=0; i<=nbin6; i++) binLim6[i]=(Double_t)dcamin + (dcamax-dcamin) /nbin6*(Double_t)i ; // d0pi for(Int_t i=0; i<=nbin7; i++) binLim7[i]=(Double_t)d0min + (d0max-d0min) /nbin7*(Double_t)i ; // d0K for(Int_t i=0; i<=nbin8; i++) binLim8[i]=(Double_t)d0min + (d0max-d0min) /nbin8*(Double_t)i ; // d0xd0 for(Int_t i=0; i<=nbin9; i++) binLim9[i]=(Double_t)d0xd0min + (d0xd0max-d0xd0min) /nbin9*(Double_t)i ; // cosPointingAngle for(Int_t i=0; i<=nbin10; i++) binLim10[i]=(Double_t)cosmin + (cosmax-cosmin) /nbin10*(Double_t)i ; // Phi for(Int_t i=0; i<=nbin11; i++) binLim11[i]=(Double_t)phimin + (phimax-phimin) /nbin11*(Double_t)i ; // z Primary Vertex for(Int_t i=0; i<=nbin12; i++) { binLim12[i]=(Double_t)zmin + (zmax-zmin) /nbin12*(Double_t)i ; } //one "container" for MC AliCFContainer* container = new AliCFContainer("container","container for tracks",nstep,nvar,iBin); //setting the bin limits container -> SetBinLimits(ipt,binLim0); container -> SetBinLimits(iy,binLim1); container -> SetBinLimits(icosThetaStar,binLim2); container -> SetBinLimits(ipTpi,binLim3); container -> SetBinLimits(ipTD0,binLim4); container -> SetBinLimits(icT,binLim5); container -> SetBinLimits(idca,binLim6); container -> SetBinLimits(id0pi,binLim7); container -> SetBinLimits(id0K,binLim8); container -> SetBinLimits(id0xd0,binLim9); container -> SetBinLimits(ipointing,binLim10); container -> SetBinLimits(iphi,binLim11); container -> SetBinLimits(iz,binLim12); container -> SetBinLimits(ipTD0pi,binLim13); container -> SetBinLimits(ipTD0K,binLim14); //CREATE THE CUTS ----------------------------------------------- // Gen-Level kinematic cuts AliCFTrackKineCuts *mcKineCuts = new AliCFTrackKineCuts("mcKineCuts","MC-level kinematic cuts"); //Particle-Level cuts: AliCFParticleGenCuts* mcGenCuts = new AliCFParticleGenCuts("mcGenCuts","MC particle generation cuts"); mcGenCuts->SetRequirePdgCode(413, kTRUE); // kTRUE set in order to include D*_bar mcGenCuts->SetAODMC(1); //special flag for reading MC in AOD tree (important) // Acceptance cuts: AliCFAcceptanceCuts* accCuts = new AliCFAcceptanceCuts("accCuts", "Acceptance cuts"); AliCFTrackKineCuts *kineAccCuts = new AliCFTrackKineCuts("kineAccCuts","Kine-Acceptance cuts"); kineAccCuts->SetPtRange(ptmin,ptmax); kineAccCuts->SetEtaRange(etamin,etamax); // Rec-Level kinematic cuts AliCFTrackKineCuts *recKineCuts = new AliCFTrackKineCuts("recKineCuts","rec-level kine cuts"); AliCFTrackQualityCuts *recQualityCuts = new AliCFTrackQualityCuts("recQualityCuts","rec-level quality cuts"); AliCFTrackIsPrimaryCuts *recIsPrimaryCuts = new AliCFTrackIsPrimaryCuts("recIsPrimaryCuts","rec-level isPrimary cuts"); printf("CREATE MC KINE CUTS\n"); TObjArray* mcList = new TObjArray(0) ; mcList->AddLast(mcKineCuts); mcList->AddLast(mcGenCuts); printf("CREATE ACCEPTANCE CUTS\n"); TObjArray* accList = new TObjArray(0) ; accList->AddLast(kineAccCuts); printf("CREATE RECONSTRUCTION CUTS\n"); TObjArray* recList = new TObjArray(0) ; // not used!! recList->AddLast(recKineCuts); recList->AddLast(recQualityCuts); recList->AddLast(recIsPrimaryCuts); TObjArray* emptyList = new TObjArray(0); //CREATE THE INTERFACE TO CORRECTION FRAMEWORK USED IN THE TASK printf("CREATE INTERFACE AND CUTS\n"); AliCFManager* man = new AliCFManager() ; man->SetParticleContainer (container); man->SetParticleCutsList(0 , mcList); // MC man->SetParticleCutsList(1 , accList); // Acceptance man->SetParticleCutsList(2 , emptyList); // Vertex man->SetParticleCutsList(3 , emptyList); // Refit man->SetParticleCutsList(4 , emptyList); // AOD man->SetParticleCutsList(5 , emptyList); // AOD in Acceptance man->SetParticleCutsList(6 , emptyList); // AOD with required n. of ITS clusters man->SetParticleCutsList(7 , emptyList); // AOD Reco cuts // Get the pointer to the existing analysis manager via the static access method. //============================================================================== AliAnalysisManager *mgr = AliAnalysisManager::GetAnalysisManager(); if (!mgr) { ::Error("AddTaskCompareHF", "No analysis manager to connect to."); return NULL; } //CREATE THE TASK printf("CREATE TASK\n"); // create the task AliCFTaskForDStarAnalysis *task = new AliCFTaskForDStarAnalysis("AliCFTaskForDStarAnalysis"); task->SetMinITSClusters(minITSClusters); task->SetMinITSClustersSoft(minITSClustersSoft); task->SetCFManager(man); //here is set the CF manager Bool_t AcceptanceUnf = kTRUE; // unfold at acceptance level, otherwise D* cuts Int_t thnDim[4]; //first half : reconstructed //second half : MC thnDim[0] = iBin[0]; thnDim[2] = iBin[0]; thnDim[1] = iBin[1]; thnDim[3] = iBin[1]; THnSparseD* correlation = new THnSparseD("correlation","THnSparse with correlations",4,thnDim); Double_t** binEdges = new Double_t[2]; // set bin limits binEdges[0]= binLim0; binEdges[1]= binLim1; correlation->SetBinEdges(0,binEdges[0]); correlation->SetBinEdges(2,binEdges[0]); correlation->SetBinEdges(1,binEdges[1]); correlation->SetBinEdges(3,binEdges[1]); correlation->Sumw2(); // correlation matrix ready //------------------------------------------------// task->SetCorrelationMatrix(correlation); // correlation matrix for unfolding // Create and connect containers for input/output // ------ input data ------ AliAnalysisDataContainer *cinput0 = mgr->GetCommonInputContainer(); // ----- output data ----- TString outputfile = AliAnalysisManager::GetCommonFileName(); outputfile += ":PWG3_D2H_CFtaskDStar"; //now comes user's output objects : // output TH1I for event counting AliAnalysisDataContainer *coutput1 = mgr->CreateContainer("CFDSchist0", TH1I::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); // output Correction Framework Container (for acceptance & efficiency calculations) AliAnalysisDataContainer *coutput2 = mgr->CreateContainer("CFDSccontainer0", AliCFContainer::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); // Unfolding - correlation matrix AliAnalysisDataContainer *coutput3 = mgr->CreateContainer("CFDScorr0", THnSparseD::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); mgr->AddTask(task); mgr->ConnectInput(task,0,mgr->GetCommonInputContainer()); mgr->ConnectOutput(task,1,coutput1); mgr->ConnectOutput(task,2,coutput2); mgr->ConnectOutput(task,3,coutput3); return task; }