// BeamParticle.h is a part of the PYTHIA event generator. // Copyright (C) 2008 Torbjorn Sjostrand. // PYTHIA is licenced under the GNU GPL version 2, see COPYING for details. // Please respect the MCnet Guidelines, see GUIDELINES for details. // Header file for information on incoming beams. // ResolvedParton: an initiator or remnant in beam. // BeamParticle: contains partons, parton densities, etc. #ifndef Pythia8_BeamParticle_H #define Pythia8_BeamParticle_H #include "Basics.h" #include "Event.h" #include "FragmentationFlavZpT.h" #include "Info.h" #include "ParticleData.h" #include "PartonDistributions.h" #include "PythiaStdlib.h" #include "Settings.h" namespace Pythia8 { //************************************************************************** // This class holds info on a parton resolved inside the incoming beam, // i.e. either an initiator (part of a hard or a multiple interaction) // or a remnant (part of the beam remnant treatment). // The companion code is -1 from onset and for g, is -2 for an unmatched // sea quark, is >= 0 for a matched sea quark, with the number giving the // companion position, and is -3 for a valence quark. class ResolvedParton { public: // Constructor. ResolvedParton( int iPosIn = 0, int idIn = 0, double xIn = 0., int companionIn = -1) : iPosRes(iPosIn), idRes(idIn), xRes(xIn), companionRes(companionIn), xqCompRes(0.), mRes(0.), colRes(0), acolRes(0) { } // Set info on initiator or remnant parton. void iPos( int iPosIn) {iPosRes = iPosIn;} void id( int idIn) {idRes = idIn;} void x( double xIn) {xRes = xIn;} void update( int iPosIn, int idIn, double xIn) {iPosRes = iPosIn; idRes = idIn; xRes = xIn;} void companion( int companionIn) {companionRes = companionIn;} void xqCompanion( double xqCompIn) {xqCompRes = xqCompIn;} void p(Vec4 pIn) {pRes = pIn;} void px(double pxIn) {pRes.px(pxIn);} void py(double pyIn) {pRes.py(pyIn);} void pz(double pzIn) {pRes.pz(pzIn);} void e(double eIn) {pRes.e(eIn);} void m(double mIn) {mRes = mIn;} void col(int colIn) {colRes = colIn;} void acol(int acolIn) {acolRes = acolIn;} void cols(int colIn = 0,int acolIn = 0) {colRes = colIn; acolRes = acolIn;} // Get info on initiator or remnant parton. int iPos() const {return iPosRes;} int id() const {return idRes;} double x() const {return xRes;} int companion() const {return companionRes;} bool isValence() const {return (companionRes == -3);} bool isUnmatched() const {return (companionRes == -2);} bool isCompanion() const {return (companionRes >= 0);} double xqCompanion() const {return xqCompRes;} Vec4 p() const {return pRes;} double px() const {return pRes.px();} double py() const {return pRes.py();} double pz() const {return pRes.pz();} double e() const {return pRes.e();} double m() const {return mRes;} double pT() const {return pRes.pT();} double mT2() const {return mRes*mRes + pRes.pT2();} int col() const {return colRes;} int acol() const {return acolRes;} private: // Properties of a resolved parton. int iPosRes, idRes; double xRes; // Companion code and distribution value, if any. int companionRes; double xqCompRes; // Four-momentum and mass; for remnant kinematics construction. Vec4 pRes; double mRes; // Colour codes. int colRes, acolRes; }; //************************************************************************** // This class holds info on a beam particle in the evolution of // initial-state radiation and multiple interactions. class BeamParticle { public: // Constructor. BeamParticle() {Q2ValFracSav = -1.;} // Initialize data on a beam particle and save pointers. void init( int idIn, double pzIn, double eIn, double mIn, Info* infoPtrIn, PDF* pdfInPtr, PDF* pdfHardInPtr, bool isUnresolvedIn, StringFlav* flavSelPtrIn); // Set new pZ and E, but keep the rest the same. void newPzE( double pzIn, double eIn) {pBeam = Vec4( 0., 0., pzIn, eIn);} // Member functions for output. int id() const {return idBeam;} Vec4 p() const {return pBeam;} double px() const {return pBeam.px();} double py() const {return pBeam.py();} double pz() const {return pBeam.pz();} double e() const {return pBeam.e();} double m() const {return mBeam;} bool isLepton() const {return isLeptonBeam;} bool isUnresolved() const {return isUnresolvedBeam;} // As hadrons here we only count those we know how to handle remnants for. bool isHadron() const {return isHadronBeam;} bool isMeson() const {return isMesonBeam;} bool isBaryon() const {return isBaryonBeam;} // Maximum x remaining after previous MI and ISR, plus safety margin. double xMax(int iSkip = -1); // Special hard-process parton distributions (can agree with standard ones). double xfHard(int idIn, double x, double Q2) {return pdfHardBeamPtr->xf(idIn, x, Q2);} // Standard parton distributions. double xf(int idIn, double x, double Q2) {return pdfBeamPtr->xf(idIn, x, Q2);} // Ditto, split into valence and sea parts (where gluon counts as sea). double xfVal(int idIn, double x, double Q2) {return pdfBeamPtr->xfVal(idIn, x, Q2);} double xfSea(int idIn, double x, double Q2) {return pdfBeamPtr->xfSea(idIn, x, Q2);} // Rescaled parton distributions, as needed for MI and ISR. // For ISR also allow split valence/sea, and only return relevant part. double xfMI(int idIn, double x, double Q2) {return xfModified(-1, idIn, x, Q2);} double xfISR(int indexMI, int idIn, double x, double Q2) {return xfModified( indexMI, idIn, x, Q2);} // Decide whether chosen quark is valence, sea or companion. int pickValSeaComp(); // Initialize kind of incoming beam particle. void initBeamKind(); // Overload index operator to access a resolved parton from the list. ResolvedParton& operator[](int i) {return resolved[i];} // Total number of partons extracted from beam, and initiators only. int size() const {return resolved.size();} int sizeInit() const {return nInit;} // Clear list of resolved partons. void clear() {resolved.resize(0);} // Add a resolved parton to list. int append( int iPos, int idIn, double x, int companion = -1) {resolved.push_back( ResolvedParton( iPos, idIn, x, companion) ); return resolved.size() - 1;} // Print extracted parton list; for debug mainly. void list(ostream& os = cout); // How many different flavours, and how many quarks of given flavour. int nValenceKinds() const {return nValKinds;} int nValence(int idIn) const {for (int i = 0; i < nValKinds; ++i) if (idIn == idVal[i]) return nVal[i]; return 0;} // Test whether a lepton is to be considered as unresolved. bool isUnresolvedLepton(); // Add extra remnant flavours to make valence and sea come out right. bool remnantFlavours(Event& event); // Correlate all initiators and remnants to make a colour singlet. bool remnantColours(Event& event, vector& colFrom, vector& colTo); // Pick unrescaled x of remnant parton (valence or sea). double xRemnant(int i); // Tell whether a junction has been resolved, and its junction colours. bool hasJunction() const {return hasJunctionBeam;} int junctionCol(int i) const {return junCol[i];} void junctionCol(int i, int col) {junCol[i] = col;} // For a diffractive system, decide whether to kick out gluon or quark. bool pickGluon(double mDiff); // Pick a valence quark at random, and provide the remaining flavour. int pickValence(); int pickRemnant() const {return idVal2;} // Share lightcone momentum between two remnants in a diffractive system. // At the same time generate a relative pT for the two. double zShare( double mDiff, double m1, double m2); double pxShare() const {return pxRel;} double pyShare() const {return pyRel;} private: // Constants: could only be changed in the code itself. static const double XMINUNRESOLVED; // Pointer to various information on the generation. Info* infoPtr; // Pinters to PDF sets. PDF* pdfBeamPtr; PDF* pdfHardBeamPtr; // Pointer to class for flavour generation. StringFlav* flavSelPtr; // Initialization data, normally only set once. bool allowJunction; int maxValQuark, companionPower; double valencePowerMeson, valencePowerUinP, valencePowerDinP, valenceDiqEnhance, pickQuarkNorm, pickQuarkPower, diffPrimKTwidth, diffLargeMassSuppress; // Basic properties of a beam particle. int idBeam, idBeamAbs; Vec4 pBeam; double mBeam; // Beam kind. Valence flavour content for hadrons. bool isLeptonBeam, isUnresolvedBeam, isHadronBeam, isMesonBeam, isBaryonBeam; int nValKinds, idVal[3], nVal[3]; // Current parton density, by valence, sea and companion. int idSave, iSkipSave, nValLeft[3]; double xqgTot, xqVal, xqgSea, xqCompSum; // The list of resolved partons. vector resolved; // Status after all initiators have been accounted for. Junction content. int nInit; bool hasJunctionBeam; int junCol[3]; // Routine to calculate pdf's given previous interactions. double xfModified( int iSkip, int idIn, double x, double Q2); // Fraction of hadron momentum sitting in a valence quark distribution. double xValFrac(int j, double Q2); double Q2ValFracSav, uValInt, dValInt; // Fraction of hadron momentum sitting in a companion quark distribution. double xCompFrac(double xs); // Value of companion quark PDF, also given the sea quark x. double xCompDist(double xc, double xs); // Valence quark subdivision for diffractive systems. int idVal1, idVal2, idVal3; double zRel, pxRel, pyRel; }; //************************************************************************** } // end namespace Pythia8 #endif // Pythia8_BeamParticle_H