#ifndef ALIANALYSISTASKJETCORE_H #define ALIANALYSISTASKJETCORE_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ // ************************************** // This task computes several jet observables like // the fraction of energy in inner and outer coronnas, // the distance from track to jet axis and a // correlation strength distribution of particles inside jets. // Author: lcunquei@cern.ch // ******************************************* class TH1F; class TH1I; class TH2F; class TH3F; class THnSparse; class AliESDEvent; class AliAODExtension; class AliAODEvent; #include "AliAnalysisTaskSE.h" #include "AliVEvent.h" class AliAnalysisTaskJetCore : public AliAnalysisTaskSE { public: AliAnalysisTaskJetCore(); AliAnalysisTaskJetCore(const char *name); virtual ~AliAnalysisTaskJetCore(); virtual void LocalInit() {Init();} virtual void Init(); virtual void UserCreateOutputObjects(); virtual void UserExec(Option_t *option); virtual void Terminate(const Option_t*); virtual Int_t GetNInputTracks(); Double_t RelativePhi(Double_t angle1,Double_t angle2); virtual AliVEvent::EOfflineTriggerTypes GetOfflineTrgMask() const { return fOfflineTrgMask; } virtual void GetBranchNames(TString &branch1, TString &branch2) const { branch1 = fJetBranchName[0]; branch2 = fJetBranchName[1]; } virtual Bool_t GetIsPbPb() const { return fIsPbPb; } virtual Int_t GetMinContribVtx() const { return fMinContribVtx; }; virtual Float_t GetVtxZMin() const { return fVtxZMin; } virtual Float_t GetVtxZMax() const { return fVtxZMax; } virtual Int_t GetEvtClassMin() const { return fEvtClassMin; } virtual Int_t GetEvtClassMax() const { return fEvtClassMax; } virtual Float_t GetCentMin() const { return fCentMin; } virtual Float_t GetCentMax() const { return fCentMax; } virtual Int_t GetNInputTracksMin() const { return fNInputTracksMin; } virtual Int_t GetNInputTracksMax() const { return fNInputTracksMax; } virtual Float_t GetJetEtaMin() const { return fJetEtaMin; } virtual Float_t GetJetEtaMax() const { return fJetEtaMax; } virtual Float_t GetJetPtMin() const { return fJetPtMin; } virtual Float_t GetJetPtFractionMin() const { return fJetPtFractionMin; } virtual Int_t GetNMatchJets() const { return fNMatchJets; } virtual void SetBranchNames(const TString &branch1, const TString &branch2); virtual void SetBackgroundBranch(TString &branch) { fBackgroundBranch = branch;} virtual void SetIsPbPb(Bool_t b=kTRUE) { fIsPbPb = b; } virtual void SetOfflineTrgMask(AliVEvent::EOfflineTriggerTypes mask) { fOfflineTrgMask = mask; } virtual void SetMinContribVtx(Int_t n) { fMinContribVtx = n; } virtual void SetVtxZMin(Float_t z) { fVtxZMin = z; } virtual void SetVtxZMax(Float_t z) { fVtxZMax = z; } virtual void SetEvtClassMin(Int_t evtClass) { fEvtClassMin = evtClass; } virtual void SetEvtClassMax(Int_t evtClass) { fEvtClassMax = evtClass; } virtual void SetRadioFrac(Float_t radiofrac) { fRadioFrac = radiofrac; } virtual void SetMinDist(Float_t minDist) { fMinDist = minDist; } virtual void SetCentMin(Float_t cent) { fCentMin = cent; } virtual void SetCentMax(Float_t cent) { fCentMax = cent; } virtual void SetNInputTracksMin(Int_t nTr) { fNInputTracksMin = nTr; } virtual void SetNInputTracksMax(Int_t nTr) { fNInputTracksMax = nTr; } virtual void SetAngStructCloseTracks(Int_t yesno){fAngStructCloseTracks=yesno;} virtual void SetJetEtaMin(Float_t eta) { fJetEtaMin = eta; } virtual void SetJetEtaMax(Float_t eta) { fJetEtaMax = eta; } virtual void SetJetPtMin(Float_t pt) { fJetPtMin = pt; } virtual void SetJetTriggerExclude(UChar_t i) { fJetTriggerExcludeMask = i; } virtual void SetJetPtFractionMin(Float_t frac) { fJetPtFractionMin = frac; } virtual void SetNMatchJets(Int_t n) { fNMatchJets = n; } virtual void SetFillEvent(Bool_t b) { fbEvent = b; } virtual void SetKeepJets(Bool_t b = kTRUE) { fKeepJets = b; } virtual void SetNonStdFile(char* c){fNonStdFile = c;} private: // ESD/AOD events AliESDEvent *fESD; //! ESD object AliAODEvent *fAOD; //! AOD event AliAODExtension *fAODExtension; //! where we take the jets from can be input or output AOD Int_t GetListOfTracks(TList *list); Int_t GetListOfTracksCloseToJet(TList *list,AliAODJet *jet); // jets to compare TString fJetBranchName[2]; // name of jet branches to compare TList *fListJets[2]; //! jet lists TString fBackgroundBranch; TString fNonStdFile; // name of delta aod file to catch the extension // event selection Bool_t fIsPbPb; // is Pb-Pb (fast embedding) or p-p (detector response) AliVEvent::EOfflineTriggerTypes fOfflineTrgMask; // mask of offline triggers to accept Int_t fMinContribVtx; // minimum number of track contributors for primary vertex Float_t fVtxZMin; // lower bound on vertex z Float_t fVtxZMax; // upper bound on vertex z Int_t fEvtClassMin; // lower bound on event class Int_t fEvtClassMax; // upper bound on event class Float_t fRadioFrac; //!size of the concentric cone Float_t fMinDist; Float_t fCentMin; // lower bound on centrality Float_t fCentMax; // upper bound on centrality Int_t fNInputTracksMin; // lower bound of nb. of input tracks Int_t fNInputTracksMax; // upper bound of nb. of input tracks Int_t fAngStructCloseTracks;//only constituents or all tracks with R<0.8 for the angular structure Float_t fJetEtaMin; // lower bound on eta for found jets Float_t fJetEtaMax; // upper bound on eta for found jets Float_t fJetPtMin; // minimum jet pT UChar_t fJetTriggerExcludeMask; // mask for jet triggeres to exclude Float_t fJetPtFractionMin; // minimum fraction for positiv match of jets Int_t fNMatchJets; // maximal nb. of jets taken for matching Double_t fMatchMaxDist; // maximal distance of matching jets Bool_t fKeepJets; // keep jets with negative pt after background subtraction // output objects const Int_t fkNbranches; //! number of branches to be read const Int_t fkEvtClasses; //! number of event classes TList *fOutputList; //! output data container Bool_t fbEvent; // fill fhnEvent TH1I *fHistEvtSelection; //! event selection statistic TH1I *fHistJetSelection; //! jet selection statistic TH2F *fh2JetSelection; //! jet selection statistic, with TH2F *fh2JetCoreMethod1C10; //Energy fraction in the core C10 method 1 TH2F *fh2JetCoreMethod2C10; //Energy fraction in the core C10 method 2 TH2F *fh2JetCoreMethod3C10; //Energy fraction in the core C10 method 3 TH2F *fh2JetCoreMethod1C20; //Energy fraction in the core C20 method 1 TH2F *fh2JetCoreMethod2C20; //Energy fraction in the core C20 method 2 TH2F *fh2JetCoreMethod3C20; //Energy fraction in the core C20 method 3 TH2F *fh2JetCoreMethod1C30; //Energy fraction in the core C30 method 1 TH2F *fh2JetCoreMethod2C30; //Energy fraction in the core C30 method 2 TH2F *fh2JetCoreMethod3C30; //Energy fraction in the core C30 method 3 TH2F *fh2JetCoreMethod1C60; //Energy fraction in the core C60 method 1 TH2F *fh2JetCoreMethod2C60; //Energy fraction in the core C60 method 2 TH2F *fh2JetCoreMethod3C60; //Energy fraction in the core C60 method 3 TH2F *fh2JetCoreMethod3C10lead; //Energy fraction in the core C30 method 3 TH2F *fh2JetCoreMethod3C20lead; //Energy fraction in the core C60 method 1 TH2F *fh2JetCoreMethod3C30lead; //Energy fraction in the core C60 method 2 TH2F *fh2JetCoreMethod3C60lead; //Energy fraction in the core C60 method 3 TH2F *fh2JetCoreMethod3C10sublead; //Energy fraction in the core C30 method 3 TH2F *fh2JetCoreMethod3C20sublead; //Energy fraction in the core C60 method 1 TH2F *fh2JetCoreMethod3C30sublead; //Energy fraction in the core C60 method 2 TH2F *fh2JetCoreMethod3C60sublead; //Energy fraction in the core C60 method 3 TH2F *fh2SumPtInC10; //energy fraction in inner corona C10 TH2F *fh2SumPtInC20; //energy fraction in inner corona C20 TH2F *fh2SumPtInC30; //energy fraction in inner corona C30 TH2F *fh2SumPtInC60; //energy fraction in inner corona C60 TH2F *fh2SumPtInC10lead; //energy fraction in inner corona C10 leading TH2F *fh2SumPtInC20lead; //energy fraction in inner corona C20 leading TH2F *fh2SumPtInC30lead; //energy fraction in inner corona C30 leading TH2F *fh2SumPtInC60lead; //energy fraction in inner corona C60 leading TH2F *fh2SumPtInC10sublead; //energy fraction in inner corona C10 subleading TH2F *fh2SumPtInC20sublead; //energy fraction in inner corona C20 subleading TH2F *fh2SumPtInC30sublead; //energy fraction in inner corona C30 subleading TH2F *fh2SumPtInC60sublead; //energy fraction in inner corona C60 subleading TH2F *fh2SumPtOutC10; //energy fraction in outer corona C10 TH2F *fh2SumPtOutC20; //energy fraction in outer corona C20 TH2F *fh2SumPtOutC30; //energy fraction in outer corona C30 TH2F *fh2SumPtOutC60; //energy fraction in outer corona C60 TH2F *fh2SumPtOutC10lead; //energy fraction in outer corona C10 leading TH2F *fh2SumPtOutC20lead; //energy fraction in outer corona C20 leading TH2F *fh2SumPtOutC30lead; //energy fraction in outer corona C30 leading TH2F *fh2SumPtOutC60lead; //energy fraction in outer corona C60 leading TH2F *fh2SumPtOutC10sublead; //energy fraction in outer corona C10 subleading TH2F *fh2SumPtOutC20sublead; //energy fraction in outer corona C20 subleading TH2F *fh2SumPtOutC30sublead; //energy fraction in outer corona C30 subleading TH2F *fh2SumPtOutC60sublead; //energy fraction in outer corona C60 subleading TH2F *fh2SumPtInC10bkg; //expected from background inner C10 TH2F *fh2SumPtInC20bkg; //expected from background inner C20 TH2F *fh2SumPtInC30bkg; //expected from background inner C30 TH2F *fh2SumPtInC60bkg; //expected from background inner C60 TH2F *fh2SumPtInC10bkglead; //expected from background inner C10 lead TH2F *fh2SumPtInC20bkglead; //expected from background inner C20 lead TH2F *fh2SumPtInC30bkglead; //expected from background inner C30 lead TH2F *fh2SumPtInC60bkglead; //expected from background inner C60 lead TH2F *fh2SumPtInC10bkgsublead; //expected from background inner C10 sublead TH2F *fh2SumPtInC20bkgsublead; //expected from background inner C20 sublead TH2F *fh2SumPtInC30bkgsublead; //expected from background inner C30 sublead TH2F *fh2SumPtInC60bkgsublead; //expected from background inner C60 sublead TH2F *fh2SumPtOutC10bkg; //expected from background outer C10 TH2F *fh2SumPtOutC20bkg; //expected from background outer C10 TH2F *fh2SumPtOutC30bkg; //expected from background outer C10 TH2F *fh2SumPtOutC60bkg; //expected from background outer C10 TH2F *fh2SumPtOutC10bkglead; //expected from background outer C10 lead TH2F *fh2SumPtOutC20bkglead; //expected from background outer C10 lead TH2F *fh2SumPtOutC30bkglead; //expected from background outer C10 lead TH2F *fh2SumPtOutC60bkglead; //expected from background outer C10 lead TH2F *fh2SumPtOutC10bkgsublead; //expected from background outer C10 sublead TH2F *fh2SumPtOutC20bkgsublead; //expected from background outer C10 sublead TH2F *fh2SumPtOutC30bkgsublead; //expected from background outer C10 sublead TH2F *fh2SumPtOutC60bkgsublead; //expected from background outer C10 sublead TH2F* fh2DeltaRC10pt1; //Jet track R distance:C10 pt1 TH2F* fh2DeltaRC20pt1; //C20 pt1 TH2F* fh2DeltaRC30pt1; //C30 pt1 TH2F* fh2DeltaRC60pt1; //C60 pt1 TH2F* fh2DeltaRC10pt2; //C10 pt2 TH2F* fh2DeltaRC20pt2; //C20 pt2 TH2F* fh2DeltaRC30pt2; //C30 pt2 TH2F* fh2DeltaRC60pt2; //C60 pt2 TH2F* fh2DeltaRC10pt3; //C10 pt3 TH2F* fh2DeltaRC20pt3; //C20 pt3 TH2F* fh2DeltaRC30pt3; //C30 pt3 TH2F* fh2DeltaRC60pt3; //C60 pt3 TH2F* fh2DeltaRC10pt4; //C10 pt4 TH2F* fh2DeltaRC20pt4; //C20 pt4 TH2F* fh2DeltaRC30pt4; //C30 pt4 TH2F* fh2DeltaRC60pt4; //C60 pt4 TH2F* fh2DeltaEtaC10pt1; //The same but eta distance:C10 pt1 TH2F* fh2DeltaEtaC20pt1; //C20 pt1 TH2F* fh2DeltaEtaC30pt1; //C30 pt1 TH2F* fh2DeltaEtaC60pt1; //C60 pt1 TH2F* fh2DeltaEtaC10pt2; //C10 pt2 TH2F* fh2DeltaEtaC20pt2; //C20 pt2 TH2F* fh2DeltaEtaC30pt2; //C30 pt2 TH2F* fh2DeltaEtaC60pt2; //C60 pt2 TH2F* fh2DeltaEtaC10pt3; //C10 pt3 TH2F* fh2DeltaEtaC20pt3; //C20 pt3 TH2F* fh2DeltaEtaC30pt3; //C30 pt3 TH2F* fh2DeltaEtaC60pt3; //C60 pt3 TH2F* fh2DeltaEtaC10pt4; //C10 pt4 TH2F* fh2DeltaEtaC20pt4; //C20 pt4 TH2F* fh2DeltaEtaC30pt4; //C30 pt4 TH2F* fh2DeltaEtaC60pt4; //C60 pt4 TH2F* fh2DeltaPhiC10pt1; //The same but phi distance:C10 pt1 TH2F* fh2DeltaPhiC20pt1; //C20 pt1 TH2F* fh2DeltaPhiC30pt1; //C30 pt1 TH2F* fh2DeltaPhiC60pt1; //C60 pt1 TH2F* fh2DeltaPhiC10pt2; //C10 pt2 TH2F* fh2DeltaPhiC20pt2; //C20 pt2 TH2F* fh2DeltaPhiC30pt2; //C30 pt2 TH2F* fh2DeltaPhiC60pt2; //C60 pt2 TH2F* fh2DeltaPhiC10pt3; //C10 pt3 TH2F* fh2DeltaPhiC20pt3; //C20 pt3 TH2F* fh2DeltaPhiC30pt3; //C30 pt3 TH2F* fh2DeltaPhiC60pt3; //C60 pt3 TH2F* fh2DeltaPhiC10pt4; //C10 pt4 TH2F* fh2DeltaPhiC20pt4; //C20 pt4 TH2F* fh2DeltaPhiC30pt4; //C30 pt4 TH2F* fh2DeltaPhiC60pt4; //C60 pt4 TH2F* fh2DeltaRC10pt1lead; //Jet track R distance:C10 pt1 TH2F* fh2DeltaRC20pt1lead; //C20 pt1 TH2F* fh2DeltaRC30pt1lead; //C30 pt1 TH2F* fh2DeltaRC60pt1lead; //C60 pt1 TH2F* fh2DeltaRC10pt2lead; //C10 pt2 TH2F* fh2DeltaRC20pt2lead; //C20 pt2 TH2F* fh2DeltaRC30pt2lead; //C30 pt2 TH2F* fh2DeltaRC60pt2lead; //C60 pt2 TH2F* fh2DeltaRC10pt3lead; //C10 pt3 TH2F* fh2DeltaRC20pt3lead; //C20 pt3 TH2F* fh2DeltaRC30pt3lead; //C30 pt3 TH2F* fh2DeltaRC60pt3lead; //C60 pt3 TH2F* fh2DeltaRC10pt4lead; //C10 pt4 TH2F* fh2DeltaRC20pt4lead; //C20 pt4 TH2F* fh2DeltaRC30pt4lead; //C30 pt4 TH2F* fh2DeltaRC60pt4lead; //C60 pt4 TH2F* fh2DeltaEtaC10pt1lead; //The same but eta distance:C10 pt1 TH2F* fh2DeltaEtaC20pt1lead; //C20 pt1 TH2F* fh2DeltaEtaC30pt1lead; //C30 pt1 TH2F* fh2DeltaEtaC60pt1lead; //C60 pt1 TH2F* fh2DeltaEtaC10pt2lead; //C10 pt2 TH2F* fh2DeltaEtaC20pt2lead; //C20 pt2 TH2F* fh2DeltaEtaC30pt2lead; //C30 pt2 TH2F* fh2DeltaEtaC60pt2lead; //C60 pt2 TH2F* fh2DeltaEtaC10pt3lead; //C10 pt3 TH2F* fh2DeltaEtaC20pt3lead; //C20 pt3 TH2F* fh2DeltaEtaC30pt3lead; //C30 pt3 TH2F* fh2DeltaEtaC60pt3lead; //C60 pt3 TH2F* fh2DeltaEtaC10pt4lead; //C10 pt4 TH2F* fh2DeltaEtaC20pt4lead; //C20 pt4 TH2F* fh2DeltaEtaC30pt4lead; //C30 pt4 TH2F* fh2DeltaEtaC60pt4lead; //C60 pt4 TH2F* fh2DeltaPhiC10pt1lead; //The same but phi distance:C10 pt1 TH2F* fh2DeltaPhiC20pt1lead; //C20 pt1 TH2F* fh2DeltaPhiC30pt1lead; //C30 pt1 TH2F* fh2DeltaPhiC60pt1lead; //C60 pt1 TH2F* fh2DeltaPhiC10pt2lead; //C10 pt2 TH2F* fh2DeltaPhiC20pt2lead; //C20 pt2 TH2F* fh2DeltaPhiC30pt2lead; //C30 pt2 TH2F* fh2DeltaPhiC60pt2lead; //C60 pt2 TH2F* fh2DeltaPhiC10pt3lead; //C10 pt3 TH2F* fh2DeltaPhiC20pt3lead; //C20 pt3 TH2F* fh2DeltaPhiC30pt3lead; //C30 pt3 TH2F* fh2DeltaPhiC60pt3lead; //C60 pt3 TH2F* fh2DeltaPhiC10pt4lead; //C10 pt4 TH2F* fh2DeltaPhiC20pt4lead; //C20 pt4 TH2F* fh2DeltaPhiC30pt4lead; //C30 pt4 TH2F* fh2DeltaPhiC60pt4lead; //C60 pt4 TH2F* fh2DeltaRC10pt1sublead; //Jet track R distance:C10 pt1 TH2F* fh2DeltaRC20pt1sublead; //C20 pt1 TH2F* fh2DeltaRC30pt1sublead; //C30 pt1 TH2F* fh2DeltaRC60pt1sublead; //C60 pt1 TH2F* fh2DeltaRC10pt2sublead; //C10 pt2 TH2F* fh2DeltaRC20pt2sublead; //C20 pt2 TH2F* fh2DeltaRC30pt2sublead; //C30 pt2 TH2F* fh2DeltaRC60pt2sublead; //C60 pt2 TH2F* fh2DeltaRC10pt3sublead; //C10 pt3 TH2F* fh2DeltaRC20pt3sublead; //C20 pt3 TH2F* fh2DeltaRC30pt3sublead; //C30 pt3 TH2F* fh2DeltaRC60pt3sublead; //C60 pt3 TH2F* fh2DeltaRC10pt4sublead; //C10 pt4 TH2F* fh2DeltaRC20pt4sublead; //C20 pt4 TH2F* fh2DeltaRC30pt4sublead; //C30 pt4 TH2F* fh2DeltaRC60pt4sublead; //C60 pt4 TH2F* fh2DeltaEtaC10pt1sublead; //The same but eta distance:C10 pt1 TH2F* fh2DeltaEtaC20pt1sublead; //C20 pt1 TH2F* fh2DeltaEtaC30pt1sublead; //C30 pt1 TH2F* fh2DeltaEtaC60pt1sublead; //C60 pt1 TH2F* fh2DeltaEtaC10pt2sublead; //C10 pt2 TH2F* fh2DeltaEtaC20pt2sublead; //C20 pt2 TH2F* fh2DeltaEtaC30pt2sublead; //C30 pt2 TH2F* fh2DeltaEtaC60pt2sublead; //C60 pt2 TH2F* fh2DeltaEtaC10pt3sublead; //C10 pt3 TH2F* fh2DeltaEtaC20pt3sublead; //C20 pt3 TH2F* fh2DeltaEtaC30pt3sublead; //C30 pt3 TH2F* fh2DeltaEtaC60pt3sublead; //C60 pt3 TH2F* fh2DeltaEtaC10pt4sublead; //C10 pt4 TH2F* fh2DeltaEtaC20pt4sublead; //C20 pt4 TH2F* fh2DeltaEtaC30pt4sublead; //C30 pt4 TH2F* fh2DeltaEtaC60pt4sublead; //C60 pt4 TH2F* fh2DeltaPhiC10pt1sublead; //The same but phi distance:C10 pt1 TH2F* fh2DeltaPhiC20pt1sublead; //C20 pt1 TH2F* fh2DeltaPhiC30pt1sublead; //C30 pt1 TH2F* fh2DeltaPhiC60pt1sublead; //C60 pt1 TH2F* fh2DeltaPhiC10pt2sublead; //C10 pt2 TH2F* fh2DeltaPhiC20pt2sublead; //C20 pt2 TH2F* fh2DeltaPhiC30pt2sublead; //C30 pt2 TH2F* fh2DeltaPhiC60pt2sublead; //C60 pt2 TH2F* fh2DeltaPhiC10pt3sublead; //C10 pt3 TH2F* fh2DeltaPhiC20pt3sublead; //C20 pt3 TH2F* fh2DeltaPhiC30pt3sublead; //C30 pt3 TH2F* fh2DeltaPhiC60pt3sublead; //C60 pt3 TH2F* fh2DeltaPhiC10pt4sublead; //C10 pt4 TH2F* fh2DeltaPhiC20pt4sublead; //C20 pt4 TH2F* fh2DeltaPhiC30pt4sublead; //C30 pt4 TH2F* fh2DeltaPhiC60pt4sublead; //C60 pt4 TH2F* fh2AngStructpt1C10; //Average two particle correlation function:C10 pt1 TH2F* fh2AngStructpt2C10; //C10 pt2 TH2F* fh2AngStructpt3C10; //C10 pt3 TH2F* fh2AngStructpt4C10; //C10 pt4 TH2F* fh2AngStructpt1C20; //C20 pt1 TH2F* fh2AngStructpt2C20; //C20 pt2 TH2F* fh2AngStructpt3C20; //C20 pt3 TH2F* fh2AngStructpt4C20; //C20 pt4 TH2F* fh2AngStructpt1C30; //C30 pt1 TH2F* fh2AngStructpt2C30; //C30 pt2 TH2F* fh2AngStructpt3C30; //C30 pt3 TH2F* fh2AngStructpt4C30; //C30 pt4 TH2F* fh2AngStructpt1C60; //C60 pt1 TH2F* fh2AngStructpt2C60; //C60 pt2 TH2F* fh2AngStructpt3C60; //C60 pt3 TH2F* fh2AngStructpt4C60; //C60 pt4 AliAnalysisTaskJetCore(const AliAnalysisTaskJetCore&); // not implemented AliAnalysisTaskJetCore& operator=(const AliAnalysisTaskJetCore&); // not implemented ClassDef(AliAnalysisTaskJetCore, 4); }; #endif