#ifndef ALIRICHSEGMENTATIONV0_H #define ALIRICHSEGMENTATIONV0_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ #include "AliRICHSegmentation.h" class AliRICHSegmentationV0 : public AliRICHSegmentation { public: AliRICHSegmentationV0(){} virtual ~AliRICHSegmentationV0(){} // // Set Chamber Segmentation Parameters // // Pad size Dx*Dy virtual void SetPadSize(Float_t p1, Float_t p2); // Anod Pitch virtual void SetDAnod(Float_t D) {fWireD = D;}; // // Transform from pad (wire) to real coordinates and vice versa // // Anod wire coordinate closest to xhit virtual Float_t GetAnod(Float_t xhit); // Transform from pad to real coordinates virtual void GetPadIxy(Float_t x ,Float_t y ,Int_t &ix,Int_t &iy); // Transform from real to pad coordinates virtual void GetPadCxy(Int_t ix,Int_t iy,Float_t &x ,Float_t &y ); // // Initialisation virtual void Init(AliRICHChamber* chamber); // // Get member data // // Pad size in x virtual Float_t Dpx(){return fDpx;} // // Pad size in y virtual Float_t Dpy(){return fDpy;} // Pad size in x by Sector virtual Float_t Dpx(Int_t) {return fDpx;} // Pad size in y by Sector virtual Float_t Dpy(Int_t) {return fDpy;} // Max number of Pads in x virtual Int_t Npx(){return fNpx;} // Max number of Pads in y virtual Int_t Npy(){return fNpy;} // set pad position virtual void SetPad(Int_t ix, Int_t iy); // set hit position virtual void SetHit(Float_t xhit , Float_t yhit); // // Iterate over pads // Initialiser virtual void FirstPad(Float_t xhit, Float_t yhit, Float_t dx, Float_t dy); // Stepper virtual void NextPad(); // Condition virtual Int_t MorePads(); // // Distance between 1 pad and a position virtual Float_t Distance2AndOffset(Int_t iX, Int_t iY, Float_t X, Float_t Y, Int_t * dummy); // Number of pads read in parallel and offset to add to x // (specific to LYON, but mandatory for display) virtual void GetNParallelAndOffset(Int_t iX, Int_t iY, Int_t *Nparallel, Int_t *Offset) {*Nparallel=1;*Offset=0;} // Get next neighbours virtual void Neighbours (Int_t iX, Int_t iY, Int_t* Nlist, Int_t Xlist[10], Int_t Ylist[10]); // // Current Pad during Integration // x-coordinate virtual Int_t Ix(){return fIx;} // y-coordinate virtual Int_t Iy(){return fIy;} // current sector virtual Int_t ISector(){return 1;} // calculate sector from x-y coordinates virtual Int_t Sector(Float_t x, Float_t y){return 1;} // // Signal Generation Condition during Stepping virtual Int_t SigGenCond(Float_t x, Float_t y, Float_t z); // Initialise signal gneration at coord (x,y,z) virtual void SigGenInit(Float_t x, Float_t y, Float_t z); // Current integration limits virtual void IntegrationLimits (Float_t& x1, Float_t& x2, Float_t& y1, Float_t& y2); // Test points for auto calibration virtual void GiveTestPoints(Int_t &n, Float_t *x, Float_t *y); // Debugging utilities virtual void Draw(); // Function for systematic corrections virtual void SetCorrFunc(Int_t dum, TF1* func) {fCorr=func;} virtual TF1* CorrFunc(Int_t) {return fCorr;} ClassDef(AliRICHSegmentationV0,1) protected: // // Implementation of the segmentation data // Version 0 models rectangular pads with the same dimensions all // over the cathode plane // // geometry // Float_t fDpx; // x pad width per sector Float_t fDpy; // y pad base width Int_t fNpx; // Number of pads in x Int_t fNpy; // Number of pads in y Int_t fSector; // Current padplane Float_t fWireD; // wire pitch // Chamber region consideres during disintegration (lower left and upper right corner) // Int_t fIxmin; // lower left x Int_t fIxmax; // lower left y Int_t fIymin; // upper right x Int_t fIymax; // upper right y // // Current pad during integration (cursor for disintegration) Int_t fIx; // pad coord. x Int_t fIy; // pad coord. y Float_t fX; // x Float_t fY; // y // // Current pad and wire during tracking (cursor at hit centre) Float_t fXhit; //x position Float_t fYhit; //y position // Reference point to define signal generation condition Int_t fIxt; // pad coord. x Int_t fIyt; // pad coord. y Int_t fIwt; // wire number Float_t fXt; // x Float_t fYt; // y TF1* fCorr; // correction function }; #endif