//DEFINITION OF A FEW CONSTANTS const Double_t ptmin = 0.0; const Double_t ptmax = 9999.0; const Double_t etamin = -0.9; const Double_t etamax = 0.9; const Double_t ymin = -1.2 ; const Double_t ymax = 1.2 ; const Double_t zmin = -15.; const Double_t zmax = 15.; const Float_t centmin =-999.; const Float_t centmax = 100.; const Float_t fakemin = -0.5; const Float_t fakemax = 2.5; const Float_t multmin = 0.; const Float_t multmax = 102.; const Double_t cosPAV0min = 0.985; const Double_t cosPAV0max = 1.005; const Float_t onFlymin = -0.5; const Float_t onFlymax = 1.5; const Double_t pBachmin = 0.0; const Double_t pBachmax = 30.0; const Double_t ptV0min = 0.0; const Double_t ptV0max = 30.0; const Double_t yV0min =-1.2; const Double_t yV0max = 1.2; const Double_t dcaV0min = 0.0; // nSigma const Double_t dcaV0max = 1.5; // nSigma const Double_t cTV0min = 0.0; // micron const Double_t cTV0max = 300; // micron const Double_t cTmin = 0.0; // micron const Double_t cTmax = 300; // micron const Float_t cosPAmin =-1.05; const Float_t cosPAmax = 1.05; //---------------------------------------------------- AliCFTaskVertexingHF *AddTaskCFVertexingHFLctoV0bachelor(const char* cutFile = "./LctoV0bachelorCuts.root", Bool_t rejectIfNotFromQuark=kTRUE, //Bool_t isKeepDfromB = kTRUE, Bool_t isKeepDfromBOnly = kFALSE, // all in Bool_t isKeepDfromB = kFALSE, Bool_t isKeepDfromBOnly = kFALSE, // prompt //Bool_t isKeepDfromB = kTRUE, Bool_t isKeepDfromBOnly = kTRUE, // no-prompt Int_t configuration = AliCFTaskVertexingHF::kCheetah, Int_t pdgCode = 4122, Char_t isSign = 2, Char_t lcToV0bachelorDecayMode = 0, TString usercomment = "username") { printf("Adding CF task using cuts from file %s\n",cutFile); if (configuration == AliCFTaskVertexingHF::kSnail){ printf("The configuration is set to be SLOW --> all the variables will be used to fill the CF\n"); } else if (configuration == AliCFTaskVertexingHF::kCheetah){ printf("The configuration is set to be FAST --> using only pt, y, ct, phi, zvtx, centrality, fake, multiplicity to fill the CF\n"); } else{ printf("The configuration is not defined! returning\n"); return; } gSystem->Sleep(2000); // isSign = 0 --> Lc+ only // isSign = 1 --> Lc- only // isSign = 2 --> Lc+ and Lc- TString expected; if (isSign == 0 && pdgCode < 0){ AliError(Form("Error setting PDG code (%d) and sign (0 --> Lc+ only): they are not compatible, returning",pdgCode)); return 0x0; } else if (isSign == 1 && pdgCode > 0){ AliError(Form("Error setting PDG code (%d) and sign (1 --> Lc- only): they are not compatible, returning",pdgCode)); return 0x0; } else if (isSign > 2 || isSign < 0){ AliError(Form("Sign not valid (%d, possible values are 0, 1, 2), returning",isSign)); return 0x0; } TFile* fileCuts = TFile::Open(cutFile); AliRDHFCuts *cutsLctoV0 = (AliRDHFCutsLctoV0*)fileCuts->Get("LctoV0AnalysisCuts"); // check that the fKeepD0fromB flag is set to true when the fKeepD0fromBOnly flag is true // for now the binning is the same than for all D's if (isKeepDfromBOnly) isKeepDfromB = true; Double_t massV0min = 0.47; Double_t massV0max = 1.14; if (lcToV0bachelorDecayMode==0) { massV0min = 0.47 ; massV0max = 0.53 ; } else if (lcToV0bachelorDecayMode==1) { massV0min = 1.09; massV0max = 1.14; } const Double_t phimin = 0.; const Double_t phimax = 2.*TMath::Pi(); const Double_t phiV0min = 0.; const Double_t phiV0max = 2.*TMath::Pi(); const Int_t nbinZvtx = 30; //bins in centrality (total number) const Int_t nbincent =18+1; //bins in centrality (total number) const Int_t nbinfake = 3; //bins in fake const Int_t nbinmult = 48; //bins in multiplicity (total number) const Int_t nbinpt = 11; //bins in pt from 0,1,2,3,4,5,6,8,12,17,25,35 GeV const Int_t nbiny = 24; //bins in y Lc const Int_t nbinphi = 18; //bins in phi Lc const Int_t nbinonFly = 2; //bins in onFlyStatus x V0 const Int_t nbinpBach = 300; //bins in pt from 0 to 30 GeV const Int_t nbinptV0 = 300; //bins in pt from 0 to 30 GeV const Int_t nbinyV0 = 24; //bins in y V0 const Int_t nbinphiV0 = 18; //bins in phi V0 const Int_t nbindcaV0 = 150; //bins in dcaV0 const Int_t nbininvMassV0 = 60; //bins in invMassV0 const Int_t nbinpointingV0 = 42; //bins in cosPointingAngleV0 const Int_t nbinpointing = 42; //bins in cosPointingAngle //const Int_t nbincTV0 = 15; //bins in cTV0 //const Int_t nbincT = 15; //bins in cT //the sensitive variables, their indices // variables' indices const UInt_t ipT = 0; const UInt_t iy = 1; const UInt_t iphi = 2; const UInt_t ionFly = 3; const UInt_t iZvtx = 4; const UInt_t icent = 5; const UInt_t ifake = 6; const UInt_t imult = 7; const UInt_t ipbach = 8; const UInt_t ipTV0 = 9; const UInt_t iyV0 = 10; const UInt_t iphiV0 = 11; const UInt_t iinvMassV0= 12; const UInt_t idcaV0 = 13; const UInt_t icosPAxV0 = 14; const UInt_t icosPA = 15; //const UInt_t icTv0 = 16; //const UInt_t icT = 17; //Setting the bins: pt, ptPi, and ptK are considered seprately because for them you can either define the binning by hand, or using the cuts file //arrays for the number of bins in each dimension //if ( configuration ==AliCFTaskVertexingHF::kSnail) const Int_t nvarTot = 16 ; //number of variables on the grid //if ( configuration ==AliCFTaskVertexingHF::kCheetah) //const Int_t nvarTot = 8 ; //number of variables on the grid Int_t iBin[nvarTot]; //OPTION 1: defining the pt, ptPi, ptK bins by hand... iBin[ipT]=nbinpt; iBin[iy]=nbiny; iBin[iphi]=nbinphi; iBin[ionFly]=nbinonFly; iBin[iZvtx]=nbinZvtx; iBin[icent]=nbincent; iBin[ifake]=nbinfake; iBin[imult]=nbinmult; iBin[ipbach]=nbinpBach; iBin[ipTV0]=nbinptV0; iBin[iyV0]=nbinyV0; iBin[iphiV0]=nbinphiV0; iBin[iinvMassV0]=nbininvMassV0; iBin[idcaV0]=nbindcaV0; iBin[icosPAxV0]=nbinpointingV0; iBin[icosPA]=nbinpointing; //iBin[icTv0]=nbincTV0; //iBin[icT]=nbincT; // values for bin lower bounds // pt Double_t *binLimpT=new Double_t[iBin[ipT]+1]; binLimpT[ 0]= 0.; binLimpT[ 1]= 1.; binLimpT[ 2]= 2.; binLimpT[ 3]= 3.; binLimpT[ 4]= 4.; binLimpT[ 5]= 5.; binLimpT[ 6]= 6.; binLimpT[ 7]= 8.; binLimpT[ 8]=12.; binLimpT[ 9]=17.; binLimpT[10]=25.; binLimpT[11]=35.; // y Double_t *binLimy=new Double_t[iBin[iy]+1]; for(Int_t i=0; i<=iBin[iy]; i++) binLimy[i]=(Double_t)ymin + (ymax-ymin)/iBin[iy]*(Double_t)i ; // phi Double_t *binLimphi=new Double_t[iBin[iphi]+1]; for(Int_t i=0; i<=iBin[iphi]; i++) binLimphi[i]=(Double_t)phimin + (phimax-phimin)/iBin[iphi]*(Double_t)i ; // onTheFlyV0 Double_t *binLimonFlyV0=new Double_t[iBin[ionFly]+1]; for(Int_t i=0; i<=iBin[ionFly]; i++) binLimonFlyV0[i]=(Double_t)onFlymin + (onFlymax-onFlymin)/iBin[ionFly]*(Double_t)i ; // z Primary Vertex Double_t *binLimzvtx=new Double_t[iBin[iZvtx]+1]; for(Int_t i=0; i<=nbinZvtx; i++) binLimzvtx[i]=(Double_t)zmin + (zmax-zmin)/iBin[iZvtx]*(Double_t)i ; // centrality Double_t *binLimcent=new Double_t[iBin[icent]+1]; binLimcent[0]=centmin; for(Int_t i=1; i<=iBin[icent]; i++) binLimcent[i]=centmax/iBin[icent]*(Double_t)(i-1); // fake Double_t *binLimfake=new Double_t[iBin[ifake]+1]; for(Int_t i=0; i<=iBin[ifake]; i++) binLimfake[i]=(Double_t)fakemin + (fakemax-fakemin)/iBin[ifake] * (Double_t)i; // multiplicity Double_t *binLimmult=new Double_t[iBin[imult]+1]; for(Int_t i=0; i<=iBin[imult]; i++) binLimmult[i]=(Double_t)multmin + (multmax-multmin)/iBin[imult]*(Double_t)i ; // pBach Double_t *binLimpbach=new Double_t[iBin[ipbach]+1]; for(Int_t i=0; i<=iBin[ipbach]; i++) binLimpbach[i]=(Double_t)pBachmin + (pBachmax-pBachmin)/iBin[ipbach]*(Double_t)i ; // ptV0 Double_t *binLimpTV0=new Double_t[iBin[ipTV0]+1]; for(Int_t i=0; i<=iBin[ipTV0]; i++) binLimpTV0[i]=(Double_t)ptV0min + (ptV0max-ptV0min)/iBin[ipTV0]*(Double_t)i ; // yV0 Double_t *binLimyV0=new Double_t[iBin[iyV0]+1]; for(Int_t i=0; i<=iBin[iyV0]; i++) binLimyV0[i]=(Double_t)yV0min + (yV0max-yV0min)/iBin[iyV0]*(Double_t)i ; // phiV0 Double_t *binLimphiV0=new Double_t[iBin[iphiV0]+1]; for(Int_t i=0; i<=iBin[iphiV0]; i++) binLimphiV0[i]=(Double_t)phiV0min + (phiV0max-phiV0min)/iBin[iphiV0]*(Double_t)i ; // invMassV0 Double_t *binLimInvMassV0=new Double_t[iBin[iinvMassV0]+1]; for(Int_t i=0; i<=iBin[iinvMassV0]; i++) binLimInvMassV0[i]=(Double_t)massV0min + (massV0max-massV0min)/iBin[iinvMassV0]*(Double_t)i ; // dcaV0 Double_t *binLimdcaV0=new Double_t[iBin[idcaV0]+1]; for(Int_t i=0; i<=iBin[idcaV0]; i++) binLimdcaV0[i]=(Double_t)dcaV0min + (dcaV0max-dcaV0min)/iBin[idcaV0]*(Double_t)i ; // cosPointingAngleV0 Double_t *binLimcosPAV0=new Double_t[iBin[icosPAxV0]+1]; for(Int_t i=0; i<=iBin[icosPAxV0]; i++) binLimcosPAV0[i]=(Double_t)cosPAV0min + (cosPAV0max-cosPAV0min)/iBin[icosPAxV0]*(Double_t)i ; // cosPointingAngle Double_t *binLimcosPA=new Double_t[iBin[icosPA]+1]; for(Int_t i=0; i<=iBin[icosPA]; i++) binLimcosPA[i]=(Double_t)cosPAmin + (cosPAmax-cosPAmin)/iBin[icosPA]*(Double_t)i ; /* // cTV0 Double_t *binLimcTV0=new Double_t[iBin[icTv0]+1]; for(Int_t i=0; i<=iBin[icTv0]; i++) binLimcTV0[i]=(Double_t)cTV0min + (cTV0max-cTV0min)/iBin[icTv0]*(Double_t)i ; // cT Double_t *binLimcT=new Double_t[iBin[icT]+1]; for(Int_t i=0; i<=iBin[icT]; i++) binLimcT[i]=(Double_t)cTmin + (cTmax-cTmin)/iBin[icT]*(Double_t)i ; */ //one "container" for MC TString nameContainer=""; if (!isKeepDfromB) { nameContainer="CFHFccontainer0_CommonFramework_"+usercomment; } else if (isKeepDfromBOnly) { nameContainer="CFHFccontainer0LcfromB_CommonFramework_"+usercomment; } else { nameContainer="CFHFccontainer0allLc_CommonFramework_"+usercomment; } //Setting up the container grid... //CONTAINER DEFINITION Info("AliCFTaskVertexingHF","SETUP CONTAINER"); UInt_t nstep = 10; //number of selection steps: MC with limited acceptance, MC, Acceptance, Vertex, Refit, Reco (no cuts), RecoAcceptance, RecoITSClusters (RecoAcceptance included), RecoPPR (RecoAcceptance+RecoITSCluster included), RecoPID AliCFContainer* container; if (configuration == AliCFTaskVertexingHF::kSnail) { container = new AliCFContainer(nameContainer,"container for tracks",nstep,nvarTot,iBin); } else if (configuration == AliCFTaskVertexingHF::kCheetah) { container = new AliCFContainer(nameContainer,"container for tracks",nstep,8,iBin); } //setting the bin limits container -> SetBinLimits(ipT,binLimpT); container -> SetBinLimits(iy,binLimy); container -> SetBinLimits(iphi,binLimphi); container -> SetBinLimits(ionFly,binLimonFlyV0); container -> SetBinLimits(iZvtx,binLimzvtx); container -> SetBinLimits(icent,binLimcent); container -> SetBinLimits(ifake,binLimfake); container -> SetBinLimits(imult,binLimmult); container -> SetVarTitle(ipT,"p_{T}(#Lambda_{c}) [GeV/c]"); container -> SetVarTitle(iy,"y(#Lambda_{c})"); container -> SetVarTitle(iphi,"#phi(#Lambda_{c}) [rad]"); container -> SetVarTitle(ionFly,"onTheFlyStatusV0"); container -> SetVarTitle(iZvtx,"z_{vtx} [cm]"); container -> SetVarTitle(icent,"centrality"); container -> SetVarTitle(ifake,"fake"); container -> SetVarTitle(imult,"multiplicity"); if (configuration == AliCFTaskVertexingHF::kSnail) { container -> SetBinLimits(ipbach,binLimpbach); container -> SetBinLimits(ipTV0,binLimpTV0); container -> SetBinLimits(iyV0,binLimyV0); container -> SetBinLimits(iphiV0,binLimphiV0); container -> SetBinLimits(iinvMassV0,binLimInvMassV0); container -> SetBinLimits(idcaV0,binLimdcaV0); container -> SetBinLimits(icosPAxV0,binLimcosPAV0); container -> SetBinLimits(icosPA,binLimcosPA); //container -> SetBinLimits(,binLimcTV0); //container -> SetBinLimits(,binLimcT); container -> SetVarTitle(ipbach,"p(bachelor) [GeV/c]"); container -> SetVarTitle(ipTV0,"p_{T}(V0) [GeV/c]"); container -> SetVarTitle(iyV0,"y(V0)"); container -> SetVarTitle(iphiV0,"#varphi(V0) [rad]"); container -> SetVarTitle(iinvMassV0,"m_{inv}(#pi^{+},#pi^{-}) [GeV/c^{2}]"); container -> SetVarTitle(idcaV0,"DCA(V0) [n#sigma]"); container -> SetVarTitle(icosPAxV0,"cosine pointing angle(V0)"); container -> SetVarTitle(icosPA,"cosine pointing angle (#Lambda_{c})"); //container -> SetVarTitle(,"c#tau -V0-"); //container -> SetVarTitle(,"c#tau"); } container -> SetStepTitle(0, "MCLimAcc"); container -> SetStepTitle(1, "MC"); container -> SetStepTitle(2, "MCAcc"); container -> SetStepTitle(3, "RecoVertex"); container -> SetStepTitle(4, "RecoRefit"); container -> SetStepTitle(5, "Reco"); container -> SetStepTitle(6, "RecoAcc"); container -> SetStepTitle(7, "RecoITSCluster"); container -> SetStepTitle(8, "RecoCuts"); container -> SetStepTitle(9, "RecoPID"); //return container; //CREATE THE CUTS ----------------------------------------------- // Gen-Level kinematic cuts AliCFTrackKineCuts *mcKineCuts = new AliCFTrackKineCuts("mcKineCuts","MC-level kinematic cuts"); //Particle-Level cuts: AliCFParticleGenCuts* mcGenCuts = new AliCFParticleGenCuts("mcGenCuts","MC particle generation cuts"); Bool_t useAbsolute = kTRUE; if (isSign != 2) { useAbsolute = kFALSE; } mcGenCuts->SetRequirePdgCode(pdgCode, useAbsolute); // kTRUE set in order to include Lc- mcGenCuts->SetAODMC(1); //special flag for reading MC in AOD tree (important) // Acceptance cuts: AliCFAcceptanceCuts* accCuts = new AliCFAcceptanceCuts("accCuts", "Acceptance cuts"); AliCFTrackKineCuts * kineAccCuts = new AliCFTrackKineCuts("kineAccCuts","Kine-Acceptance cuts"); kineAccCuts->SetPtRange(ptmin,ptmax); kineAccCuts->SetEtaRange(etamin,etamax); // Rec-Level kinematic cuts AliCFTrackKineCuts *recKineCuts = new AliCFTrackKineCuts("recKineCuts","rec-level kine cuts"); AliCFTrackQualityCuts *recQualityCuts = new AliCFTrackQualityCuts("recQualityCuts","rec-level quality cuts"); AliCFTrackIsPrimaryCuts *recIsPrimaryCuts = new AliCFTrackIsPrimaryCuts("recIsPrimaryCuts","rec-level isPrimary cuts"); printf("CREATE MC KINE CUTS\n"); TObjArray* mcList = new TObjArray(0) ; mcList->AddLast(mcKineCuts); mcList->AddLast(mcGenCuts); printf("CREATE ACCEPTANCE CUTS\n"); TObjArray* accList = new TObjArray(0) ; accList->AddLast(kineAccCuts); printf("CREATE RECONSTRUCTION CUTS\n"); TObjArray* recList = new TObjArray(0) ; // not used!! recList->AddLast(recKineCuts); recList->AddLast(recQualityCuts); recList->AddLast(recIsPrimaryCuts); TObjArray* emptyList = new TObjArray(0); //CREATE THE INTERFACE TO CORRECTION FRAMEWORK USED IN THE TASK printf("CREATE INTERFACE AND CUTS\n"); AliCFManager* man = new AliCFManager() ; man->SetParticleContainer(container); man->SetParticleCutsList(0 , mcList); // MC, Limited Acceptance man->SetParticleCutsList(1 , mcList); // MC man->SetParticleCutsList(2 , accList); // Acceptance man->SetParticleCutsList(3 , emptyList); // Vertex man->SetParticleCutsList(4 , emptyList); // Refit man->SetParticleCutsList(5 , emptyList); // AOD man->SetParticleCutsList(6 , emptyList); // AOD in Acceptance man->SetParticleCutsList(7 , emptyList); // AOD with required n. of ITS clusters man->SetParticleCutsList(8 , emptyList); // AOD Reco (PPR cuts implemented in Task) man->SetParticleCutsList(9 , emptyList); // AOD Reco PID // Get the pointer to the existing analysis manager via the static access method. //============================================================================== AliAnalysisManager *mgr = AliAnalysisManager::GetAnalysisManager(); if (!mgr) { ::Error("AddTaskCompareHF", "No analysis manager to connect to."); return NULL; } //CREATE THE TASK printf("CREATE TASK\n"); // create the task AliCFTaskVertexingHF *task = new AliCFTaskVertexingHF("AliCFTaskVertexingHF",cutsLctoV0); task->SetConfiguration(configuration); task->SetFillFromGenerated(kFALSE); task->SetCFManager(man); //here is set the CF manager task->SetDecayChannel(22);//kLctoV0bachelor switch (lcToV0bachelorDecayMode) { case 0: task->SetCountLctoK0Sp(); break; case 1: task->SetCountLctoLambdapi(); break; } task->SetUseWeight(kFALSE); task->SetSign(isSign); task->SetCentralitySelection(kFALSE); task->SetFakeSelection(0); task->SetRejectCandidateIfNotFromQuark(rejectIfNotFromQuark); // put to false if you want to keep HIJING D0!! task->SetUseMCVertex(kFALSE); // put to true if you want to do studies on pp if (isKeepDfromB && !isKeepDfromBOnly) task->SetDselection(2); if (isKeepDfromB && isKeepDfromBOnly) task->SetDselection(1); TF1* funcWeight = 0x0; if (task->GetUseWeight()) { funcWeight = (TF1*)fileCuts->Get("funcWeight"); if (funcWeight == 0x0){ Printf("FONLL Weights will be used"); } else { task->SetWeightFunction(funcWeight); Printf("User-defined Weights will be used. The function being:"); task->GetWeightFunction(funcWeight)->Print(); } } Printf("***************** CONTAINER SETTINGS *****************"); Printf("decay channel = %d",(Int_t)task->GetDecayChannel()); Printf("FillFromGenerated = %d",(Int_t)task->GetFillFromGenerated()); Printf("Dselection = %d",(Int_t)task->GetDselection()); Printf("UseWeight = %d",(Int_t)task->GetUseWeight()); if (task->GetUseWeight()) { Printf("User-defined Weight function:"); task->GetWeightFunction(funcWeight)->Print(); } else { Printf("FONLL will be used for the weights"); } Printf("Sign = %d",(Int_t)task->GetSign()); Printf("Centrality selection = %d",(Int_t)task->GetCentralitySelection()); Printf("Fake selection = %d",(Int_t)task->GetFakeSelection()); Printf("RejectCandidateIfNotFromQuark selection = %d",(Int_t)task->GetRejectCandidateIfNotFromQuark()); Printf("UseMCVertex selection = %d",(Int_t)task->GetUseMCVertex()); Printf("***************END CONTAINER SETTINGS *****************\n"); //-----------------------------------------------------------// // create correlation matrix for unfolding - only eta-pt // //-----------------------------------------------------------// Bool_t AcceptanceUnf = kTRUE; // unfold at acceptance level, otherwise PPR Int_t thnDim[4]; //first half : reconstructed //second half : MC thnDim[0] = iBin[ipT]; thnDim[2] = iBin[ipT]; thnDim[1] = iBin[iy]; thnDim[3] = iBin[iy]; TString nameCorr=""; if (!isKeepDfromB) { nameCorr="CFHFcorr0_CommonFramework_"+usercomment; } else if (isKeepDfromBOnly) { nameCorr= "CFHFcorr0KeepDfromBOnly_CommonFramework_"+usercomment; } else { nameCorr="CFHFcorr0allLc_CommonFramework_"+usercomment; } THnSparseD* correlation = new THnSparseD(nameCorr,"THnSparse with correlations",4,thnDim); Double_t** binEdges = new Double_t[2]; // set bin limits binEdges[0]= binLimpT; binEdges[1]= binLimy; correlation->SetBinEdges(0,binEdges[0]); correlation->SetBinEdges(2,binEdges[0]); correlation->SetBinEdges(1,binEdges[1]); correlation->SetBinEdges(3,binEdges[1]); correlation->Sumw2(); // correlation matrix ready //------------------------------------------------// task->SetCorrelationMatrix(correlation); // correlation matrix for unfolding // Create and connect containers for input/output // ------ input data ------ AliAnalysisDataContainer *cinput0 = mgr->GetCommonInputContainer(); // ----- output data ----- TString outputfile = AliAnalysisManager::GetCommonFileName(); TString output1name="", output2name="", output3name="",output4name=""; output2name=nameContainer; output3name=nameCorr; if (!isKeepDfromB) { outputfile += ":PWG3_D2H_CFtaskLctoK0Sp_CommonFramework_"+usercomment; output1name="CFHFchist0_CommonFramework_"+usercomment; output4name= "Cuts_CommonFramework_"+usercomment; } else if (isKeepDfromBOnly) { outputfile += ":PWG3_D2H_CFtaskLctoK0SpKeepDfromBOnly_CommonFramework_"+usercomment; output1name="CFHFchist0DfromB_CommonFramework_"+usercomment; output4name= "Cuts_CommonFramework_DfromB_"+usercomment; } else { outputfile += ":PWG3_D2H_CFtaskLctoK0SpKeepDfromB_CommonFramework_"+usercomment; output1name="CFHFchist0allLc_CommonFramework_"+usercomment; output4name= "Cuts_CommonFramework_allLc_"+usercomment; } //now comes user's output objects : // output TH1I for event counting AliAnalysisDataContainer *coutput1 = mgr->CreateContainer(output1name, TH1I::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); // output Correction Framework Container (for acceptance & efficiency calculations) AliAnalysisDataContainer *coutput2 = mgr->CreateContainer(output2name, AliCFContainer::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); // Unfolding - correlation matrix AliAnalysisDataContainer *coutput3 = mgr->CreateContainer(output3name, THnSparseD::Class(),AliAnalysisManager::kOutputContainer,outputfile.Data()); // cuts AliAnalysisDataContainer *coutput4 = mgr->CreateContainer(output4name, AliRDHFCuts::Class(),AliAnalysisManager::kOutputContainer, outputfile.Data()); mgr->AddTask(task); mgr->ConnectInput(task,0,mgr->GetCommonInputContainer()); mgr->ConnectOutput(task,1,coutput1); mgr->ConnectOutput(task,2,coutput2); mgr->ConnectOutput(task,3,coutput3); mgr->ConnectOutput(task,4,coutput4); return task; }