//DEFINITION OF A FEW CONSTANTS const Double_t ymin = -1.2 ; const Double_t ymax = 1.2 ; const Double_t cosmin = -1.05; const Double_t cosmax = 1.05; const Double_t cTmin = 0; // micron const Double_t cTmax = 500; // micron const Double_t phimin = 0.0; const Int_t mintrackrefsTPC = 2 ; const Int_t mintrackrefsITS = 3 ; const Int_t charge = 1 ; const Int_t minclustersTPC = 50 ; // cuts const Double_t ptmin = 0.1; const Double_t ptmax = 9999.; const Double_t etamin = -0.9; const Double_t etamax = 0.9; const Double_t zvtxmin = -15; const Double_t zvtxmax = 15; const Int_t minITSClusters = 5; const Float_t centmin_0_10 = 0.; const Float_t centmax_0_10 = 10.; const Float_t centmin_10_60 = 10.; const Float_t centmax_10_60 = 60.; const Float_t centmin_60_100 = 60.; const Float_t centmax_60_100 = 100.; const Float_t centmin = 0.; const Float_t centmax = 100.; const Float_t fakemin = -0.5; const Float_t fakemax = 2.5.; const Double_t distTwoPartmin=0; const Double_t distTwoPartmax=600; const Double_t dispVtxmin = 0; const Double_t dispVtxmax = 600; const Double_t sumd02min = 0.; const Double_t sumd02max = 50000.; const Float_t cosminXY = -1.0; const Float_t cosmaxXY = 1.0; const Float_t normDecLXYmin = 0; const Float_t normDecLXYmax = 20; const Float_t multmin_0_20 = 0; const Float_t multmax_0_20 = 20; const Float_t multmin_20_50 = 20; const Float_t multmax_20_50 = 50; const Float_t multmin_50_102 = 50; const Float_t multmax_50_102 = 102; //---------------------------------------------------- //AliCFTaskVertexingHF *AddTaskCFVertexingHF3ProngLc(const char* cutFile = "./cuts4LctopKpi.root", Int_t configuration = AliCFTaskVertexingHF::kSnail, Bool_t isKeepDfromB=kFALSE, Bool_t isKeepDfromBOnly=kFALSE, Int_t pdgCode = 4122, Char_t isSign = 2) AliCFTaskVertexingHF *AddTaskCFVertexingHF3ProngLc(const char* cutFile = "./cuts4LctopKpi.root", Int_t configuration = AliCFTaskVertexingHF::kSnail, Bool_t isKeepDfromB=kFALSE, Bool_t isKeepDfromBOnly=kFALSE, Int_t pdgCode = 4122, Char_t isSign = 2,UInt_t decayLc=AliCFTaskVertexingHF::kDelta,TString coutName="Delta") { printf("Addig CF task using cuts from file %s\n",cutFile); if (configuration == AliCFTaskVertexingHF::kSnail){ printf("The configuration is set to be SLOW --> all the variables will be used to fill the CF\n"); } else if (configuration == AliCFTaskVertexingHF::kCheetah){ printf("The configuration is set to be FAST --> using only pt, y, ct, phi, zvtx, centrality, fake, multiplicity to fill the CF\n"); } else{ printf("The configuration is not defined! returning\n"); return; } gSystem->Sleep(2000); // isSign = 0 --> D0 only // isSign = 1 --> D0bar only // isSign = 2 --> D0 + D0bar TString expected; if (isSign == 0 && pdgCode < 0){ AliError(Form("Error setting PDG code (%d) and sign (0 --> particle (%d) only): they are not compatible, returning",pdgCode)); return 0x0; } else if (isSign == 1 && pdgCode > 0){ AliError(Form("Error setting PDG code (%d) and sign (1 --> antiparticle (%d) only): they are not compatible, returning",pdgCode)); return 0x0; } else if (isSign > 2 || isSign < 0){ AliError(Form("Sign not valid (%d, possible values are 0, 1, 2), returning")); return 0x0; } TFile* fileCuts = TFile::Open(cutFile); if(!fileCuts || (fileCuts && !fileCuts->IsOpen())){ AliError("Wrong cut file"); return 0x0; } AliRDHFCutsLctopKpi *cutsLctopKpi = (AliRDHFCutsLctopKpi*)fileCuts->Get("LctopKpiAnalysisCuts"); // check that the fKeepD0fromB flag is set to true when the fKeepD0fromBOnly flag is true // for now the binning is the same than for all D's if(isKeepDfromBOnly) isKeepDfromB = true; /* Double_t ptmin_0_4; Double_t ptmax_0_4; Double_t ptmin_4_8; Double_t ptmax_4_8; Double_t ptmin_8_10; Double_t ptmax_8_10; if(!isKeepDfromB){ ptmin_0_4 = 0.0 ; ptmax_0_4 = 4.0 ; ptmin_4_8 = 4.0 ; ptmax_4_8 = 8.0 ; ptmin_8_10 = 8.0 ; ptmax_8_10 = 10.0 ; } else{ ptmin_0_4 = 0.0 ; ptmax_0_4 = 3.0 ; ptmin_4_8 = 3.0 ; ptmax_4_8 = 5.0 ; ptmin_8_10 = 5.0 ; ptmax_8_10 = 10.0 ; } */ //CONTAINER DEFINITION Info("AliCFTaskVertexingHF","SETUP CONTAINER"); const Double_t phimax = 2*TMath::Pi(); //Setting up the container grid... UInt_t nstep = 10; //number of selection steps: MC with limited acceptance, MC, Acceptance, Vertex, Refit, Reco (no cuts), RecoAcceptance, RecoITSClusters (RecoAcceptance included), RecoPPR (RecoAcceptance+RecoITSCluster included), RecoPID // const Int_t nbinpt_0_4 = 8 ; //bins in pt from 0 to 4 GeV // const Int_t nbinpt_4_8 = 4 ; //bins in pt from 4 to 8 GeV // const Int_t nbinpt_8_10 = 1 ; //bins in pt from 8 to 10 GeV /* Int_t nbinpt_0_4; Int_t nbinpt_4_8; Int_t nbinpt_8_10; if (!isKeepDfromB){ nbinpt_0_4 = 8 ; //bins in pt from 0 to 4 GeV nbinpt_4_8 = 4 ; //bins in pt from 4 to 8 GeV nbinpt_8_10 = 1 ; //bins in pt from 8 to 10 GeV }else{ nbinpt_0_4 = 3 ; //bins in pt from 0 to 3 GeV nbinpt_4_8 = 1 ; //bins in pt from 3 to 5 GeV nbinpt_8_10 = 1 ; //bins in pt from 5 to 10 GeV } */ const Int_t nbinpt = cutsLctopKpi->GetNPtBins(); // bins in pT printf("pT: nbin (from cuts file) = %d\n",nbinpt); const Int_t nbiny = 24 ; //bins in y const Int_t nbinphi = 18 ; //bins in phi const Int_t nbincT = 25 ; //bins in cT const Int_t nbinpointing = 350 ; //bins in cosPointingAngle const Int_t nbinpTpi_0_4 = 8 ; //bins in ptPi from 0 to 4 GeV const Int_t nbinpTpi_4_8 = 4 ; //bins in ptPi from 4 to 8 GeV const Int_t nbinpTpi_8_10 = 1 ; //bins in ptPi from 8 to 10 GeV const Int_t nbinpTk_0_4 = 8 ; //bins in ptKa from 0 to 4 GeV const Int_t nbinpTk_4_8 = 4 ; //bins in ptKa from 4 to 8 GeV const Int_t nbinpTk_8_10 = 1 ; //bins in ptKa from 8 to 10 GeV const Int_t nbinpTpi2_0_4 = 8 ; //bins in ptpi2 from 0 to 4 GeV const Int_t nbinpTpi2_4_8 = 4 ; //bins in ptpi2 from 4 to 8 GeV const Int_t nbinpTpi2_8_10 = 1 ; //bins in ptpi2 from 8 to 10 GeV const Int_t nbinzvtx = 30 ; //bins in z vertex const Int_t nbincent = 18; //bins in centrality const Int_t nbincent_0_10 = 4; //bins in centrality between 0 and 10 const Int_t nbincent_10_60 = 10; //bins in centrality between 10 and 60 const Int_t nbincent_60_100 = 4; //bins in centrality between 60 and 100 const Int_t nbinfake = 3; //bins in fake const Int_t nbindist12 = 10; //bins dist12 const Int_t nbindist23 = 10; //bins dist23 const Int_t nbinsigmaVtx = 10; //bin sigmaVtx const Int_t nbinsumd02 = 10; //bin sumD0^2 const Int_t nbinpointingXY = 50; //bins in cosPointingAngleXY const Int_t nbinnormDecayLXY = 20; //bins in NormDecayLengthXY const Int_t nbinmult = 48; //bins in multiplicity (total number) const Int_t nbinmult_0_20 = 20; //bins in multiplicity between 0 and 20 const Int_t nbinmult_20_50 = 15; //bins in multiplicity between 20 and 50 const Int_t nbinmult_50_102 = 13; //bins in multiplicity between 50 and 102 //the sensitive variables, their indices const UInt_t ipT = 0; const UInt_t iy = 1; const UInt_t iphi = 2; const UInt_t icT = 3; const UInt_t ipointing = 4; const UInt_t ipTpi = 5; const UInt_t ipTk = 6; const UInt_t ipTpi2 = 7; const UInt_t izvtx = 8; const UInt_t icent = 9; const UInt_t ifake = 10; const UInt_t idist12 = 11; const UInt_t idist23 = 12; const UInt_t isigmaVtx = 13; const UInt_t isumd02 = 14; const UInt_t ipointingXY = 15; const UInt_t inormDecayLXY = 16; const UInt_t imult = 17; const Int_t nvarTot = 18 ; //number of variables on the grid:pt, y, cosThetaStar, pTpi, pTk, cT, dca, d0pi, d0K, d0xd0, cosPointingAngle, phi, zvtx, centrality, fake, cosPointingAngleXY, normDecayLengthXY, multiplicity //arrays for the number of bins in each dimension Int_t iBin[nvarTot]; //iBin[ipT]=nbinpt_0_4+nbinpt_4_8+nbinpt_8_10; iBin[ipT]=nbinpt; iBin[iy]=nbiny; iBin[iphi]=nbinphi; // iBin[icT]=nbincT_0_4+nbincT_4_8+nbincT_8_10; //iBin[4]=nbinpointing_0_4+nbinpointing_4_8+nbinpointing_8_10; iBin[icT]=nbincT; iBin[ipointing]=nbinpointing; iBin[ipTpi]=nbinpt; iBin[ipTk]=nbinpt; iBin[ipTpi2]=nbinpt; iBin[izvtx]=nbinzvtx; iBin[icent]=nbincent; iBin[ifake]=nbinfake; iBin[idist12]=nbindist12; iBin[idist23]=nbindist23; iBin[isigmaVtx]=nbinsigmaVtx; iBin[isumd02]=nbinsumd02; iBin[ipointingXY]=nbinpointingXY; iBin[inormDecayLXY]=nbinnormDecayLXY; iBin[imult]=nbinmult; //arrays for lower bounds : Double_t *binLimpT=new Double_t[iBin[ipT]+1]; Double_t *binLimy=new Double_t[iBin[iy]+1]; Double_t *binLimphi=new Double_t[iBin[iphi]+1]; Double_t *binLimcT=new Double_t[iBin[icT]+1]; Double_t *binLimpointing=new Double_t[iBin[ipointing]+1]; Double_t *binLimpTpi=new Double_t[iBin[ipTpi]+1]; Double_t *binLimpTk=new Double_t[iBin[ipTk]+1]; Double_t *binLimpTpi2=new Double_t[iBin[ipTpi2]+1]; Double_t *binLimzvtx=new Double_t[iBin[izvtx]+1]; Double_t *binLimcent=new Double_t[iBin[icent]+1]; Double_t *binLimfake=new Double_t[iBin[ifake]+1]; Double_t *binLimdist12=new Double_t[iBin[idist12]+1]; Double_t *binLimdist23=new Double_t[iBin[idist23]+1]; Double_t *binLimsigmaVtx=new Double_t[iBin[isigmaVtx]+1]; Double_t *binLimsumd02=new Double_t[iBin[isumd02]+1]; Double_t *binLimpointingXY=new Double_t[iBin[ipointingXY]+1]; Double_t *binLimnormDecayLXY=new Double_t[iBin[inormDecayLXY]+1]; Double_t *binLimmult=new Double_t[iBin[imult]+1]; // checking limits /* if (ptmax_0_4 != ptmin_4_8) { Error("AliCFHeavyFlavourTaskMultiVarMultiStep","max lim 1st range != min lim 2nd range, please check!"); } if (ptmax_4_8 != ptmin_8_10) { Error("AliCFHeavyFlavourTaskMultiVarMultiStep","max lim 2nd range != min lim 3rd range, please check!"); } */ // values for bin lower bounds // pt Float_t* floatbinLimpT = cutsLctopKpi->GetPtBinLimits(); for (Int_t ibinpT = 0 ; ibinpT SetBinLimits(ipT,binLimpT); printf("y\n"); container -> SetBinLimits(iy,binLimy); printf("Phi\n"); container -> SetBinLimits(iphi,binLimphi); printf("cT\n"); container -> SetBinLimits(icT,binLimcT); printf("pointing angle\n"); container -> SetBinLimits(ipointing,binLimpointing); printf("ptpi\n"); container -> SetBinLimits(ipTpi,binLimpTpi); printf("ptK\n"); container -> SetBinLimits(ipTk,binLimpTk); printf("ptpi2\n"); container -> SetBinLimits(ipTpi2,binLimpTpi2); printf("zvtx \n"); container -> SetBinLimits(izvtx,binLimzvtx); printf("cent\n"); container -> SetBinLimits(icent,binLimcent); printf("fake\n"); container -> SetBinLimits(ifake,binLimfake); printf("dist12\n"); container -> SetBinLimits(idist12,binLimdist12); printf("dist23\n"); container -> SetBinLimits(idist23,binLimdist23); printf("dispVtx\n"); container -> SetBinLimits(isigmaVtx,binLimsigmaVtx); printf("sumd0^2\n"); container -> SetBinLimits(isumd02,binLimsumd02); printf("pointingXY\n"); container -> SetBinLimits(ipointingXY,binLimpointingXY); printf("normDecayLXY\n"); container -> SetBinLimits(inormDecayLXY,binLimnormDecayLXY); printf("multiplicity\n"); container -> SetBinLimits(imult,binLimmult); container -> SetVarTitle(ipT,"pt"); container -> SetVarTitle(iy,"y"); container -> SetVarTitle(iphi, "phi"); container -> SetVarTitle(icT, "ct"); container -> SetVarTitle(ipointing, "pionting"); container -> SetVarTitle(ipTpi, "ptpi"); container -> SetVarTitle(ipTk, "ptK"); container -> SetVarTitle(ipTpi2, "ptpi2"); container -> SetVarTitle(izvtx, "zvtx"); container -> SetVarTitle(icent, "centrality"); container -> SetVarTitle(ifake, "fake"); container -> SetVarTitle(idist12, "dist12toVtx"); container -> SetVarTitle(idist23, "dist23toVtx"); container -> SetVarTitle(isigmaVtx, "dispertionToSecVtx"); container -> SetVarTitle(isumd02, "sumd0^2"); container -> SetVarTitle(ipointingXY, "piointingXY"); container -> SetVarTitle(inormDecayLXY, "normDecayLXY"); container -> SetVarTitle(imult, "multiplicity"); } else if (configuration == AliCFTaskVertexingHF::kCheetah){ //arrays for the number of bins in each dimension const Int_t nvar = 8; const UInt_t ipTFast = 0; const UInt_t iyFast = 1; const UInt_t icTFast = 2; const UInt_t iphiFast = 3; const UInt_t izvtxFast = 4; const UInt_t icentFast = 5; const UInt_t ifakeFast = 6; const UInt_t imultFast = 7; Int_t iBinFast[nvar]; iBinFast[ipTFast] = iBin[ipT]; iBinFast[iyFast] = iBin[iy]; iBinFast[icTFast] = iBin[icT]; iBinFast[iphiFast] = iBin[iphi]; iBinFast[izvtxFast] = iBin[izvtx]; iBinFast[icentFast] = iBin[icent]; iBinFast[ifakeFast] = iBin[ifake]; iBinFast[imultFast] = iBin[imult]; container = new AliCFContainer(nameContainer,"container for tracks",nstep,nvar,iBinFast); printf("pt\n"); container -> SetBinLimits(ipTFast,binLimpT); printf("y\n"); container -> SetBinLimits(iyFast,binLimy); printf("ct\n"); container -> SetBinLimits(icTFast,binLimcT); printf("phi\n"); container -> SetBinLimits(iphiFast,binLimphi); printf("zvtx\n"); container -> SetBinLimits(izvtxFast,binLimzvtx); printf("centrality\n"); container -> SetBinLimits(icentFast,binLimcent); printf("fake\n"); container -> SetBinLimits(ifakeFast,binLimfake); printf("multiplicity\n"); container -> SetBinLimits(imultFast,binLimmult); container -> SetVarTitle(ipTFast,"pt"); container -> SetVarTitle(iyFast,"y"); container -> SetVarTitle(icTFast, "ct"); container -> SetVarTitle(iphiFast, "phi"); container -> SetVarTitle(izvtxFast, "zvtx"); container -> SetVarTitle(icentFast, "centrality"); container -> SetVarTitle(ifakeFast, "fake"); container -> SetVarTitle(imultFast, "multiplicity"); } //return container; container -> SetStepTitle(0, "MCLimAcc"); container -> SetStepTitle(1, "MC"); container -> SetStepTitle(2, "MCAcc"); container -> SetStepTitle(3, "RecoVertex"); container -> SetStepTitle(4, "RecoRefit"); container -> SetStepTitle(5, "Reco"); container -> SetStepTitle(6, "RecoAcc"); container -> SetStepTitle(7, "RecoITSCluster"); container -> SetStepTitle(8, "RecoCuts"); container -> SetStepTitle(9, "RecoPID"); //CREATE THE CUTS ----------------------------------------------- // Gen-Level kinematic cuts AliCFTrackKineCuts *mcKineCuts = new AliCFTrackKineCuts("mcKineCuts","MC-level kinematic cuts"); //Particle-Level cuts: AliCFParticleGenCuts* mcGenCuts = new AliCFParticleGenCuts("mcGenCuts","MC particle generation cuts"); Bool_t useAbsolute = kTRUE; if (isSign != 2){ useAbsolute = kFALSE; } mcGenCuts->SetRequirePdgCode(pdgCode, useAbsolute); // kTRUE set in order to include antiparticle mcGenCuts->SetAODMC(1); //special flag for reading MC in AOD tree (important) // Acceptance cuts: AliCFAcceptanceCuts* accCuts = new AliCFAcceptanceCuts("accCuts", "Acceptance cuts"); AliCFTrackKineCuts *kineAccCuts = new AliCFTrackKineCuts("kineAccCuts","Kine-Acceptance cuts"); kineAccCuts->SetPtRange(ptmin,ptmax); kineAccCuts->SetEtaRange(etamin,etamax); // Rec-Level kinematic cuts AliCFTrackKineCuts *recKineCuts = new AliCFTrackKineCuts("recKineCuts","rec-level kine cuts"); AliCFTrackQualityCuts *recQualityCuts = new AliCFTrackQualityCuts("recQualityCuts","rec-level quality cuts"); AliCFTrackIsPrimaryCuts *recIsPrimaryCuts = new AliCFTrackIsPrimaryCuts("recIsPrimaryCuts","rec-level isPrimary cuts"); printf("CREATE MC KINE CUTS\n"); TObjArray* mcList = new TObjArray(0) ; mcList->AddLast(mcKineCuts); mcList->AddLast(mcGenCuts); printf("CREATE ACCEPTANCE CUTS\n"); TObjArray* accList = new TObjArray(0) ; accList->AddLast(kineAccCuts); printf("CREATE RECONSTRUCTION CUTS\n"); TObjArray* recList = new TObjArray(0) ; // not used!! recList->AddLast(recKineCuts); recList->AddLast(recQualityCuts); recList->AddLast(recIsPrimaryCuts); TObjArray* emptyList = new TObjArray(0); //CREATE THE INTERFACE TO CORRECTION FRAMEWORK USED IN THE TASK printf("CREATE INTERFACE AND CUTS\n"); AliCFManager* man = new AliCFManager() ; man->SetParticleContainer(container); man->SetParticleCutsList(0 , mcList); // MC, Limited Acceptance man->SetParticleCutsList(1 , mcList); // MC man->SetParticleCutsList(2 , accList); // Acceptance man->SetParticleCutsList(3 , emptyList); // Vertex man->SetParticleCutsList(4 , emptyList); // Refit man->SetParticleCutsList(5 , emptyList); // AOD man->SetParticleCutsList(6 , emptyList); // AOD in Acceptance man->SetParticleCutsList(7 , emptyList); // AOD with required n. of ITS clusters man->SetParticleCutsList(8 , emptyList); // AOD Reco (PPR cuts implemented in Task) man->SetParticleCutsList(9 , emptyList); // AOD Reco PID // Get the pointer to the existing analysis manager via the static access method. //============================================================================== AliAnalysisManager *mgr = AliAnalysisManager::GetAnalysisManager(); if (!mgr) { ::Error("AddTaskCompareHF", "No analysis manager to connect to."); return NULL; } //CREATE THE TASK printf("CREATE TASK\n"); // create the task AliCFTaskVertexingHF *task = new AliCFTaskVertexingHF("AliCFTaskVertexingHF",cutsLctopKpi); task->SetFillFromGenerated(kFALSE); task->SetDecayChannel(32); task->SetUseWeight(kFALSE); task->SetCFManager(man); //here is set the CF manager task->SetSign(isSign); task->SetCentralitySelection(kFALSE); task->SetFakeSelection(0); task->SetRejectCandidateIfNotFromQuark(kTRUE); // put to false if you want to keep HIJING D0!! task->SetUseMCVertex(kFALSE); // put to true if you want to do studies on pp task->SetResonantDecay(decayLc); if (isKeepDfromB && !isKeepDfromBOnly) task->SetDselection(2); if (isKeepDfromB && isKeepDfromBOnly) task->SetDselection(1); TF1* funcWeight = 0x0; if (task->GetUseWeight()) { funcWeight = (TF1*)cutFile->Get("funcWeight"); if (funcWeight == 0x0){ Printf("FONLL Weights will be used"); } else { task->SetWeightFunction(funcWeight); Printf("User-defined Weights will be used. The function being:"); task->GetWeightFunction()->Print(); } } Printf("***************** CONTAINER SETTINGS *****************"); Printf("decay channel = %d",(Int_t)task->GetDecayChannel()); Printf("FillFromGenerated = %d",(Int_t)task->GetFillFromGenerated()); Printf("Dselection = %d",(Int_t)task->GetDselection()); Printf("UseWeight = %d",(Int_t)task->GetUseWeight()); if (task->GetUseWeight()) { funcWeight = (TF1*)cutFile->Get("funcWeight"); if (funcWeight == 0x0){ Printf("FONLL Weights will be used"); } else { task->SetWeightFunction(funcWeight); Printf("User-defined Weights will be used. The function being:"); task->GetWeightFunction()->Print(); } } Printf("Sign = %d",(Int_t)task->GetSign()); Printf("Centrality selection = %d",(Int_t)task->GetCentralitySelection()); Printf("Fake selection = %d",(Int_t)task->GetFakeSelection()); Printf("RejectCandidateIfNotFromQuark selection = %d",(Int_t)task->GetRejectCandidateIfNotFromQuark()); Printf("UseMCVertex selection = %d",(Int_t)task->GetUseMCVertex()); Printf("***************END CONTAINER SETTINGS *****************\n"); //-----------------------------------------------------------// // create correlation matrix for unfolding - only eta-pt // //-----------------------------------------------------------// Bool_t AcceptanceUnf = kTRUE; // unfold at acceptance level, otherwise PPR Int_t thnDim[4]; //first half : reconstructed //second half : MC thnDim[0] = iBin[ipT]; thnDim[2] = iBin[ipT]; thnDim[1] = iBin[iy]; thnDim[3] = iBin[iy]; TString nameCorr=""; if(!isKeepDfromB) { nameCorr="CFHFcorr0_3Prong_CommonFramework"; } else if(isKeepDfromBOnly){ nameCorr= "CFHFcorr0KeepDfromBOnly_3Prong_CommonFramework"; } else { nameCorr="CFHFcorr0allD_3Prong_CommonFramework"; } nameCorr+=coutName.Data(); THnSparseD* correlation = new THnSparseD(nameCorr,"THnSparse with correlations",4,thnDim); Double_t** binEdges = new Double_t[2]; // set bin limits binEdges[0]= binLimpT; binEdges[1]= binLimy; correlation->SetBinEdges(0,binEdges[0]); correlation->SetBinEdges(2,binEdges[0]); correlation->SetBinEdges(1,binEdges[1]); correlation->SetBinEdges(3,binEdges[1]); correlation->Sumw2(); // correlation matrix ready //------------------------------------------------// task->SetCorrelationMatrix(correlation); // correlation matrix for unfolding // Create and connect containers for input/output // ------ input data ------ AliAnalysisDataContainer *cinput0 = mgr->GetCommonInputContainer(); // ----- output data ----- TString outputfile = AliAnalysisManager::GetCommonFileName(); TString output1name="", output2name="", output3name="", output4name="", output5name=""; output2name=nameContainer; output3name=nameCorr; output5name= "coutProfLc"; if(!isKeepDfromB) { outputfile += ":PWG3_D2H_CFtaskLctopKpi_CommonFramework"; outputfile+=coutName.Data(); output1name="CFHFchist0_3Prong_CommonFramework"; output1name+=coutName.Data(); output5name+="_cOnly"; } else if(isKeepDfromBOnly){ outputfile += ":PWG3_D2H_CFtaskLctopKpiKeepDfromBOnly_CommonFramework"; outputfile+=coutName.Data(); output1name="CFHFchist0DfromB_3Prong_CommonFramework"; output1name+=coutName.Data(); output5name+="_bOnly"; } else{ outputfile += ":PWG3_D2H_CFtaskLctopKpiKeepDfromB_CommonFramework"; outputfile+=coutName.Data(); output1name="CFHFchist0allD_3Prong_CommonFramework"; output1name+=coutName.Data(); output5name+="_All"; } output4name= "Cuts_3Prong_CommonFramework"; output4name+=coutName.Data(); output5name+=coutName.Data(); //now comes user's output objects : // output TH1I for event counting AliAnalysisDataContainer *coutput1 = mgr->CreateContainer(output1name, TH1I::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); // output Correction Framework Container (for acceptance & efficiency calculations) AliAnalysisDataContainer *coutput2 = mgr->CreateContainer(output2name, AliCFContainer::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); // Unfolding - correlation matrix AliAnalysisDataContainer *coutput3 = mgr->CreateContainer(output3name, THnSparseD::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); AliAnalysisDataContainer *coutput4 = mgr->CreateContainer(output4name, AliRDHFCuts::Class(),AliAnalysisManager::kOutputContainer, outputfile.Data()); // estimators list AliAnalysisDataContainer *coutput5 = mgr->CreateContainer(output5name, TList::Class(),AliAnalysisManager::kOutputContainer, outputfile.Data()); mgr->AddTask(task); mgr->ConnectInput(task,0,mgr->GetCommonInputContainer()); mgr->ConnectOutput(task,1,coutput1); mgr->ConnectOutput(task,2,coutput2); mgr->ConnectOutput(task,3,coutput3); mgr->ConnectOutput(task,4,coutput4); mgr->ConnectOutput(task,5,coutput5); return task; }