/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ #include #include "AliRICH.h" #include "AliRICHPoints.h" #include "AliRICHDetect.h" #include "AliRICHDigit.h" #include "AliRICHRawCluster.h" #include "AliRICHSegmentationV0.h" #include "AliRun.h" #include "TParticle.h" #include "TTree.h" #include "TMath.h" #include "TRandom.h" #include "TH3.h" #include "TH2.h" #include "TCanvas.h" #include ClassImp(AliRICHDetect) //___________________________________________ AliRICHDetect::AliRICHDetect() :TNamed() { // Default constructor fc1 = 0; fc2 = 0; fc3 = 0; } //___________________________________________ AliRICHDetect::AliRICHDetect(const char *name, const char *title) :TNamed(name,title) { TStyle *mystyle=new TStyle("Plain","mystyle"); mystyle->SetPalette(1,0); mystyle->cd(); fc1= new TCanvas("c1","Reconstructed points",50,50,300,350); fc1->Divide(2,2); fc2= new TCanvas("c2","Reconstructed points after SPOT",370,50,300,350); fc2->Divide(2,2); fc3= new TCanvas("c3","Used Digits",690,50,300,350); fc4= new TCanvas("c4","Mesh activation data",50,430,600,350); fc4->Divide(2,1); } //___________________________________________ AliRICHDetect::~AliRICHDetect() { // Destructor } void AliRICHDetect::Detect(Int_t nev, Int_t type) { // // Detection algorithm //printf("Detection started!\n"); Float_t omega,omega1,theta1,phi_relative,steptheta,stepphi,x,y,q=0,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0; Int_t maxi,maxj,maxk; Float_t originalOmega, originalPhi, originalTheta; Float_t binomega, bintheta, binphi; Int_t intomega, inttheta, intphi; Int_t i,j,k; AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH"); AliRICHSegmentationV0* segmentation; AliRICHChamber* iChamber; AliRICHGeometry* geometry; iChamber = &(pRICH->Chamber(0)); segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(); geometry=iChamber->GetGeometryModel(); //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points //const Float_t t=0.6; //Softening of Noise Correction (factor) const Float_t kPi=TMath::Pi(); const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters //printf("Distance to Pads:%f\n",kHeight); const Int_t kSpot=0; //number of passes with spot algorithm const Int_t kDimensionTheta=100; //Matrix dimension for angle Detection const Int_t kDimensionPhi=100; const Int_t kDimensionOmega=100; const Float_t SPOTp=.25; //Percentage of spot action const Float_t kMinOmega=.4; const Float_t kMaxOmega=.7; //Maximum Cherenkov angle to identify const Float_t kMinTheta=0; const Float_t kMaxTheta=10*kPi/180; const Float_t kMinPhi=0; const Float_t kMaxPhi=360*kPi/180; Float_t rechit[6]; //Reconstructed point data Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta; stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi; static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi); static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega); static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi); static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega); static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25); static TH1F *AngleAct = new TH1F("AngleAct","Activation per angle",100,.45,1); static TH1F *Activation = new TH1F("Activation","Activation per ring",100,0,25); Points->SetXTitle("theta"); Points->SetYTitle("phi"); Points->SetZTitle("omega"); ThetaPhi->SetXTitle("theta"); ThetaPhi->SetYTitle("phi"); OmegaTheta->SetXTitle("theta"); OmegaTheta->SetYTitle("omega"); OmegaPhi->SetXTitle("phi"); OmegaPhi->SetYTitle("omega"); SpotPoints->SetXTitle("theta"); SpotPoints->SetYTitle("phi"); SpotPoints->SetZTitle("omega"); SpotThetaPhi->SetXTitle("theta"); SpotThetaPhi->SetYTitle("phi"); SpotOmegaTheta->SetXTitle("theta"); SpotOmegaTheta->SetYTitle("omega"); SpotOmegaPhi->SetXTitle("phi"); SpotOmegaPhi->SetYTitle("omega"); AngleAct->SetFillColor(5); AngleAct->SetXTitle("rad"); AngleAct->SetYTitle("activation"); Activation->SetFillColor(5); Activation->SetXTitle("activation"); Int_t ntracks = (Int_t)pRICH->TreeH()->GetEntries(); Float_t trackglob[3]; Float_t trackloc[3]; //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45)); Int_t track; for (track=0; trackResetHits(); pRICH->TreeH()->GetEvent(track); TClonesArray *pHits = pRICH->Hits(); if (pHits == 0) return; Int_t nhits = pHits->GetEntriesFast(); if (nhits == 0) continue; //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries(); AliRICHhit *mHit = 0; //Int_t npoints=0; Int_t counter=0, counter1=0; //Initialization for(i=0;iCerenkovs()->GetEntriesFast(); originalOmega = 0; counter = 0; for (Int_t hit=0;hitCerenkovs()->UncheckedAt(hit); Float_t loss = cHit->fLoss; //did it hit the CsI? Float_t production = cHit->fProduction; //was it produced in freon? Float_t cherenkov = cHit->fCerenkovAngle; //production cerenkov angle if (loss == 4 && production == 1) { counter +=1; originalOmega += cherenkov; //printf("%f\n",cherenkov); } } printf("Cerenkovs : %d\n",counter); if(counter != 0) //if there are cerenkovs { originalOmega = originalOmega/counter; printf("Original omega: %f\n",originalOmega); mHit = (AliRICHhit*) pHits->UncheckedAt(0); Int_t nch = mHit->Chamber(); originalTheta = mHit->Theta(); originalPhi = mHit->Phi(); trackglob[0] = mHit->X(); trackglob[1] = mHit->Y(); trackglob[2] = mHit->Z(); printf("\n--------------------------------------\n"); printf("Chamber %d, track %d\n", nch, track); iChamber = &(pRICH->Chamber(nch-1)); //printf("Nch:%d\n",nch); iChamber->GlobaltoLocal(trackglob,trackloc); iChamber->LocaltoGlobal(trackloc,trackglob); cx=trackloc[0]; cy=trackloc[2]; AliRICHDigit *points = 0; TClonesArray *pDigits = pRICH->DigitsAddress(nch-1); AliRICHRawCluster *cluster =0; TClonesArray *pClusters = pRICH->RawClustAddress(nch-1); Int_t maxcycle=0; //digitize from digits if(type==0) { gAlice->TreeD()->GetEvent(0); Int_t ndigits = pDigits->GetEntriesFast(); maxcycle=ndigits; printf("Got %d digits\n",ndigits); } //digitize from clusters if(type==1) { Int_t nent=(Int_t)gAlice->TreeR()->GetEntries(); gAlice->TreeR()->GetEvent(nent-1); Int_t nclusters = pClusters->GetEntriesFast(); maxcycle=nclusters; printf("Got %d clusters\n",nclusters); } counter=0; printf("Starting calculations\n"); printf(" Start Finish\n"); printf("Progress: "); for(Float_t theta=0;thetaUncheckedAt(cycle); segmentation->GetPadC(points->PadX(), points->PadY(),x, y, z); } if(type==1) { cluster=(AliRICHRawCluster*) pClusters->UncheckedAt(cycle); x=cluster->fX; y=cluster->fY; q=cluster->fQ; } if(type ==0 || q > 100) { x=x-cx; y=y-cy; radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2)); //calculation of relative phi angle of digit phi_relative = acos(y/radius); phi_relative = TMath::Abs(phi_relative - phi); if(radius>4) { meanradius+=radius; counter++; //if (radius < (2*kHeight*tan(theta+kMaxOmega))) if (radius < (2*kHeight*tan(kMaxOmega))) //if(Fiducial(x,y,theta,phi,kHeight,kMaxOmega,kMinOmega)) { if(phi==0) { //printf("Radius: %f, Max Radius: %f\n",radius,2*kHeight*tan(theta+kMaxOmega)*3/4); //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y); //printf("Using digit %d, for theta %f\n",dig,theta); } counter1++; l=kHeight/cos(theta); //main calculation DigitsXY->Fill(x,y,(float) 1); theta1=SnellAngle(theta); aux1=-y*sin(phi)+x*cos(phi); aux2=y*cos(phi)+x*sin(phi); aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2); omega=atan(sqrt(aux3)); //omega is distorted, theta1 is distorted if(InvSnellAngle(omega+TMath::Abs(cos(phi_relative))*theta1)<999) { omega1=InvSnellAngle(omega+TMath::Abs(cos(phi_relative))*theta); theta1=InvSnellAngle(theta1); } else { omega1=0; theta1=0; } if(omega1kMinOmega) { //printf("Omega found:%f\n",omega); omega1=omega1-kMinOmega; //printf("Omega: %f Theta: %3.1f Phi:%3.1f\n",omega, theta*180/kPi, phi*180/kPi); bintheta=theta1*kDimensionTheta/kMaxTheta; binphi=phi*kDimensionPhi/kMaxPhi; binomega=omega1*kDimensionOmega/(kMaxOmega-kMinOmega); if(Int_t(bintheta+0.5)==Int_t(bintheta)) inttheta=Int_t(bintheta); else inttheta=Int_t(bintheta+0.5); if(Int_t(binomega+0.5)==Int_t(binomega)) intomega=Int_t(binomega); else intomega=Int_t(binomega+0.5); if(Int_t(binphi+0.5)==Int_t(binphi)) intphi=Int_t(binphi); else intphi=Int_t(binphi+0.5); //printf("Point added at %d %d %d\n",inttheta,intphi,intomega); if(type==0) point[inttheta][intphi][intomega]+=1; if(type==1) point[inttheta][intphi][intomega]+=(Int_t)(q); //printf("Omega stored:%d\n",intomega); Points->Fill(inttheta,intphi,intomega,(float) 1); ThetaPhi->Fill(inttheta,intphi,(float) 1); OmegaTheta->Fill(inttheta,intomega,(float) 1); OmegaPhi->Fill(intphi,intomega,(float) 1); //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega)); } //if(omegacd(1); Points->Draw("colz"); fc1->cd(2); ThetaPhi->Draw("colz"); fc1->cd(3); OmegaTheta->Draw("colz"); fc1->cd(4); OmegaPhi->Draw("colz"); fc3->cd(); DigitsXY->Draw("colz"); } else { //fc1->cd(1); //Points->Draw("same"); //fc1->cd(2); //ThetaPhi->Draw("same"); //fc1->cd(3); //OmegaTheta->Draw("same"); //fc1->cd(4); //OmegaPhi->Draw("same"); } } //SPOT execute twice for(Int_t s=0;spoint[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&& (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&& (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1])) { //cout<<"SPOT"<Fill(i,j,k,(float) point1[i][j][k]); //printf("Random number %f\n",random->Rndm(2)); //if(random->Rndm() < .2) //{ SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]); SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]); SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]); counter1++; //} //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]); } } } //if(point1[i][j][k] != 0) //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]); } } } } //printf("Filled %d cells\n",counter1); if(nev<2) { if(nev==0) { fc2->cd(1); SpotPoints->Draw("colz"); fc2->cd(2); SpotThetaPhi->Draw("colz"); fc2->cd(3); SpotOmegaTheta->Draw("colz"); fc2->cd(4); SpotOmegaPhi->Draw("colz"); } else { //fc2->cd(1); //SpotPoints->Draw("same"); //fc2->cd(2); //SpotThetaPhi->Draw("same"); //fc2->cd(3); //SpotOmegaTheta->Draw("same"); //fc2->cd(4); //SpotOmegaPhi->Draw("same"); } } //Identification is equivalent to maximum determination max=0;maxi=0;maxj=0;maxk=0; printf(" Proceeding to identification"); for(i=0;imax) { //cout<<"maxi="<Fill(FinalOmega, (float) max); Activation->Fill(max, (float) 1); if(nev==0) { fc4->cd(1); AngleAct->Draw(); fc4->cd(2); Activation->Draw(); } else { fc4->cd(1); AngleAct->Draw("same"); fc4->cd(2); Activation->Draw("same"); } //fscanf(omegas,"%f",&realomega); //fscanf(thetas,"%f",&realtheta); //printf("Real Omega: %f",realomega); //cout<<"Detected:theta="<AddRecHit3D(nch-1,rechit,originalOmega, originalTheta, originalPhi); //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]); //printf("Chamber:%d",nch); } else //if no cerenkovs { rechit[0] = 0; rechit[1] = 0; rechit[2] = 0; rechit[3] = 0; rechit[4] = 0; } } if(type==1) //reco from clusters { pRICH->ResetRawClusters(); //Int_t nent=(Int_t)gAlice->TreeR()->GetEntries(); //gAlice->TreeR()->GetEvent(track); //printf("Going to branch %d\n",track); //gAlice->GetEvent(nev); } //printf("\n\n\n\n"); gAlice->TreeR()->Fill(); TClonesArray *fRec; for (i=0;iRecHitsAddress3D(i); int ndig=fRec->GetEntriesFast(); printf ("Chamber %d, rings %d\n",i+1,ndig); } pRICH->ResetRecHits3D(); free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); } Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega) { // // Calculates area of an ellipse for given incidence angles Float_t area; const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2); return (area); } Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh) // allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] { long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1; Int_t ***t; int NR_END=1; // allocate pointers to pointers to rows t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**))); if (!t) printf("allocation failure 1 in f3tensor()"); t += NR_END; t -= nrl; // allocate pointers to rows and set pointers to them t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*))); if (!t[nrl]) printf("allocation failure 2 in f3tensor()"); t[nrl] += NR_END; t[nrl] -= ncl; // allocate rows and set pointers to them t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t))); if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()"); t[nrl][ncl] += NR_END; t[nrl][ncl] -= ndl; for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep; for(i=nrl+1;i<=nrh;i++) { t[i]=t[i-1]+ncol; t[i][ncl]=t[i-1][ncl]+ncol*ndep; for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep; } // return pointer to array of pointers to rows return t; } void AliRICHDetect::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh) {// free a Int_t f3tensor allocated by i3tensor() nrh++;ndh++;nch++; int NR_END=1; free((char*) (t[nrl][ncl]+ndl-NR_END)); free((char*) (t[nrl]+ncl-NR_END)); free((char*) (t+nrl-NR_END)); } Float_t AliRICHDetect:: SnellAngle(Float_t iangle) { // Compute the Snell angle Float_t nfreon = 1.295; Float_t nquartz = 1.585; Float_t ngas = 1; Float_t sinrangle; Float_t rangle; Float_t a1, a2; a1=nfreon/nquartz; a2=nquartz/ngas; sinrangle = a1*a2*sin(iangle); if(sinrangle>1.) { rangle = 999.; return rangle; } rangle = asin(sinrangle); return rangle; } Float_t AliRICHDetect:: InvSnellAngle(Float_t rangle) { // Compute the inverse Snell angle Float_t nfreon = 1.295; Float_t nquartz = 1.585; Float_t ngas = 1; Float_t siniangle; Float_t iangle; Float_t a1,a2; a1=nfreon/nquartz; a2=nquartz/ngas; siniangle = sin(rangle)/(a1*a2); iangle = asin(siniangle); if(siniangle>1.) { iangle = 999.; return iangle; } iangle = asin(siniangle); return iangle; } //________________________________________________________________________________ void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h) { // Create points along the ellipse equation Int_t s1,s2; Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2; //TRandom *random=new TRandom(); static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25); for(Float_t i=0;i<1000;i++) { Float_t counter=0; c0=0;c1=0;c2=0; while((c1*c1-4*c2*c0)<=0 && counter<1000) { //Choose which side to go... if(i>250 && i<750) s1=1; //if (gRandom->Rndm(1)>.5) s1=1; else s1=-1; //printf("s1:%d\n",s1); //Trial a y y=s1*i*gRandom->Rndm(Int_t(fiducial/50)); //printf("Fiducial %f for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi); Float_t alfa1=theta; Float_t theta1=phi; Float_t omega1=omega; //Solve the eq for a trial x c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2); c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2); c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2); //cout<<"Trial: y="<=1000) y=0; //Choose which side to go... //if(gRandom->Rndm(1)>.5) s=1; //else s=-1; if(i>500) s2=1; //if (gRandom->Rndm(1)>.5) s2=1; else s2=-1; xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2); //cout<<"x="<Fill(xtrial,y); //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]); } fc3->cd(2); REllipse->Draw(); } Int_t AliRICHDetect::Fiducial(Float_t rotx, Float_t roty, Float_t theta, Float_t phi, Float_t height, Float_t maxOmega, Float_t minOmega) { Float_t x,y,y1,h,omega1,omega2; Float_t a,b, offset; Float_t a1,b1, offset1; h = height; //refraction calculation theta = SnellAngle(theta); phi = phi - TMath::Pi(); omega1 = SnellAngle(maxOmega); omega2 = SnellAngle(minOmega); //maximum zone a = h*(tan(omega1+theta)+tan(omega1-theta))/2; b = h*tan(omega1); offset = h*(tan(omega1+theta)-tan(omega1-theta))/2; //minimum zone a1 = h*(tan(omega2+theta)+tan(omega2-theta))/2; b1 = h*tan(omega2); offset1 = h*(tan(omega2+theta)-tan(omega2-theta))/2; //rotation to phi=0 x = rotx*cos(phi)+roty*sin(phi); y = -rotx*sin(phi)+roty*cos(phi) - offset; y1 = -rotx*sin(phi)+roty*cos(phi) - offset1; if(x*x/a+y*y/b<1 && x*x/a1+y1*y1/b1>1) return 1; else return 0; }