/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AliMagF.h" #include "AliPoints.h" #include "AliRICH.h" #include "AliRICHParam.h" #include "AliRICHClusterFinder.h" #include "AliRICHDigitizer.h" #include "AliRICHHitMapA1.h" #include "AliRICHMerger.h" #include "AliRICHRawCluster.h" #include "AliRICHRecHit1D.h" #include "AliRICHRecHit3D.h" #include "AliRICHSDigit.h" #include "AliRICHSegmentationV0.h" #include "AliRICHTransientDigit.h" #include "AliRun.h" #include "AliRunDigitizer.h" #include "AliRICHSegmentationV1.h" #include "AliRICHResponseV0.h" ClassImp(AliRICHhit) ClassImp(AliRICHdigit) ClassImp(AliRICH) //___________________________________________ // RICH manager class //Begin_Html /* */ //End_Html AliRICH::AliRICH() {//Default ctor should not contain any new operators fIshunt = 0; fHits = 0; fSDigits = 0; fNsdigits = 0; fNcerenkovs = 0; fDchambers = 0; fRecHits1D = 0; fRecHits3D = 0; fRawClusters = 0; fChambers = 0; fCerenkovs = 0; for (Int_t i=0; iAddHitList(fHits);//hits fCerenkovs =new TClonesArray("AliRICHCerenkov",1000);gAlice->AddHitList(fCerenkovs);//cerenkovs ??? to be removed fSDigits =new TClonesArray("AliRICHdigit",100000);//sdigits fDigits =new TClonesArray("AliRICHdigit",100000);//digits fIshunt =0; fDchambers =new TObjArray(kNCH);//digits ??? to be removed fRawClusters=new TObjArray(kNCH);//clusters fRecHits1D =new TObjArray(kNCH);//recos Bari fRecHits3D =new TObjArray(kNCH);//recos Lisbon for(int i=0;iAddAt(new TClonesArray("AliRICHDigit",10000), i); //??? to be removed fRawClusters->AddAt(new TClonesArray("AliRICHRawCluster",10000), i); fRecHits1D ->AddAt(new TClonesArray("AliRICHRecHit1D",1000), i); fRecHits3D ->AddAt(new TClonesArray("AliRICHRecHit3D",1000), i); } SetMarkerColor(kRed); fCkovNumber=fFreonProd=0; CreateChambers(); if(GetDebug())Info("named ctor","Stop."); }//AliRICH::AliRICH(const char *name, const char *title) //__________________________________________________________________________________________________ AliRICH::~AliRICH() {//dtor if(GetDebug()) Info("dtor","Start."); fIshunt = 0; delete fHits; delete fSDigits; delete fCerenkovs; //PH Delete TObjArrays if (fChambers) { fChambers->Delete(); delete fChambers; } if (fDchambers) { fDchambers->Delete(); delete fDchambers; } if (fRawClusters) { fRawClusters->Delete(); delete fRawClusters; } if (fRecHits1D) { fRecHits1D->Delete(); delete fRecHits1D; } if (fRecHits3D) { fRecHits3D->Delete(); delete fRecHits3D; } if(GetDebug()) Info("dtor","Stop."); }//AliRICH::~AliRICH() //__________________________________________________________________________________________________ void AliRICH::Hits2SDigits() {//Create a list of sdigits corresponding to list of hits. Every hit generates sdigit. if(GetDebug()) Info("Hit2SDigits","Start."); for(Int_t iEventN=0;iEventNGetEventsPerRun();iEventN++){//events loop fLoader->GetRunLoader()->GetEvent(iEventN); if(!fLoader->TreeH()) fLoader->LoadHits(); if(!fLoader->TreeS()) fLoader->MakeTree("S"); MakeBranch("S"); AliRICHSegmentationV1 *pSeg=new AliRICHSegmentationV1; AliRICHResponseV0 *pRes=new AliRICHResponseV0; Float_t dx=Param()->SigmaIntegration()*Param()->ChargeSpreadX(); Float_t dy=Param()->SigmaIntegration()*Param()->ChargeSpreadY(); Float_t charge; for(int iPrimN=0;iPrimNGetEntries();iPrimN++){//prims loop fLoader->TreeH()->GetEntry(iPrimN); for(Int_t iHitN=0;iHitNGetEntries();iHitN++){//hits loop AliRICHhit *pHit=(AliRICHhit*)Hits()->At(iHitN);//get current hit if(pHit->Y()>0) charge=Param()->TotalCharge(pHit->Particle(),pHit->Eloss(),pHit->Y()-Param()->SectorSizeY()); else charge=Param()->TotalCharge(pHit->Particle(),pHit->Eloss(),pHit->Y()+Param()->SectorSizeY()); for(pSeg->FirstPad(pHit->X(),pHit->Y(),0,dx,dy);pSeg->MorePads();pSeg->NextPad()){//pads loop AddSDigit(pHit->Chamber(),pSeg->Ix(),pSeg->Iy(), Int_t(charge*TMath::Abs(pRes->IntXY(pSeg))), iPrimN);//chamber-xpad-ypad-qdc-track1-2-3 }//pads loop }//hits loop }//prims loop delete pSeg; fLoader->TreeS()->Fill(); fLoader->WriteSDigits("OVERWRITE"); }//events loop fLoader->UnloadHits(); fLoader->UnloadSDigits(); if(GetDebug()) Info("Hit2SDigits","Stop."); }//void AliRICH::Hits2SDigits() //__________________________________________________________________________________________________ void AliRICH::SDigits2Digits() {//Generate digits from sdigits. if(GetDebug()) Info("SDigits2Digits","Start."); AliRunDigitizer *pManager = new AliRunDigitizer(1,1); pManager->SetInputStream(0,"galice.root"); pManager->Exec("deb"); if(GetDebug()) Info("SDigits2Digits","Stop."); }//void AliRICH::SDigits2Digits() //__________________________________________________________________________________________________ void AliRICH::Digits2Reco() { // Generate clusters // Called from alirun, single event only. if(GetDebug()) Info("Digits2Reco","Start."); int nparticles = gAlice->GetNtrack(); cout << "Particles (RICH):" < 0) FindClusters(0); }//void AliRICH::Digits2Reco() //__________________________________________________________________________________________________ void AliRICH::AddDigits(Int_t id, Int_t *tracks, Int_t *charges, Int_t *digits) {// Add a RICH digit to the list TClonesArray &ldigits = *((TClonesArray*)fDchambers->At(id)); new(ldigits[fNdch[id]++]) AliRICHDigit(tracks,charges,digits); } void AliRICH::AddRawCluster(Int_t id, const AliRICHRawCluster& c) {// Add a RICH digit to the list TClonesArray &lrawcl = *((TClonesArray*)fRawClusters->At(id)); new(lrawcl[fNrawch[id]++]) AliRICHRawCluster(c); } //_____________________________________________________________________________ void AliRICH::AddRecHit1D(Int_t id, Float_t *rechit, Float_t *photons, Int_t *padsx, Int_t* padsy) {// Add a RICH reconstructed hit to the list TClonesArray &lrec1D = *((TClonesArray*)fRecHits1D->At(id)); new(lrec1D[fNrechits1D[id]++]) AliRICHRecHit1D(id,rechit,photons,padsx,padsy); } //_____________________________________________________________________________ void AliRICH::AddRecHit3D(Int_t id, Float_t *rechit, Float_t omega, Float_t theta, Float_t phi) {// Add a RICH reconstructed hit to the list TClonesArray &lrec3D = *((TClonesArray*)fRecHits3D->At(id)); new(lrec3D[fNrechits3D[id]++]) AliRICHRecHit3D(id,rechit,omega,theta,phi); } //______________________________________________________________________________ void AliRICH::BuildGeometry() {//Builds a TNode geometry for event display if(GetDebug())Info("BuildGeometry","Start."); TNode *node, *subnode, *top; top=gAlice->GetGeometry()->GetNode("alice"); new TBRIK("S_RICH","S_RICH","void",71.09999,11.5,73.15); Float_t wid=fpParam->SectorSizeX(); Float_t len=fpParam->SectorSizeY(); new TBRIK("PHOTO","PHOTO","void",wid/2,0.1,len/2); for(int i=1;i<=kNCH;i++){ top->cd(); node = new TNode(Form("RICH%i",i),Form("RICH%i",i),"S_RICH",C(i)->X(),C(i)->Y(),C(i)->Z(),C(i)->RotMatrixName()); node->SetLineColor(kRed); node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",wid+fpParam->DeadZone(),5,len/2+fpParam->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,len/2+fpParam->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-wid-fpParam->DeadZone(),5,len/2+fpParam->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",wid+fpParam->DeadZone(),5,-len/2-fpParam->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-len/2 -fpParam->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-wid-fpParam->DeadZone(),5,-len/2 - fpParam->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); fNodes->Add(node); } if(GetDebug())Info("BuildGeometry","Stop."); }//void AliRICH::BuildGeometry() //______________________________________________________________________________ void AliRICH::CreateMaterials() { // // *** DEFINITION OF AVAILABLE RICH MATERIALS *** // ORIGIN : NICK VAN EIJNDHOVEN // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); Int_t i; /************************************Antonnelo's Values (14-vectors)*****************************************/ /* Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9, 6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 }; Float_t rIndexQuarz[14] = { 1.528309,1.533333, 1.538243,1.544223,1.550568,1.55777, 1.565463,1.574765,1.584831,1.597027, 1.611858,1.6277,1.6472,1.6724 }; Float_t rIndexOpaqueQuarz[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexMethane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t abscoFreon[14] = { 179.0987,179.0987, 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. }; //Float_t abscoFreon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, // 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoQuarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52, 14.177,9.282,4.0925,1.149,.3627,.10857 }; Float_t abscoOpaqueQuarz[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoCsI[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t abscoMethane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6, 1e6,1e6,1e6 }; Float_t abscoGrid[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t efficAll[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t efficCsI[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575, .17425,.1785,.1836,.1904,.1938,.221 }; Float_t efficGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; */ /**********************************End of Antonnelo's Values**********************************/ /**********************************Values from rich_media.f (31-vectors)**********************************/ //Photons energy intervals Float_t ppckov[26]; for (i=0;i<26;i++) { ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9; } //Refraction index for quarz Float_t rIndexQuarz[26]; Float_t e1= 10.666; Float_t e2= 18.125; Float_t f1= 46.411; Float_t f2= 228.71; for (i=0;i<26;i++) { Float_t ene=ppckov[i]*1e9; Float_t a=f1/(e1*e1 - ene*ene); Float_t b=f2/(e2*e2 - ene*ene); rIndexQuarz[i] = TMath::Sqrt(1. + a + b ); } //Refraction index for opaque quarz, methane and grid Float_t rIndexOpaqueQuarz[26]; Float_t rIndexMethane[26]; Float_t rIndexGrid[26]; for (i=0;i<26;i++) { rIndexOpaqueQuarz[i]=1; rIndexMethane[i]=1.000444; rIndexGrid[i]=1; } //Absorption index for freon Float_t abscoFreon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 7.069031, 4.461292, 2.028366, 1.293013, .577267, .40746, .334964, 0., 0., 0.}; //Absorption index for quarz /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902, .906,.907,.907,.907}; Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0, 215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0}; Float_t abscoQuarz[31]; for (Int_t i=0;i<31;i++) { Float_t Xlam = 1237.79 / (ppckov[i]*1e9); if (Xlam <= 160) abscoQuarz[i] = 0; if (Xlam > 250) abscoQuarz[i] = 1; else { for (Int_t j=0;j<21;j++) { if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1]) { Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]); Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]); abscoQuarz[i] = -5.0/(TMath::Log(Abso)); } } } }*/ /*Float_t abscoQuarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 , 39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 17.94531, 11.88753, 5.99128, 3.83503, 2.36661, 1.53155, 1.30582, 1.08574, .8779708, .675275, 0., 0., 0.}; for (Int_t i=0;i<31;i++) { abscoQuarz[i] = abscoQuarz[i]/10; }*/ Float_t abscoQuarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004, 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627, .192, .1497, .10857}; //Absorption index for methane Float_t abscoMethane[26]; for (i=0;i<26;i++) { abscoMethane[i]=AbsoCH4(ppckov[i]*1e9); } //Absorption index for opaque quarz, csi and grid, efficiency for all and grid Float_t abscoOpaqueQuarz[26]; Float_t abscoCsI[26]; Float_t abscoGrid[26]; Float_t efficAll[26]; Float_t efficGrid[26]; for (i=0;i<26;i++) { abscoOpaqueQuarz[i]=1e-5; abscoCsI[i]=1e-4; abscoGrid[i]=1e-4; efficAll[i]=1; efficGrid[i]=1; } //Efficiency for csi Float_t efficCsI[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125, 0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999, 0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592, 0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987}; //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND //UNPOLARIZED PHOTONS for (i=0;i<26;i++) { efficCsI[i] = efficCsI[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); } /*******************************************End of rich_media.f***************************************/ Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, zmet[2], zqua[2]; Int_t nlmatfre; Float_t densquao; Int_t nlmatmet, nlmatqua; Float_t wmatquao[2], rIndexFreon[26]; Float_t aquao[2], epsil, stmin, zquao[2]; Int_t nlmatquao; Float_t radlal, densal, tmaxfd, deemax, stemax; Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2]; Int_t *idtmed = fIdtmed->GetArray()-999; // --- Photon energy (GeV) // --- Refraction indexes for (i = 0; i < 26; ++i) { rIndexFreon[i] = ppckov[i] * .0172 * 1e9 + 1.177; //rIndexFreon[i] = 1; } // --- Detection efficiencies (quantum efficiency for CsI) // --- Define parameters for honeycomb. // Used carbon of equivalent rad. lenght ahon = 12.01; zhon = 6.; denshon = 0.1; radlhon = 18.8; // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) aqua[0] = 28.09; aqua[1] = 16.; zqua[0] = 14.; zqua[1] = 8.; densqua = 2.64; nlmatqua = -2; wmatqua[0] = 1.; wmatqua[1] = 2.; // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) aquao[0] = 28.09; aquao[1] = 16.; zquao[0] = 14.; zquao[1] = 8.; densquao = 2.64; nlmatquao = -2; wmatquao[0] = 1.; wmatquao[1] = 2.; // --- Parameters to include in GSMIXT, relative to Freon (C6F14) afre[0] = 12.; afre[1] = 19.; zfre[0] = 6.; zfre[1] = 9.; densfre = 1.7; nlmatfre = -2; wmatfre[0] = 6.; wmatfre[1] = 14.; // --- Parameters to include in GSMIXT, relative to methane (CH4) amet[0] = 12.01; amet[1] = 1.; zmet[0] = 6.; zmet[1] = 1.; densmet = 7.17e-4; nlmatmet = -2; wmatmet[0] = 1.; wmatmet[1] = 4.; // --- Parameters to include in GSMIXT, relative to anode grid (Cu) agri = 63.54; zgri = 29.; densgri = 8.96; radlgri = 1.43; // --- Parameters to include in GSMATE related to aluminium sheet aal = 26.98; zal = 13.; densal = 2.7; radlal = 8.9; // --- Glass parameters Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; Float_t zglass[5]={ 6., 14., 8., 5., 11.}; Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; Float_t dglass=1.74; AliMaterial(1, "Air $", 14.61, 7.3, .001205, 30420., 67500); AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0); AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0); AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua); AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao); AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre); AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet); AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet); AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0); AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0); AliMixture(32, "GLASS",aglass, zglass, dglass, 5, wglass); AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); tmaxfd = -10.; stemax = -.1; deemax = -.2; epsil = .001; stmin = -.001; AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "HONEYCOMB$", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "QUARZO$", 20, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "FREON$", 30, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "METANO$", 40, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "CSI$", 16, 1, isxfld, sxmgmx,tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "GRIGLIA$", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "QUARZOO$", 21, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(9, "GAP$", 41, 1, isxfld, sxmgmx,tmaxfd, .1, -deemax, epsil, -stmin); AliMedium(10, "ALUMINUM$", 50, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(11, "GLASS", 32, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(12, "PCB_COPPER", 31, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); gMC->SetCerenkov(idtmed[1000], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1001], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1002], 26, ppckov, abscoQuarz, efficAll,rIndexQuarz); gMC->SetCerenkov(idtmed[1003], 26, ppckov, abscoFreon, efficAll,rIndexFreon); gMC->SetCerenkov(idtmed[1004], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1005], 26, ppckov, abscoCsI, efficCsI, rIndexMethane); gMC->SetCerenkov(idtmed[1006], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); gMC->SetCerenkov(idtmed[1007], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz); gMC->SetCerenkov(idtmed[1008], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1009], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); gMC->SetCerenkov(idtmed[1010], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz); } //__________________________________________________________________________________________________ Float_t AliRICH::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola) { //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.) Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2, 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7, 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5}; Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05, 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11, 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95, 1.72,1.53}; Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543, 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878, 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824, 1.714,1.498}; Float_t xe=ene; Int_t j=Int_t(xe*10)-49; Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]); Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]); //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197 Float_t sinin=TMath::Sqrt(1-pdoti*pdoti); Float_t tanin=sinin/pdoti; Float_t c1=cn*cn-ck*ck-sinin*sinin; Float_t c2=4*cn*cn*ck*ck; Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1)); Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1); Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2); Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2); //CORRECTION FACTOR FOR SURFACE ROUGHNESS //B.J. STAGG APPLIED OPTICS, 30(1991),4113 Float_t sigraf=18.; Float_t lamb=1240/ene; Float_t fresn; Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb)); if(pola) { Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr)); } else fresn=0.5*(rp+rs); fresn = fresn*rO; return(fresn); }//Float_t AliRICH::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola) //__________________________________________________________________________________________________ Float_t AliRICH::AbsoCH4(Float_t x) { //KLOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31) Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.}; //MB X 10^22 //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145}; Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55}; const Float_t kLosch=2.686763E19; // LOSCHMIDT NUMBER IN CM-3 const Float_t kIgas1=100, kIgas2=0, kOxy=10., kWater=5., kPressure=750.,kTemperature=283.; Float_t pn=kPressure/760.; Float_t tn=kTemperature/273.16; // ------- METHANE CROSS SECTION ----------------- // ASTROPH. J. 214, L47 (1978) Float_t sm=0; if (x<7.75) sm=.06e-22; if(x>=7.75 && x<=8.1) { Float_t c0=-1.655279e-1; Float_t c1=6.307392e-2; Float_t c2=-8.011441e-3; Float_t c3=3.392126e-4; sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18; } if (x> 8.1) { Int_t j=0; while (x<=em[j] && x>=em[j+1]) { j++; Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]); sm=(sch4[j]+a*(x-em[j]))*1e-22; } } Float_t dm=(kIgas1/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; Float_t abslm=1./sm/dm; // ------- ISOBUTHANE CROSS SECTION -------------- // i-C4H10 (ai) abs. length from curves in // Lu-McDonald paper for BARI RICH workshop . // ----------------------------------------------------------- Float_t ai; Float_t absli; if (kIgas2 != 0) { if (x<7.25) ai=100000000.; if(x>=7.25 && x<7.375) ai=24.3; if(x>=7.375) ai=.0000000001; Float_t si = 1./(ai*kLosch*273.16/293.); // ISOB. CRO.SEC.IN CM2 Float_t di=(kIgas2/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; absli =1./si/di; } else absli=1.e18; // --------------------------------------------------------- // // transmission of O2 // // y= path in cm, x=energy in eV // so= cross section for UV absorption in cm2 // do= O2 molecular density in cm-3 // --------------------------------------------------------- Float_t abslo; Float_t so=0; if(x>=6.0) { if(x>=6.0 && x<6.5) { so=3.392709e-13 * TMath::Exp(2.864104 *x); so=so*1e-18; } if(x>=6.5 && x<7.0) { so=2.910039e-34 * TMath::Exp(10.3337*x); so=so*1e-18; } if (x>=7.0) { Float_t a0=-73770.76; Float_t a1=46190.69; Float_t a2=-11475.44; Float_t a3=1412.611; Float_t a4=-86.07027; Float_t a5=2.074234; so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x); so=so*1e-18; } Float_t dox=(kOxy/1e6)*kLosch*pn/tn; abslo=1./so/dox; } else abslo=1.e18; // --------------------------------------------------------- // // transmission of H2O // // y= path in cm, x=energy in eV // sw= cross section for UV absorption in cm2 // dw= H2O molecular density in cm-3 // --------------------------------------------------------- Float_t abslw; Float_t b0=29231.65; Float_t b1=-15807.74; Float_t b2=3192.926; Float_t b3=-285.4809; Float_t b4=9.533944; if(x>6.75) { Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x); sw=sw*1e-18; Float_t dw=(kWater/1e6)*kLosch*pn/tn; abslw=1./sw/dw; } else abslw=1.e18; // --------------------------------------------------------- Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw); return (alength); } //__________________________________________________________________________________________________ void AliRICH::ResetDigits() {//Reset number of digits and the digits array for this detector for ( int i=0;iAt(i)) fDchambers->At(i)->Clear(); if (fNdch) fNdch[i]=0; } } //__________________________________________________________________________________________________ void AliRICH::ResetRawClusters() {//Reset number of raw clusters and the raw clust array for this detector for ( int i=0;iAt(i)) ((TClonesArray*)fRawClusters->At(i))->Clear(); if (fNrawch) fNrawch[i]=0; } } //__________________________________________________________________________________________________ void AliRICH::ResetRecHits1D() {//Reset number of raw clusters and the raw clust array for this detector for ( int i=0;iAt(i)) ((TClonesArray*)fRecHits1D->At(i))->Clear(); if (fNrechits1D) fNrechits1D[i]=0; } } //__________________________________________________________________________________________________ void AliRICH::ResetRecHits3D() {// Reset number of raw clusters and the raw clust array for this detector for ( int i=0;iAt(i)) ((TClonesArray*)fRecHits3D->At(i))->Clear(); if (fNrechits3D) fNrechits3D[i]=0; } } //__________________________________________________________________________________________________ void AliRICH::FindClusters(Int_t nev /*kir,Int_t lastEntry*/) {// Loop on chambers and on cathode planes for (Int_t icat=1;icat<2;icat++) { gAlice->ResetDigits(); gAlice->TreeD()->GetEvent(0); for (Int_t ich=0;ichAt(ich); TClonesArray *pRICHdigits = this->DigitsAddress(ich); if (pRICHdigits == 0) continue; // // Get ready the current chamber stuff // AliRICHResponse* response = iChamber->GetResponseModel(); AliSegmentation* seg = iChamber->GetSegmentationModel(); AliRICHClusterFinder* rec = iChamber->GetReconstructionModel(); if (seg) { rec->SetSegmentation(seg); rec->SetResponse(response); rec->SetDigits(pRICHdigits); rec->SetChamber(ich); if (nev==0) rec->CalibrateCOG(); rec->FindRawClusters(); } TClonesArray *fRch; fRch=RawClustAddress(ich); fRch->Sort(); } // for ich gAlice->TreeR()->Fill(); TClonesArray *fRch; for (int i=0;iGetEntriesFast(); } ResetRawClusters(); } // for icat char hname[30]; sprintf(hname,"TreeR%d",nev); gAlice->TreeR()->Write(hname,kOverwrite,0); gAlice->TreeR()->Reset(); }//void AliRICH::FindClusters(Int_t nev) //__________________________________________________________________________________________________ void AliRICH::MakeBranchInTreeD(TTree *treeD, const char *file) {// Create TreeD branches for the RICH. if(GetDebug())Info("MakeBranchInTreeD","Start."); const Int_t kBufferSize = 4000; char branchname[30]; // // one branch for digits per chamber // for (Int_t i=0; iTreeS()){ if(!fSDigits) fSDigits=new TClonesArray("AliRICHdigit",100000); MakeBranchInTree(fLoader->TreeS(),"RICH",&fSDigits,kBufferSize,0) ; } int i; if (cD&&fLoader->TreeD()){ if(!fDchambers){ fDchambers=new TObjArray(kNCH); // one branch for digits per chamber for(i=0;iAddAt(new TClonesArray("AliRICHDigit",10000), i); } } for (i=0; iTreeD(),branchname, &((*fDchambers)[i]), kBufferSize, 0); } } if (cR&&gAlice->TreeR()){//one branch for raw clusters per chamber Int_t i; if (fRawClusters == 0x0 ) { fRawClusters = new TObjArray(kNCH); for (i=0; iAddAt(new TClonesArray("AliRICHRawCluster",10000), i); } } if (fRecHits1D == 0x0) { fRecHits1D = new TObjArray(kNCH); for (i=0; iAddAt(new TClonesArray("AliRICHRecHit1D",1000), i); } } if (fRecHits3D == 0x0) { fRecHits3D = new TObjArray(kNCH); for (i=0; iAddAt(new TClonesArray("AliRICHRecHit3D",1000), i); } } for (i=0; iTreeR(),branchname, &((*fRawClusters)[i]), kBufferSize, 0); sprintf(branchname,"%sRecHits1D%d",GetName(),i+1); MakeBranchInTree(fLoader->TreeR(),branchname, &((*fRecHits1D)[i]), kBufferSize, 0); sprintf(branchname,"%sRecHits3D%d",GetName(),i+1); MakeBranchInTree(fLoader->TreeR(),branchname, &((*fRecHits3D)[i]), kBufferSize, 0); } }//if (cR && gAlice->TreeR()) if(GetDebug())Info("MakeBranch","Stop."); }//void AliRICH::MakeBranch(Option_t* option) //______________________________________________________________________________ void AliRICH::SetTreeAddress() {//Set branch address for the Hits and Digits Tree. if(GetDebug())Info("SetTreeAddress","Start."); char branchname[20]; Int_t i; TBranch *branch; TTree *treeH = fLoader->TreeH(); TTree *treeD = fLoader->TreeD(); TTree *treeR = fLoader->TreeR(); if(treeH){ if(GetDebug())Info("SetTreeAddress","tree H is requested."); if(fHits==0x0) fHits=new TClonesArray("AliRICHhit",1000); branch = treeH->GetBranch("RICHCerenkov"); if(branch){ if (fCerenkovs == 0x0) fCerenkovs = new TClonesArray("AliRICHCerenkov",1000); branch->SetAddress(&fCerenkovs); } //kir branch = treeH->GetBranch("RICHSDigits"); //kir if (branch) //kir { //kir if (fSDigits == 0x0) fSDigits = new TClonesArray("AliRICHdigit",100000); //kir branch->SetAddress(&fSDigits); //kir } }//if(treeH) AliDetector::SetTreeAddress();//this is after TreeH because we need to guarantee that fHits array is created if(fLoader->TreeS()){ if(GetDebug())Info("SetTreeAddress","tree S is requested."); if(!fSDigits) fSDigits=new TClonesArray("AliRICHdigit",100000); fLoader->TreeS()->GetBranch("RICH")->SetAddress(&fSDigits); } if(treeD){ if(GetDebug())Info("SetTreeAddress","tree D is requested."); if (fDchambers == 0x0) { fDchambers = new TObjArray(kNCH); for (i=0; iAddAt(new TClonesArray("AliRICHDigit",10000), i); } } for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fDchambers)[i])); } } } if(treeR){ if(GetDebug())Info("SetTreeAddress","tree R is requested."); if (fRawClusters == 0x0 ) { fRawClusters = new TObjArray(kNCH); for (i=0; iAddAt(new TClonesArray("AliRICHRawCluster",10000), i); } } if (fRecHits1D == 0x0) { fRecHits1D = new TObjArray(kNCH); for (i=0; iAddAt(new TClonesArray("AliRICHRecHit1D",1000), i); } } if (fRecHits3D == 0x0) { fRecHits3D = new TObjArray(kNCH); for (i=0; iAddAt(new TClonesArray("AliRICHRecHit3D",1000), i); } } for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRawClusters)[i])); } } for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRecHits1D)[i])); } } for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRecHits3D)[i])); } } }//if(treeR) if(GetDebug())Info("SetTreeAddress","Stop."); }//void AliRICH::SetTreeAddress() //__________________________________________________________________________________________________ void AliRICH::Print(Option_t *option)const { TObject::Print(option); fpParam->Dump(); fChambers->Print(option); }//void AliRICH::Print(Option_t *option)const //__________________________________________________________________________________________________ void AliRICH::CreateGeometry() {//Creates detailed geometry simulation (currently GEANT volumes tree) if(GetDebug())Info("CreateGeometry","Start."); //???????? to be removed to AliRICHParam? fpParam->RadiatorToPads(fpParam->FreonThickness()/2+fpParam->QuartzThickness()+fpParam->GapThickness()); //Opaque quartz thickness Float_t oqua_thickness = .5; //CsI dimensions Float_t csi_width =fpParam->Nx()*fpParam->PadSizeX()+fpParam->DeadZone(); Float_t csi_length=fpParam->Ny()*fpParam->PadSizeY()+2*fpParam->DeadZone(); Int_t *idtmed = fIdtmed->GetArray()-999; Int_t i; Float_t zs; Int_t idrotm[1099]; Float_t par[3]; //External aluminium box par[0]=68.8*cm;par[1]=13*cm;par[2]=70.86*cm;//Original Settings gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3); //Air par[0]=66.3; par[1] = 13; par[2] = 68.35; //Original Settings gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3); //Air 2 (cutting the lower part of the box) par[0]=1.25; par[1] = 3; par[2] = 70.86; //Original Settings gMC->Gsvolu("AIR2", "BOX ", idtmed[1000], par, 3); //Air 3 (cutting the lower part of the box) par[0]=66.3; par[1] = 3; par[2] = 1.2505; //Original Settings gMC->Gsvolu("AIR3", "BOX ", idtmed[1000], par, 3); //Honeycomb par[0]=66.3;par[1]=0.188; par[2] = 68.35; //Original Settings gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3); //Aluminium sheet par[0]=66.3;par[1]=0.025;par[2]=68.35; //Original Settings //par[0] = 66.5; par[1] = .025; par[2] = 63.1; gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3); //Quartz par[0]=fpParam->QuartzWidth()/2;par[1]=fpParam->QuartzThickness()/2;par[2]=fpParam->QuartzLength()/2; gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3); //Spacers (cylinders) par[0]=0.;par[1]=.5;par[2]=fpParam->FreonThickness()/2; gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3); //Feet (freon slabs supports) par[0] = .7; par[1] = .3; par[2] = 1.9; gMC->Gsvolu("FOOT", "BOX", idtmed[1009], par, 3); //Opaque quartz par[0]=fpParam->QuartzWidth()/2;par[1]= .2;par[2]=fpParam->QuartzLength()/2; gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3); //Frame of opaque quartz par[0]=fpParam->OuterFreonWidth()/2;par[1]=fpParam->FreonThickness()/2;par[2]=fpParam->OuterFreonLength()/2; gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3); par[0]=fpParam->InnerFreonWidth()/2;par[1]=fpParam->FreonThickness()/2;par[2]=fpParam->InnerFreonLength()/2; gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3); //Freon par[0]=fpParam->OuterFreonWidth()/2 - oqua_thickness; par[1]=fpParam->FreonThickness()/2; par[2]=fpParam->OuterFreonLength()/2 - 2*oqua_thickness; gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3); par[0]=fpParam->InnerFreonWidth()/2 - oqua_thickness; par[1]=fpParam->FreonThickness()/2; par[2]=fpParam->InnerFreonLength()/2 - 2*oqua_thickness; gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3); //Methane par[0]=csi_width/2;par[1]=fpParam->GapThickness()/2;par[2]=csi_length/2; gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3); //Methane gap par[0]=csi_width/2;par[1]=fpParam->ProximityGapThickness()/2;par[2] = csi_length/2; gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3); //CsI photocathode par[0]=csi_width/2;par[1]=.25;par[2]=csi_length/2; gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3); //Anode grid par[0] = 0.;par[1] = .001;par[2] = 20.; gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3); //Wire supports //Bar of metal par[0]=csi_width/2;par[1]=1.05;par[2]=1.05; gMC->Gsvolu("WSMe", "BOX ", idtmed[1009], par, 3); //Ceramic pick up (base) par[0]=csi_width/2;par[1]= .25;par[2]=1.05; gMC->Gsvolu("WSG1", "BOX ", idtmed[1010], par, 3); //Ceramic pick up (head) par[0] = csi_width/2;par[1] = .1;par[2] = .1; gMC->Gsvolu("WSG2", "BOX ", idtmed[1010], par, 3); //Aluminium supports for methane and CsI //Short bar par[0]=csi_width/2;par[1]=fpParam->GapThickness()/2 + .25; par[2] = (68.35 - csi_length/2)/2; gMC->Gsvolu("SMSH", "BOX", idtmed[1009], par, 3); //Long bar par[0]=(66.3 - csi_width/2)/2;par[1]=fpParam->GapThickness()/2+.25;par[2]=csi_length/2+68.35-csi_length/2; gMC->Gsvolu("SMLG", "BOX", idtmed[1009], par, 3); //Aluminium supports for freon //Short bar par[0] = fpParam->QuartzWidth()/2; par[1] = .3; par[2] = (68.35 - fpParam->QuartzLength()/2)/2; gMC->Gsvolu("SFSH", "BOX", idtmed[1009], par, 3); //Long bar par[0] = (66.3 - fpParam->QuartzWidth()/2)/2; par[1] = .3; par[2] = fpParam->QuartzLength()/2 + 68.35 - fpParam->QuartzLength()/2; gMC->Gsvolu("SFLG", "BOX", idtmed[1009], par, 3); //PCB backplane par[0] = csi_width/2;par[1] = .25; par[2] = csi_length/4 -.5025; gMC->Gsvolu("PCB ", "BOX", idtmed[1011], par, 3); //Backplane supports //Aluminium slab par[0] = 33.15;par[1] = 2;par[2] = 21.65; gMC->Gsvolu("BACK", "BOX", idtmed[1009], par, 3); //Big hole par[0] = 9.05; par[1] = 2; par[2] = 4.4625; gMC->Gsvolu("BKHL", "BOX", idtmed[1000], par, 3); //Small hole par[0] = 5.7;par[1] = 2;par[2] = 4.4625; gMC->Gsvolu("BKHS", "BOX", idtmed[1000], par, 3); //Place holes inside backplane support gMC->Gspos("BKHS", 1, "BACK", .8 + 5.7,0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 2, "BACK", -.8 - 5.7,0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 3, "BACK", .8 + 5.7,0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 4, "BACK", -.8 - 5.7,0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 5, "BACK", .8 + 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 6, "BACK", -.8 - 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 7, "BACK", .8 + 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 8, "BACK", -.8 - 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 1, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 2, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 3, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 4, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 5, "BACK", .8 + 11.4+ 1.6 + 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 6, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 7, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 8, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); //Place material inside RICH gMC->Gspos("SRIC", 1, "RICH", 0.,0., 0., 0, "ONLY"); gMC->Gspos("AIR2", 1, "RICH", 66.3 + 1.2505, 1.276-fpParam->GapThickness()/2-fpParam->QuartzThickness()-fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY"); gMC->Gspos("AIR2", 2, "RICH", -66.3 - 1.2505,1.276-fpParam->GapThickness()/2-fpParam->QuartzThickness()-fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY"); gMC->Gspos("AIR3", 1, "RICH", 0., 1.276-fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, -68.35 - 1.25, 0, "ONLY"); gMC->Gspos("AIR3", 2, "RICH", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 68.35 + 1.25, 0, "ONLY"); gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .376 -.025, 0., 0, "ONLY"); gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .05 - .188, 0., 0, "ONLY"); gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .6 - .025, 0., 0, "ONLY"); gMC->Gspos("FOOT", 1, "SRIC", 64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 2, "SRIC", 21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3 , 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 3, "SRIC", -21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 4, "SRIC", -64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 5, "SRIC", 64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("FOOT", 6, "SRIC", 21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("FOOT", 7, "SRIC", -21.65, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("FOOT", 8, "SRIC", -64.95, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()- .2, 0., 0, "ONLY"); // Methane supports gMC->Gspos("SMLG", 1, "SRIC", csi_width/2 + (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY"); gMC->Gspos("SMLG", 2, "SRIC", - csi_width/2 - (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY"); gMC->Gspos("SMSH", 1, "SRIC", 0., 1.276 + .25, csi_length/2 + (68.35 - csi_length/2)/2, 0, "ONLY"); gMC->Gspos("SMSH", 2, "SRIC", 0., 1.276 + .25, - csi_length/2 - (68.35 - csi_length/2)/2, 0, "ONLY"); //Freon supports Float_t supp_y = 1.276 - fpParam->GapThickness()/2- fpParam->QuartzThickness() -fpParam->FreonThickness() - .2 + .3; //y position of freon supports gMC->Gspos("SFLG", 1, "SRIC", fpParam->QuartzWidth()/2 + (66.3 - fpParam->QuartzWidth()/2)/2, supp_y, 0., 0, "ONLY"); gMC->Gspos("SFLG", 2, "SRIC", - fpParam->QuartzWidth()/2 - (66.3 - fpParam->QuartzWidth()/2)/2, supp_y, 0., 0, "ONLY"); gMC->Gspos("SFSH", 1, "SRIC", 0., supp_y, fpParam->QuartzLength()/2 + (68.35 - fpParam->QuartzLength()/2)/2, 0, "ONLY"); gMC->Gspos("SFSH", 2, "SRIC", 0., supp_y, - fpParam->QuartzLength()/2 - (68.35 - fpParam->QuartzLength()/2)/2, 0, "ONLY"); AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.); //Place spacers Int_t nspacers = 30; for (i = 0; i < nspacers/3; i++) { zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE1", 10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = nspacers/3; i < (nspacers*2)/3; i++) { zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE1", 0, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = (nspacers*2)/3; i < nspacers; ++i) { zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE1", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = 0; i < nspacers/3; i++) { zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE2", 10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = nspacers/3; i < (nspacers*2)/3; i++) { zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE2", 0, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = (nspacers*2)/3; i < nspacers; ++i) { zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE2", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", fpParam->OuterFreonWidth()/2 + fpParam->InnerFreonWidth()/2 + 2, 1.276 - fpParam->GapThickness()/2- fpParam->QuartzThickness() -fpParam->FreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3) gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()/2, 0., 0, "ONLY"); //Original settings gMC->Gspos("OQF1", 3, "SRIC", - (fpParam->OuterFreonWidth()/2 + fpParam->InnerFreonWidth()/2) - 2, 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness() - fpParam->FreonThickness()/2, 0., 0, "ONLY"); //Original settings (-31.3) gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - fpParam->GapThickness()/2 - fpParam->QuartzThickness()/2, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., fpParam->GapThickness()/2 - fpParam->ProximityGapThickness()/2 - 0.0001, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + fpParam->GapThickness()/2 + .25, 0., 0, "ONLY"); //Wire support placing gMC->Gspos("WSG2", 1, "GAP ", 0., fpParam->ProximityGapThickness()/2 - .1, 0., 0, "ONLY"); gMC->Gspos("WSG1", 1, "CSI ", 0., 0., 0., 0, "ONLY"); gMC->Gspos("WSMe", 1, "SRIC ", 0., 1.276 + fpParam->GapThickness()/2 + .5 + 1.05, 0., 0, "ONLY"); //Backplane placing gMC->Gspos("BACK", 1, "SRIC ", -33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, 43.3, 0, "ONLY"); gMC->Gspos("BACK", 2, "SRIC ", 33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2 , 43.3, 0, "ONLY"); gMC->Gspos("BACK", 3, "SRIC ", -33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY"); gMC->Gspos("BACK", 4, "SRIC ", 33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY"); gMC->Gspos("BACK", 5, "SRIC ", 33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY"); gMC->Gspos("BACK", 6, "SRIC ", -33.15, 1.276 + fpParam->GapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY"); //PCB placing gMC->Gspos("PCB ", 1, "SRIC ", 0., 1.276 + fpParam->GapThickness()/2 + .5 + 1.05, csi_width/4 + .5025 + 2.5, 0, "ONLY"); gMC->Gspos("PCB ", 2, "SRIC ", 0., 1.276 + fpParam->GapThickness()/2 + .5 + 1.05, -csi_width/4 - .5025 - 2.5, 0, "ONLY"); //place chambers into mother volume ALIC for(int i=1;i<=kNCH;i++){ AliMatrix(idrotm[1000+i],C(i)->ThetaXd(),C(i)->PhiXd(), C(i)->ThetaYd(),C(i)->PhiYd(), C(i)->ThetaZd(),C(i)->PhiZd()); gMC->Gspos("RICH",i,"ALIC",C(i)->X(),C(i)->Y(),C(i)->Z(),idrotm[1000+i], "ONLY"); } if(GetDebug())Info("CreateGeometry","Stop."); }//void AliRICH::CreateGeometry() //______________________________________________________________________________ void AliRICH::CreateChambers() {//(re)create all RICH Chambers if(GetDebug())Info("CreateChambers","Start."); if(fChambers) delete fChambers;//recreate chambers fChambers=new TObjArray(kNCH); fChambers->SetOwner(); for(int i=0;iAddAt(new AliRICHChamber(i+1,fpParam),i); } if(GetDebug())Info("CreateChambers","Stop."); }//void AliRICH::CreateChambers() //__________________________________________________________________________________________________ void AliRICH::GenerateFeedbacks(Float_t eloss) {// Generate FeedBack photons Int_t j; Float_t cthf, phif, enfp = 0, sthf; Float_t e1[3], e2[3], e3[3]; Float_t vmod, uswop; Float_t dir[3], phi; Float_t pol[3], mom[4]; //Determine number of feedback photons TLorentzVector x4; gMC->TrackPosition(x4);//This sould return the current track position Float_t charge=Param()->TotalCharge(gMC->TrackPid(),eloss,5*cm);//??? Totsl Charge Int_t iNphotons=gMC->GetRandom()->Poisson(Param()->AlphaFeedback()*charge); Info("GenerateFeedbacks","N photons=%i",iNphotons); //Generate photons for(Int_t i=0;iGetRandom()->RndmArray(2,ranf); //Sample direction cthf=ranf[0]*2-1.0; if(cthf<0) continue; sthf = TMath::Sqrt((1 - cthf) * (1 + cthf)); phif = ranf[1] * 2 * TMath::Pi(); if(Double_t randomNumber=gMC->GetRandom()->Rndm()<=0.57) enfp = 7.5e-9; else if(randomNumber<=0.7) enfp = 6.4e-9; else enfp = 7.9e-9; dir[0] = sthf * TMath::Sin(phif); dir[1] = cthf; dir[2] = sthf * TMath::Cos(phif); gMC->Gdtom(dir, mom, 2); mom[0]*=enfp; mom[1]*=enfp; mom[2]*=enfp; mom[3] = TMath::Sqrt(mom[0]*mom[0]+mom[1]*mom[1]+mom[2]*mom[2]); // Polarisation e1[0]= 0; e1[1]=-dir[2]; e1[2]= dir[1]; e2[0]=-dir[1]; e2[1]= dir[0]; e2[2]= 0; e3[0]= dir[1]; e3[1]= 0; e3[2]=-dir[0]; vmod=0; for(j=0;j<3;j++) vmod+=e1[j]*e1[j]; if (!vmod) for(j=0;j<3;j++) { uswop=e1[j]; e1[j]=e3[j]; e3[j]=uswop; } vmod=0; for(j=0;j<3;j++) vmod+=e2[j]*e2[j]; if (!vmod) for(j=0;j<3;j++) { uswop=e2[j]; e2[j]=e3[j]; e3[j]=uswop; } vmod=0; for(j=0;j<3;j++) vmod+=e1[j]*e1[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e1[j]*=vmod; vmod=0; for(j=0;j<3;j++) vmod+=e2[j]*e2[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e2[j]*=vmod; phi = gMC->GetRandom()->Rndm()* 2 * TMath::Pi(); for(j=0;j<3;j++) pol[j]=e1[j]*TMath::Sin(phi)+e2[j]*TMath::Cos(phi); gMC->Gdtom(pol, pol, 2); Int_t outputNtracksStored; gAlice->PushTrack(1, //do not transport gAlice->GetCurrentTrackNumber(),//parent track kFeedback, //PID mom[0],mom[1],mom[2],mom[3], //track momentum x4.X(),x4.Y(),x4.Z(),x4.T(), //track origin pol[0],pol[1],pol[2], //polarization kPFeedBackPhoton,outputNtracksStored,1.0); } }//Int_t AliRICH::FeedBackPhotons() //__________________________________________________________________________________________________ static Int_t sMaxIterPad=0; // Static variables for the pad-hit iterator routines static Int_t sCurIterPad=0; //__________________________________________________________________________________________________ AliRICHSDigit* AliRICH::FirstPad(AliRICHhit* hit,TClonesArray *clusters ) {// Initialise the pad iterator Return the address of the first sdigit for hit TClonesArray *theClusters = clusters; Int_t nclust = theClusters->GetEntriesFast(); if (nclust && hit->PHlast() > 0) { sMaxIterPad=Int_t(hit->PHlast()); sCurIterPad=Int_t(hit->PHfirst()); return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1); } else { return 0; } } //__________________________________________________________________________________________________ AliRICHSDigit* AliRICH::NextPad(TClonesArray *clusters) {// Iterates over pads sCurIterPad++; if (sCurIterPad <= sMaxIterPad) { return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1); } else { return 0; } } //__________________________________________________________________________________________________