#ifndef AliRICHParam_h #define AliRICHParam_h #include #include #include #include #include static const int kNCH=7; //number of RICH chambers static const int kNpadsX = 144; //number of pads along X in single chamber static const int kNpadsY = 160; //number of pads along Y in single chamber static const int kBad=-101; //useful static const to mark initial (uninitalised) values static const int kNsectors=6; // nb. of sectors per chamber static const int kadc_satm = 4096; //dynamic range (10 bits) static const int kCerenkov=50000050; //??? go to something more general like TPDGCode static const int kFeedback=50000051; //??? go to something more general like TPDGCode class AliRICHParam :public TObject { public: AliRICHParam() {;} virtual ~AliRICHParam() {;} static const Int_t NpadsX() {return kNpadsX;} //pads along X in chamber static const Int_t NpadsY() {return kNpadsY;} //pads along Y in chamber static Int_t NpadsXsec() {return NpadsX()/3;} //pads along X in sector static Int_t NpadsYsec() {return NpadsY()/2;} //pads along Y in sector static Double_t DeadZone() {return 2.6;} //dead zone size in cm static Double_t PadSizeX() {return 0.84;} //pad size x in cm static Double_t PadSizeY() {return 0.8;} //pad size y in cm static Double_t SectorSizeX() {return NpadsX()*PadSizeX()/3;} //sector size x in cm static Double_t SectorSizeY() {return NpadsY()*PadSizeY()/2;} //sector size y in cm static Double_t PcSizeX() {return NpadsX()*PadSizeX()+2*DeadZone();} //photocathode size x in cm static Double_t PcSizeY() {return NpadsY()*PadSizeY()+DeadZone();} //photocathode size y in cm static Double_t WirePitch() {return PadSizeX()/2;} //distance between anode wires static Double_t SizeX() {return 132.6;} static Double_t SizeY() {return 26;} static Double_t SizeZ() {return 136.7;} static Double_t Offset() {return 490+1.267;} //distance from IP to center of chamber in cm static Double_t AngleYZ() {return 19.5*TMath::DegToRad();} //angle between chambers in YZ plane, rad static Double_t AngleXY() {return 20*TMath::DegToRad();} //angle between chambers in XY plane, rad static Double_t AngleRot() {return fgAngleRot*TMath::DegToRad();} //RICH rotation around Z, rad static Double_t FreonThickness() {return 1.5;} static Double_t QuartzThickness() {return 0.5;} static Double_t GapThickness() {return 8.0;} static Double_t RadiatorToPads() {return FreonThickness()+QuartzThickness()+GapThickness();} static Double_t ProximityGap() {return 0.445;} static Double_t AnodeCathodeGap() {return 0.2;} static Double_t QuartzLength() {return 133;} static Double_t QuartzWidth() {return 127.9;} static Double_t OuterFreonLength() {return 133;} static Double_t OuterFreonWidth() {return 41.3;} static Double_t InnerFreonLength() {return 133;} static Double_t InnerFreonWidth() {return 41.3;} static Double_t IonisationPotential() {return 26.0e-9;} static TVector2 MathiesonDelta() {return TVector2(5*0.18,5*0.18);} static Int_t MaxQdc() {return 4095;} static Double_t AlphaFeedback(Int_t sec) {HV(sec);return 0.036;} static Bool_t IsResolveClusters() {return fgIsResolveClusters;} //go after resolved clusters? static Bool_t IsWireSag() {return fgIsWireSag;} //take wire sagita in account? static Int_t HV(Int_t sector) { if (sector>=1 && sector <=6) return fgHV[sector-1]; else { ::Error("HV","Wrong sector %d",sector); return kBad; } } //high voltage for this sector static void IsResolveClusters(Bool_t a) {fgIsResolveClusters=a;} static void SetWireSag(Bool_t status) {fgIsWireSag=status;} static void SetHV(Int_t sector,Int_t hv){fgHV[sector-1]=hv;} static void SetAngleRot(Double_t rot) {fgAngleRot =rot;} inline static void Loc2Area(TVector2 x2,Int_t &padxMin,Int_t &padyMin,Int_t &padxMax,Int_t &padyMax); // inline static Int_t Loc2Pad(TVector2 x2,Int_t &padx,Int_t &pady); //return sector and pad inline static TVector2 Pad2Loc(Int_t padx,Int_t pady); //return center of the pad static Int_t Sector(Int_t padx,Int_t pady) {return Pad2Sec(padx,pady);} //sector of this pad static Int_t Sector(TVector2 x2) {int x,y;return Loc2Pad(x2,x,y);} //sector of this point inline static Int_t PadNeighbours(Int_t iPadX,Int_t iPadY,Int_t aListX[4],Int_t aListY[4]); //number of neighbours for this pad inline static TVector2 ShiftToWirePos(TVector2 x2); //shift to the nearest wire inline static Double_t Mathieson(Double_t lx1,Double_t lx2,Double_t ly1,Double_t ly2); //Mathienson integral over these limits inline static Double_t GainSag(Double_t y,Int_t sector); //gain variations in % inline static Double_t QdcSlope(Int_t sec); //weight of electon in QDC channels inline static Double_t Gain(TVector2 x2); //gain for point in ChRS inline static Double_t FracQdc(TVector2 x2,Int_t padx,Int_t pady); //charge fraction to pad from hit inline static Int_t TotQdc(TVector2 x2,Double_t eloss); //total charge for hit eloss=0 for photons inline Bool_t IsOverTh(Int_t iChamber, Int_t x, Int_t y, Double_t q); // static Int_t NsigmaTh() {return fgNsigmaTh;} // static Float_t SigmaThMean() {return fgSigmaThMean;} // static Float_t SigmaThSpread() {return fgSigmaThSpread;} // void GenSigmaThMap(); //generate pedestal map static void Print(); protected: inline static Int_t Loc2Sec(TVector2 &x2); //return sector, x2->Sector RS inline static Int_t Pad2Sec(Int_t &padx,Int_t &pady); //return sector, (padx,pady)->Sector RS static Bool_t fgIsWireSag; //is wire sagitta taken into account static Bool_t fgIsResolveClusters; //performs declustering or not static Int_t fgHV[6]; //HV applied to anod wires static Double_t fgAngleRot; //rotation of RICH from up postion (0,0,490)cm static Float_t fSigmaThMap[kNCH][kNpadsX][kNpadsY]; //sigma of the pedestal distributions for all pads static Int_t fgNsigmaTh; //n. of sigmas to cut for zero suppression static Float_t fgSigmaThMean; //sigma threshold value static Float_t fgSigmaThSpread; //spread of sigma ClassDef(AliRICHParam,4) //RICH main parameters }; //__________________________________________________________________________________________________ Int_t AliRICHParam::PadNeighbours(Int_t iPadX,Int_t iPadY,Int_t listX[4],Int_t listY[4]) { // Determines all the neighbouring pads for the given one. Returns total amount of these pads. // Dead zones are taken into account. Int_t nPads=0; if(iPadY!=NpadsY()&&iPadY!=NpadsYsec()) {listX[nPads]=iPadX; listY[nPads]=iPadY+1; nPads++;} if(iPadX!=NpadsXsec()&&iPadX!=2*NpadsXsec()&&iPadX!=NpadsX()){listX[nPads]=iPadX+1; listY[nPads]=iPadY; nPads++;} if(iPadY!=1&&iPadY!=NpadsYsec()+1) {listX[nPads]=iPadX; listY[nPads]=iPadY-1; nPads++;} if(iPadX!=1&&iPadX!=NpadsXsec()+1&&iPadX!=2*NpadsXsec()+1) {listX[nPads]=iPadX-1; listY[nPads]=iPadY; nPads++;} return nPads; }//Pad2ClosePads() //__________________________________________________________________________________________________ Int_t AliRICHParam::Loc2Sec(TVector2 &x2) { // Determines sector containing the given point and trasform this point to the local system of that sector. // Returns sector code: 1 2 3 // 4 5 6 Int_t sector=kBad; Double_t p1=-0.5*PcSizeX(); Double_t p2=-0.5*SectorSizeX()-DeadZone(); Double_t p3=-0.5*SectorSizeX(); Double_t p4= 0.5*SectorSizeX(); Double_t p5= 0.5*SectorSizeX()+DeadZone(); Double_t p6= 0.5*PcSizeX(); Double_t x,y; if (x2.X()>=p1&&x2.X()<=p2) {sector=1;x=x2.X()+0.5*PcSizeX();} else if(x2.X()>=p3&&x2.X()<=p4) {sector=2;x=x2.X()+0.5*SectorSizeX();} else if(x2.X()>=p5&&x2.X()<=p6) {sector=3;x=x2.X()-0.5*SectorSizeX()-DeadZone();} else {return kBad;} //in dead zone or out of chamber if (x2.Y()>=-0.5*PcSizeY() &&x2.Y()<=-0.5*DeadZone()) {y=x2.Y()+0.5*PcSizeY();sector+=3;} //sectors 4,5,6 else if(x2.Y()> -0.5*DeadZone()&&x2.Y()< 0.5*DeadZone()) {return kBad;} //in dead zone else if(x2.Y()>= 0.5*DeadZone()&&x2.Y()<= 0.5*PcSizeY()) {y=x2.Y()-0.5*DeadZone();} //sectors 1,2,3 else {return kBad;} //out of chamber x2.Set(x,y); return sector; }//Loc2Sec(Double_t x, Double_t y) //__________________________________________________________________________________________________ Int_t AliRICHParam::Loc2Pad(TVector2 x2,Int_t &padx,Int_t &pady) { // Determines pad number (padx,pady) containing the given point x2 defined the chamber RS. // Pad count starts in lower left corner from 1,1 to 144,160 in upper right corner of a chamber. // Returns sector number of the determined pad. Int_t sector=Loc2Sec(x2);//trasforms x2 to sector reference system if(sector==kBad) {padx=pady=kBad; return sector;} padx=Int_t(x2.X()/PadSizeX())+1; if(padx>NpadsXsec()) padx= NpadsXsec(); if(sector==2||sector==5) padx+= NpadsXsec(); // 1 2 3 if(sector==3||sector==6) padx+=2*NpadsXsec(); // 4 5 6 pady=Int_t(x2.Y()/PadSizeY())+1; if(pady>NpadsYsec()) pady= NpadsYsec(); if(sector<4) pady+=NpadsYsec(); return sector; } //__________________________________________________________________________________________________ Int_t AliRICHParam::Pad2Sec(Int_t &padx, Int_t &pady) { // Determines sector containing the given pad (padx,pady) and trasform it to the local RS of that sector. Int_t sector=kBad; if (padx>=1 &&padx<=NpadsXsec()) {sector=1;} else if(padx> NpadsXsec() &&padx<=NpadsXsec()*2) {sector=2;padx-=NpadsXsec();} else if(padx> NpadsXsec()*2&&padx<=NpadsX()) {sector=3;padx-=NpadsXsec()*2;} else {return kBad;} if (pady>=1 &&pady<=NpadsYsec()) {return sector+3;} else if(pady>NpadsYsec() &&pady<=NpadsY()) {pady-=NpadsYsec();return sector;} else {return kBad;} }//Pad2Sec() //__________________________________________________________________________________________________ TVector2 AliRICHParam::Pad2Loc(Int_t padx,Int_t pady) { // Returns position of the center of the given pad (padx,pady) in local RS of the chamber Int_t sector=Pad2Sec(padx,pady);//shifts to sector RS if(sector==kBad) return TVector2(-101,-101); Double_t x,y; if(sector<=3) y=0.5*DeadZone()+pady*PadSizeY()-0.5*PadSizeY(); // 1 2 3 else{ // 4 5 6 y=-0.5*PcSizeY()+pady*PadSizeY()-0.5*PadSizeY(); } if(sector==1||sector==4) x=-0.5*PcSizeX()+padx*PadSizeX()-0.5*PadSizeX(); else if(sector==2||sector==5) x=-0.5*SectorSizeX()+padx*PadSizeX()-0.5*PadSizeX(); else x= 0.5*SectorSizeX()+DeadZone()+padx*PadSizeX()-0.5*PadSizeX(); return TVector2(x,y); } //__________________________________________________________________________________________________ Double_t AliRICHParam::GainSag(Double_t y,Int_t sector) { // Returns % of gain variation due to wire sagita. // All cureves are parametrized per sector basis, so y must be scaled to the Sector RS. if(y>0) y-=SectorSizeY()/2; else y+=SectorSizeY()/2; switch(HV(sector)){ case 2150: return 9e-6*TMath::Power(y,4)+2e-7*TMath::Power(y,3)-0.0316*TMath::Power(y,2)-3e-4*y+25.367;//% case 2100: return 8e-6*TMath::Power(y,4)+2e-7*TMath::Power(y,3)-0.0283*TMath::Power(y,2)-2e-4*y+23.015; case 2050: return 7e-6*TMath::Power(y,4)+1e-7*TMath::Power(y,3)-0.0254*TMath::Power(y,2)-2e-4*y+20.888; case 2000: return 6e-6*TMath::Power(y,4)+8e-8*TMath::Power(y,3)-0.0227*TMath::Power(y,2)-1e-4*y+18.961; default: return 0; } } //__________________________________________________________________________________________________ Double_t AliRICHParam::QdcSlope(Int_t sec) { // Returns number of QDC channels per single electron at the unknown yet ???? point for a given sector switch(sec){ case kBad: return 0; default: return 27; } } //__________________________________________________________________________________________________ Double_t AliRICHParam::Gain(TVector2 x2) { // if(IsWireSag()) return QdcSlope(Sector(x2))*(1+GainSag(x2.Y(),Sector(x2))/100); else return QdcSlope(Sector(x2)); } //__________________________________________________________________________________________________ Int_t AliRICHParam::TotQdc(TVector2 x2,Double_t eloss) { // Calculates the total charge produced by the eloss in point x2 (Chamber RS). // Returns this change parametrised in QDC channels. // eloss=0 means photons which provided for only 1 electron // eloss > 0 for Mip if(Sector(x2)==kBad) return 0; //hit in the dead zone Int_t iNelectrons=Int_t(eloss/IonisationPotential()); if(iNelectrons==0) iNelectrons=1; Double_t qdc=0; for(Int_t i=1;i<=iNelectrons;i++) qdc+=-Gain(x2)*TMath::Log(gRandom->Rndm()); return Int_t(qdc); } //__________________________________________________________________________________________________ Double_t AliRICHParam::FracQdc(TVector2 x2,Int_t padx,Int_t pady) { // Calculates the charge fraction for a given pad (padx,pady) from the given hit point. // Mathieson distribution integrated is used. TVector2 center2=Pad2Loc(padx,pady);//gives center of requested pad Double_t normXmin=(x2.X()-center2.X()-PadSizeX()/2) /AnodeCathodeGap(); Double_t normXmax=(x2.X()-center2.X()+PadSizeX()/2) /AnodeCathodeGap(); Double_t normYmin=(x2.Y()-center2.Y()-PadSizeY()/2) /AnodeCathodeGap(); Double_t normYmax=(x2.Y()-center2.Y()+PadSizeY()/2) /AnodeCathodeGap(); if(Sector(x2)!=Sector(padx,pady)) return 0;//requested pad does not belong to the sector of given point else return Mathieson(normXmin, normYmin, normXmax, normYmax); } //__________________________________________________________________________________________________ Double_t AliRICHParam::Mathieson(Double_t xMin,Double_t yMin,Double_t xMax,Double_t yMax) { // All arguments are parametrised according to NIM A370(1988)602-603 // Returns a charge fraction. const Double_t kSqrtKx3=0.77459667;const Double_t kX2=0.962;const Double_t kX4=0.379; const Double_t kSqrtKy3=0.77459667;const Double_t kY2=0.962;const Double_t kY4=0.379; Double_t ux1=kSqrtKx3*TMath::TanH(kX2*xMin); Double_t ux2=kSqrtKx3*TMath::TanH(kX2*xMax); Double_t uy1=kSqrtKy3*TMath::TanH(kY2*yMin); Double_t uy2=kSqrtKy3*TMath::TanH(kY2*yMax); return 4*kX4*(TMath::ATan(ux2)-TMath::ATan(ux1))*kY4*(TMath::ATan(uy2)-TMath::ATan(uy1)); } //__________________________________________________________________________________________________ void AliRICHParam::Loc2Area(TVector2 x2,Int_t &iPadXmin,Int_t &iPadYmin,Int_t &iPadXmax,Int_t &iPadYmax) { // Calculates the area of disintegration for a given point. It's assumed here that this points lays on anode wire. // Area is a rectangulare set of pads defined by its left-down and right-up coners. Loc2Pad(x2-MathiesonDelta(),iPadXmin,iPadYmin); Loc2Pad(x2+MathiesonDelta(),iPadXmax,iPadYmax); } //__________________________________________________________________________________________________ Bool_t AliRICHParam::IsOverTh(Int_t c,Int_t x,Int_t y,Double_t q) { // Calculate the new charge subtracting pedestal and if the current digit is over threshold if (c>0 && x>0 && y>0 && cNsigmaTh()*fSigmaThMap[c-1][x-1][y-1]) return kTRUE; return kFALSE; } //__________________________________________________________________________________________________ TVector2 AliRICHParam::ShiftToWirePos(TVector2 x2) { // Calculate the position of the wire nearest to the hit Int_t padx,pady; Loc2Pad(x2,padx,pady); Double_t x; TVector2 center2=Pad2Loc(padx,pady); if(x2.X()>center2.X()) x=center2.X()+0.5*WirePitch(); else x=center2.X()-0.5*WirePitch(); x2.Set(x,x2.Y()); return x2; } #endif //AliRICHParam_h