/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. */ /* See cxx source for full Copyright notice */ /* $Id$ */ #ifndef ALIANALYSISTASKRHOVNMODULATION_H #define ALIANALYSISTASKRHOVNMODULATION_H #include #include #include #include #include #include #include #include class TF1; class THF1; class THF2; class TProfile; class AliLocalRhoParameter; class AliAnalysisTaskRhoVnModulation : public AliAnalysisTaskEmcalJet { public: // enumerators enum fitModulationType { kNoFit, kV2, kV3, kCombined, kFourierSeries, kIntegratedFlow, kQC2, kQC4 }; // fit type enum qcRecovery { kFixedRho, kNegativeVn, kTryFit }; // how to deal with negative cn value for qcn value enum runModeType { kLocal, kGrid }; // run mode type enum dataType { kESD, kAOD, kESDMC, kAODMC }; // data type enum detectorType { kTPC, kVZEROA, kVZEROC, kVZEROComb}; // detector that was used // constructors, destructor AliAnalysisTaskRhoVnModulation(); AliAnalysisTaskRhoVnModulation(const char *name, runModeType type); virtual ~AliAnalysisTaskRhoVnModulation(); // setting up the task and technical aspects Bool_t InitializeAnalysis(); virtual void UserCreateOutputObjects(); virtual Bool_t Run(); TH1F* BookTH1F(const char* name, const char* x, Int_t bins, Double_t min, Double_t max, Int_t c = -1, Bool_t append = kTRUE); TH2F* BookTH2F(const char* name, const char* x, const char* y, Int_t binsx, Double_t minx, Double_t maxx, Int_t binsy, Double_t miny, Double_t maxy, Int_t c = -1, Bool_t append = kTRUE); /* inline */ Double_t PhaseShift(Double_t x) const { while (x>=TMath::TwoPi())x-=TMath::TwoPi(); while (x<0.)x+=TMath::TwoPi(); return x; } /* inline */ Double_t PhaseShift(Double_t x, Double_t n) const { x = PhaseShift(x); if(TMath::Nint(n)==2) while (x>TMath::Pi()) x-=TMath::Pi(); if(TMath::Nint(n)==3) { if(x>2.*TMath::TwoPi()/n) x = TMath::TwoPi() - x; if(x>TMath::TwoPi()/n) x = TMath::TwoPi()-(x+TMath::TwoPi()/n); } return x; } /* inline */ Double_t ChiSquarePDF(Int_t ndf, Double_t x) const { Double_t n(ndf/2.), denom(TMath::Power(2, n)*TMath::Gamma(n)); if (denom!=0) return ((1./denom)*TMath::Power(x, n-1)*TMath::Exp(-x/2.)); return -999; } // note that the cdf of the chisquare distribution is the normalized lower incomplete gamma function /* inline */ Double_t ChiSquareCDF(Int_t ndf, Double_t x) const { return TMath::Gamma(ndf/2., x/2.); } // setters - analysis setup void SetDebugMode(Int_t d) {fDebug = d;} void SetAttachToEvent(Bool_t b) {fAttachToEvent = b;} void SetFillHistograms(Bool_t b) {fFillHistograms = b;} void SetFillQAHistograms(Bool_t qa) {fFillQAHistograms = qa;} void SetReduceBinsXYByFactor(Float_t x, Float_t y) {fReduceBinsXByFactor = x; fReduceBinsYByFactor = y;} void SetNoEventWeightsForQC(Bool_t e) {fNoEventWeightsForQC = e;} void SetCentralityClasses(TArrayI* c) {fCentralityClasses = c;} void SetPtBinsHybrids(TArrayD* p) {fPtBinsHybrids = p;} void SetPtBinsJets(TArrayD* p) {fPtBinsJets = p;} void SetIntegratedFlow(TH1F* i, TH1F* j) {fUserSuppliedV2 = i; fUserSuppliedV3 = j; } void SetOnTheFlyResCorrection(TH1F* r2, TH1F* r3) {fUserSuppliedR2 = r2; fUserSuppliedR3 = r3; } void SetNameJetClones(const char* name) {fNameJetClones = name; } void SetNamePicoTrackClones(const char* name) {fNamePicoTrackClones = name; } void SetNameRho(const char* name) {fNameRho = name; } void SetLocalRhoName(TString name) {fLocalRhoName = name; } void SetRandomSeed(TRandom3* r) {if (fRandom) delete fRandom; fRandom = r; } void SetModulationFit(TF1* fit) {if (fFitModulation) delete fFitModulation; fFitModulation = fit; } void SetModulationFitMinMaxP(Float_t m, Float_t n) {fMinPvalue = m; fMaxPvalue = n; } void SetModulationFitType(fitModulationType type) {fFitModulationType = type; } void SetQCnRecoveryType(qcRecovery type) {fQCRecovery = type; } void SetModulationFitOptions(TString opt) {fFitModulationOptions = opt; } void SetReferenceDetector(detectorType type) {fDetectorType = type; } void SetUsePtWeight(Bool_t w) {fUsePtWeight = w; } void SetRunModeType(runModeType type) {fRunModeType = type; } void SetAbsVertexZ(Float_t v) {fAbsVertexZ = v; } void SetMinDistanceRctoLJ(Float_t m) {fMinDisanceRCtoLJ = m; } void SetRandomConeRadius(Float_t r) {fRandomConeRadius = r; } void SetMinLeadingHadronPt(Double_t m) {fMinLeadingHadronPt = m; } void SetSetPtSub(Bool_t s) {fSubtractJetPt = s;} void SetForceAbsVnHarmonics(Bool_t f) {fAbsVnHarmonics = f; } void SetExcludeLeadingJetsFromFit(Float_t n) {fExcludeLeadingJetsFromFit = n; } void SetRebinSwapHistoOnTheFly(Bool_t r) {fRebinSwapHistoOnTheFly = r; } void SetSaveThisPercentageOfFits(Float_t p) {fPercentageOfFits = p; } void SetUseV0EventPlaneFromHeader(Bool_t h) {fUseV0EventPlaneFromHeader = h;} void SetExplicitOutlierCutForYear(Int_t y) {fExplicitOutlierCut = y;} // getters - these are used as well by AliAnalyisTaskJetFlow, so be careful when changing them TString GetJetsName() const {return fJetsName; } TString GetTracksName() const {return fTracksName; } TString GetLocalRhoName() const {return fLocalRhoName; } TArrayI* GetCentralityClasses() const {return fCentralityClasses;} TArrayD* GetPtBinsHybrids() const {return fPtBinsHybrids; } TArrayD* GetPtBinsJets() const {return fPtBinsJets; } TProfile* GetResolutionParameters(Int_t h, Int_t c) const {return (h==2) ? fProfV2Resolution[c] : fProfV3Resolution[c];} TList* GetOutputList() const {return fOutputList;} AliLocalRhoParameter* GetLocalRhoParameter() const {return fLocalRho;} Double_t GetJetRadius() const {return fJetRadius;} void ExecMe() {ExecOnce();} AliAnalysisTaskRhoVnModulation* ReturnMe() {return this;} // local cuts void SetLocalJetMinMaxEta(Float_t min, Float_t max) {fLocalJetMinEta = min; fLocalJetMaxEta = max;} void SetLocalJetMinMaxEta(Float_t R) {fLocalJetMinEta = - 0.9 + R; fLocalJetMaxEta = 0.9 - R; } void SetLocalJetMinMaxPhi(Float_t min, Float_t max) {fLocalJetMinPhi = min; fLocalJetMaxEta = max;} void SetSoftTrackMinMaxPt(Float_t min, Float_t max) {fSoftTrackMinPt = min; fSoftTrackMaxPt = max;} // numerical evaluations void CalculateEventPlaneVZERO(Double_t vzero[2][2]) const; void CalculateEventPlaneTPC(Double_t* tpc); void CalculateEventPlaneCombinedVZERO(Double_t* comb) const; void CalculateEventPlaneResolution(Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc); Double_t CalculateEventPlaneChi(Double_t resEP) const; void CalculateRandomCone(Float_t &pt, Float_t &eta, Float_t &phi, AliEmcalJet* jet = 0x0, Bool_t randomize = 0) const; Double_t CalculateQC2(Int_t harm); Double_t CalculateQC4(Int_t harm); // helper calculations for the q-cumulant analysis, also used by AliAnalyisTaskJetFlow void QCnQnk(Int_t n, Int_t k, Double_t &reQ, Double_t &imQ); void QCnDiffentialFlowVectors( TClonesArray* pois, TArrayD* ptBins, Bool_t vpart, Double_t* repn, Double_t* impn, Double_t *mp, Double_t *reqn, Double_t *imqn, Double_t* mq, Int_t n); Double_t QCnS(Int_t i, Int_t j); Double_t QCnM(); Double_t QCnM11(); Double_t QCnM1111(); Bool_t QCnRecovery(Double_t psi2, Double_t psi3); // analysis details Bool_t CorrectRho(Double_t psi2, Double_t psi3); // event and track selection, also used by AliAnalyisTaskJetFlow /* inline */ Bool_t PassesCuts(const AliVTrack* track) const { if(!track) return kFALSE; return (track->Pt() < fTrackPtCut || track->Eta() < fTrackMinEta || track->Eta() > fTrackMaxEta || track->Phi() < fTrackMinPhi || track->Phi() > fTrackMaxPhi) ? kFALSE : kTRUE; } /* inline */ Bool_t PassesCuts(AliEmcalJet* jet) const { if(!jet || fJetRadius <= 0) return kFALSE; return (GetLeadingHadronPt(jet) < fMinLeadingHadronPt || jet->Pt() < fJetPtCut || jet->Area()/(fJetRadius*fJetRadius*TMath::Pi()) < fPercAreaCut || jet->Eta() < fJetMinEta || jet->Eta() > fJetMaxEta || jet->Phi() < fJetMinPhi || jet->Phi() > fJetMaxPhi) ? kFALSE : kTRUE; } Bool_t PassesCuts(AliVEvent* event); Bool_t PassesCuts(Int_t year); Bool_t PassesCuts(const AliVCluster* track) const; // filling histograms void FillHistogramsAfterSubtraction(Double_t psi2, Double_t psi3, Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc) const; void FillTrackHistograms() const; void FillClusterHistograms() const; void FillCorrectedClusterHistograms() const; void FillEventPlaneHistograms(Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc) const; void FillRhoHistograms() const; void FillDeltaPtHistograms(Double_t psi2, Double_t psi3) const; void FillJetHistograms(Double_t psi2, Double_t psi3) const; void FillQAHistograms(AliVTrack* vtrack) const; void FillQAHistograms(AliVEvent* vevent); void FillAnalysisSummaryHistogram() const; virtual void Terminate(Option_t* option); // interface methods for the output file void SetOutputList(TList* l) {fOutputList = l;} TH1F* GetResolutionFromOuptutFile(detectorType detector, Int_t h = 2, TArrayD* c = 0x0); TH1F* CorrectForResolutionDiff(TH1F* v, detectorType detector, TArrayD* cen, Int_t c, Int_t h = 2); TH1F* CorrectForResolutionInt(TH1F* v, detectorType detector, TArrayD* cen, Int_t h = 2); TH1F* GetDifferentialQC(TProfile* refCumulants, TProfile* diffCumlants, TArrayD* ptBins, Int_t h); private: // analysis flags and settings Int_t fDebug; // debug level (0 none, 1 fcn calls, 2 verbose) Bool_t fLocalInit; //! is the analysis initialized? Bool_t fAttachToEvent; // attach local rho to the event Bool_t fFillHistograms; // fill histograms Bool_t fFillQAHistograms; // fill qa histograms Float_t fReduceBinsXByFactor; // reduce the bins on x-axis of histo's by this much Float_t fReduceBinsYByFactor; // reduce the bins on y-axis of histo's by this much Bool_t fNoEventWeightsForQC; // don't store event weights for qc analysis TArrayI* fCentralityClasses; //-> centrality classes (maximum 10) TArrayD* fPtBinsHybrids; //-> pt bins for hybrid track vn anaysis TArrayD* fPtBinsJets; //-> pt bins for jet vn analysis TH1F* fUserSuppliedV2; // histo with integrated v2 TH1F* fUserSuppliedV3; // histo with integrated v3 TH1F* fUserSuppliedR2; // correct the extracted v2 with this r TH1F* fUserSuppliedR3; // correct the extracted v3 with this r // members TString fLocalRhoName; // local rho name Int_t fNAcceptedTracks; //! number of accepted tracks Int_t fNAcceptedTracksQCn; //! accepted tracks for QCn fitModulationType fFitModulationType; // fit modulation type qcRecovery fQCRecovery; // recovery type for e-by-e qc method Bool_t fUsePtWeight; // use dptdphi instead of dndphi detectorType fDetectorType; // type of detector used for modulation fit TString fFitModulationOptions; // fit options for modulation fit runModeType fRunModeType; // run mode type dataType fDataType; // datatype TRandom3* fRandom; //-> dont use gRandom to not interfere with other tasks Int_t fMappedRunNumber; //! mapped runnumer (for QA) Int_t fInCentralitySelection; //! centrality bin TF1* fFitModulation; //-> modulation fit for rho Float_t fMinPvalue; // minimum value of p Float_t fMaxPvalue; // maximum value of p const char* fNameJetClones; //! collection of tclones array with jets const char* fNamePicoTrackClones; //! collection of tclones with pico tracks const char* fNameRho; //! name of rho AliLocalRhoParameter* fLocalRho; //! local rho // additional jet cuts (most are inherited) Float_t fLocalJetMinEta; // local eta cut for jets Float_t fLocalJetMaxEta; // local eta cut for jets Float_t fLocalJetMinPhi; // local phi cut for jets Float_t fLocalJetMaxPhi; // local phi cut for jets Float_t fSoftTrackMinPt; // min pt for soft tracks Float_t fSoftTrackMaxPt; // max pt for soft tracks // event cuts Float_t fAbsVertexZ; // cut on zvertex // general qa histograms TH1F* fHistCentrality; //! accepted centrality TH1F* fHistVertexz; //! accepted verte TH2F* fHistRunnumbersPhi; //! run numbers averaged phi TH2F* fHistRunnumbersEta; //! run numbers averaged eta TH1F* fHistPvaluePDF; //! pdf value of chisquare p TH1F* fHistPvalueCDF; //! cdf value of chisquare p // general settings Float_t fMinDisanceRCtoLJ; // min distance between rc and leading jet Float_t fRandomConeRadius; // radius of random cone Bool_t fAbsVnHarmonics; // force postive local rho Float_t fExcludeLeadingJetsFromFit; // exclude n leading jets from fit Bool_t fRebinSwapHistoOnTheFly; // rebin swap histo on the fly Float_t fPercentageOfFits; // save this percentage of fits Bool_t fUseV0EventPlaneFromHeader; // use the vzero event plane from the header Int_t fExplicitOutlierCut; // cut on correlation of tpc and global multiplicity Double_t fMinLeadingHadronPt; // minimum pt for leading hadron Bool_t fSubtractJetPt; // save subtracted jet pt by calling SetPtSub // transient object pointers TList* fOutputList; //! output list TList* fOutputListGood; //! output list for local analysis TList* fOutputListBad; //! output list for local analysis TH1F* fHistAnalysisSummary; //! analysis summary TH1F* fHistSwap; //! swap histogram TProfile* fProfV2; //! extracted v2 TProfile* fProfV2Cumulant; //! v2 cumulant TProfile* fProfV2Resolution[10]; //! resolution parameters for v2 TProfile* fProfV3; //! extracted v3 TProfile* fProfV3Cumulant; //! v3 cumulant TProfile* fProfV3Resolution[10]; //! resolution parameters for v3 // qa histograms for accepted pico tracks TH1F* fHistPicoTrackPt[10]; //! pt of all charged tracks TH1F* fHistPicoTrackMult[10]; //! multiplicity of accepted pico tracks TH2F* fHistPicoCat1[10]; //! pico tracks spd hit and refit TH2F* fHistPicoCat2[10]; //! pico tracks wo spd hit w refit, constrained TH2F* fHistPicoCat3[10]; //! pico tracks wo spd hit wo refit, constrained // qa histograms for accepted emcal clusters /* TH1F* fHistClusterPt[10]; //! pt uncorrected emcal clusters */ /* TH1F* fHistClusterPhi[10]; //! phi uncorrected emcal clusters */ /* TH1F* fHistClusterEta[10]; //! eta uncorrected emcal clusters */ // qa histograms for accepted emcal clusters aftehadronic correction /* TH1F* fHistClusterCorrPt[10]; //! pt corrected emcal clusters */ /* TH1F* fHistClusterCorrPhi[10]; //! phi corrected emcal clusters */ /* TH1F* fHistClusterCorrEta[10]; //! eta corrected emcal clusters */ // qa event planes TProfile* fHistPsiControl; //! event plane control histogram TProfile* fHistPsiSpread; //! event plane spread histogram TH1F* fHistPsiVZEROA; //! psi 2 from vzero a TH1F* fHistPsiVZEROC; //! psi 2 from vzero c TH1F* fHistPsiVZERO; //! psi 2 from combined vzero TH1F* fHistPsiTPC; //! psi 2 from tpc // background TH1F* fHistRhoPackage[10]; //! rho as estimated by emcal jet package TH1F* fHistRho[10]; //! background TH2F* fHistRhoVsMult; //! rho versus multiplicity TH2F* fHistRhoVsCent; //! rho veruss centrality TH2F* fHistRhoAVsMult; //! rho * A vs multiplicity for all jets TH2F* fHistRhoAVsCent; //! rho * A vs centrality for all jets // delta pt distributions TH2F* fHistRCPhiEta[10]; //! random cone eta and phi TH2F* fHistRhoVsRCPt[10]; //! rho * A vs rcpt TH1F* fHistRCPt[10]; //! rcpt TH2F* fHistDeltaPtDeltaPhi2[10]; //! dpt vs dphi (psi2 - phi) TH2F* fHistDeltaPtDeltaPhi3[10]; //! dpt vs dphi (psi3 - phi) TH2F* fHistRCPhiEtaExLJ[10]; //! random cone eta and phi, excl leading jet TH2F* fHistRhoVsRCPtExLJ[10]; //! rho * A vs rcpt, excl leading jet TH1F* fHistRCPtExLJ[10]; //! rcpt, excl leading jet TH2F* fHistDeltaPtDeltaPhi2ExLJ[10]; //! dpt vs dphi, excl leading jet TH2F* fHistDeltaPtDeltaPhi3ExLJ[10]; //! dpt vs dphi, excl leading jet /* TH2F* fHistRCPhiEtaRand[10]; //! random cone eta and phi, randomized */ /* TH2F* fHistRhoVsRCPtRand[10]; //! rho * A vs rcpt, randomized */ /* TH1F* fHistRCPtRand[10]; //! rcpt, randomized */ /* TH2F* fHistDeltaPtDeltaPhi2Rand[10]; //! dpt vs dphi, randomized */ /* TH2F* fHistDeltaPtDeltaPhi3Rand[10]; //! dpt vs dphi, randomized */ // jet histograms (after kinematic cuts) TH1F* fHistJetPtRaw[10]; //! jet pt - no background subtraction TH1F* fHistJetPt[10]; //! pt of found jets (background subtracted) TH2F* fHistJetEtaPhi[10]; //! eta and phi correlation TH2F* fHistJetPtArea[10]; //! jet pt versus area TH2F* fHistJetPtConstituents[10]; //! jet pt versus number of constituents TH2F* fHistJetEtaRho[10]; //! jet eta versus jet rho // in plane, out of plane jet spectra TH2F* fHistJetPsi2Pt[10]; //! psi tpc versus pt TH2F* fHistJetPsi3Pt[10]; //! psi vzeroc versus pt AliAnalysisTaskRhoVnModulation(const AliAnalysisTaskRhoVnModulation&); // not implemented AliAnalysisTaskRhoVnModulation& operator=(const AliAnalysisTaskRhoVnModulation&); // not implemented ClassDef(AliAnalysisTaskRhoVnModulation, 14); }; #endif