// // Configuration for p-p Diffraction studies // STARLIGHT pp 7000 // One can use the configuration macro in compiled mode by // root [0] gSystem->Load("libgeant321"); // root [0] gSystem->SetIncludePath("-I$ROOTSYS/include -I$ALICE_ROOT/include\ // -I$ALICE_ROOT -I$ALICE/geant3/TGeant3"); // root [0] .x grun.C(1,"Config.C++") #if !defined(__CINT__) || defined(__MAKECINT__) #include #include #include #include #include #include #include "STEER/AliRunLoader.h" #include "STEER/AliRun.h" #include "STEER/AliConfig.h" #include "PYTHIA6/AliDecayerPythia.h" #include "PYTHIA6/AliGenPythia.h" #include "TDPMjet/AliGenDPMjet.h" #include "STEER/AliMagFCheb.h" #include "STRUCT/AliBODY.h" #include "STRUCT/AliMAG.h" #include "STRUCT/AliABSOv3.h" #include "STRUCT/AliDIPOv3.h" #include "STRUCT/AliHALLv3.h" #include "STRUCT/AliFRAMEv2.h" #include "STRUCT/AliSHILv3.h" #include "STRUCT/AliPIPEv3.h" #include "ITS/AliITSv11Hybrid.h" #include "TPC/AliTPCv2.h" #include "TOF/AliTOFv6T0.h" #include "HMPID/AliHMPIDv3.h" #include "ZDC/AliZDCv3.h" #include "TRD/AliTRDv1.h" #include "TRD/AliTRDgeometry.h" #include "FMD/AliFMDv1.h" #include "MUON/AliMUONv1.h" #include "PHOS/AliPHOSv1.h" #include "PHOS/AliPHOSSimParam.h" #include "PMD/AliPMDv1.h" #include "T0/AliT0v1.h" #include "EMCAL/AliEMCALv2.h" #include "ACORDE/AliACORDEv1.h" #include "VZERO/AliVZEROv7.h" #endif enum PDC06Proc_t { kStarlight, kRunMax, }; const char * pprRunName[] = { "kStarlight" }; enum Mag_t { kNoField, k5kG, kFieldMax }; const char * pprField[] = { "kNoField", "k5kG" }; //--- Functions --- void ProcessEnvironmentVars(); // Generator, field, beam energy static PDC06Proc_t proc = kStarlight; static Mag_t mag = k5kG; static Float_t energy = 7000; // energy in CMS static Float_t pBeamEnergy = 3500.; // energy p-Beam static Int_t runNumber = 0; static Int_t eventOffset = 0; //========================// // Set Random Number seed // //========================// TDatime dt; static UInt_t seed = dt.Get(); // Comment line static TString comment; void Config() { // Get settings from environment variables ProcessEnvironmentVars(); gRandom->SetSeed(seed); cerr<<"Seed for random number generation= "<Load("liblhapdf"); // Parton density functions gSystem->Load("libEGPythia6"); // TGenerator interface // if (proc == kPythia6 || proc == kPhojet) { // gSystem->Load("libpythia6"); // Pythia 6.2 // } else { gSystem->Load("libpythia6.4.21"); // Pythia 6.4 // } gSystem->Load("libAliPythia6"); // ALICE specific implementations gSystem->Load("libgeant321"); #endif new TGeant3TGeo("C++ Interface to Geant3"); //======================================================================= // Create the output file AliRunLoader* rl=0x0; cout<<"Config.C: Creating Run Loader ..."<Fatal("Config.C","Can not instatiate the Run Loader"); return; } rl->SetCompressionLevel(2); rl->SetNumberOfEventsPerFile(1000); gAlice->SetRunLoader(rl); // gAlice->SetGeometryFromFile("geometry.root"); // gAlice->SetGeometryFromCDB(); // Set the trigger configuration: proton-proton AliSimulation::Instance()->SetTriggerConfig("p-p"); // //======================================================================= // ************* STEERING parameters FOR ALICE SIMULATION ************** // --- Specify event type to be tracked through the ALICE setup // --- All positions are in cm, angles in degrees, and P and E in GeV gMC->SetProcess("DCAY",1); gMC->SetProcess("PAIR",1); gMC->SetProcess("COMP",1); gMC->SetProcess("PHOT",1); gMC->SetProcess("PFIS",0); gMC->SetProcess("DRAY",0); gMC->SetProcess("ANNI",1); gMC->SetProcess("BREM",1); gMC->SetProcess("MUNU",1); gMC->SetProcess("CKOV",1); gMC->SetProcess("HADR",1); gMC->SetProcess("LOSS",2); gMC->SetProcess("MULS",1); gMC->SetProcess("RAYL",1); Float_t cut = 1.e-3; // 1MeV cut by default Float_t tofmax = 1.e10; gMC->SetCut("CUTGAM", cut); gMC->SetCut("CUTELE", cut); gMC->SetCut("CUTNEU", cut); gMC->SetCut("CUTHAD", cut); gMC->SetCut("CUTMUO", cut); gMC->SetCut("BCUTE", cut); gMC->SetCut("BCUTM", cut); gMC->SetCut("DCUTE", cut); gMC->SetCut("DCUTM", cut); gMC->SetCut("PPCUTM", cut); gMC->SetCut("TOFMAX", tofmax); //======================// // Set External decayer // //======================// TVirtualMCDecayer* decayer = new AliDecayerPythia(); decayer->SetForceDecay(kAll); decayer->Init(); gMC->SetExternalDecayer(decayer); //=========================// // Generator Configuration // //=========================// AliGenerator* gener = 0x0; if (proc == kStarlight) { gSystem->AddDynamicPath("../../objdir/lib/tgt_linux"); gSystem->Load("libStarLight"); gSystem->Load("libAliStarLight.so"); AliGenStarLight* sl = new AliGenStarLight(1000*1000); sl->SetParameter("BEAM_1_Z = 82 #Z of projectile"); sl->SetParameter("BEAM_1_A = 208 #A of projectile"); sl->SetParameter("BEAM_2_Z = 82 #Z of target"); sl->SetParameter("BEAM_2_A = 208 #A of target"); sl->SetParameter("BEAM_1_GAMMA = 1470 #Gamma of the colliding ions"); sl->SetParameter("BEAM_2_GAMMA = 1470 #Gamma of the colliding ions"); sl->SetParameter("W_MAX = 12.0 #Max value of w"); sl->SetParameter("W_MIN = 2.0 #Min value of w"); sl->SetParameter("W_N_BINS = 40 #Bins i w"); sl->SetParameter("RAP_MAX = 8. #max y"); sl->SetParameter("RAP_N_BINS = 80 #Bins i y"); sl->SetParameter("CUT_PT = 0 #Cut in pT? 0 = (no, 1 = yes)"); sl->SetParameter("PT_MIN = 1.0 #Minimum pT in GeV"); sl->SetParameter("PT_MAX = 3.0 #Maximum pT in GeV"); sl->SetParameter("CUT_ETA = 0 #Cut in pseudorapidity? (0 = no, 1 = yes)"); sl->SetParameter("ETA_MIN = -10 #Minimum pseudorapidity"); sl->SetParameter("ETA_MAX = 10 #Maximum pseudorapidity"); sl->SetParameter("PROD_MODE = 2 #gg or gP switch (1 = 2-photon, 2 = coherent vector meson (narrow), 3 = coherent vector meson (wide), # 4 = incoherent vector meson, 5 = A+A DPMJet single, 6 = A+A DPMJet double, 7 = p+A DPMJet single, 8 = p+A Pythia single )"); // is N_EVENTS valid sl->SetParameter("N_EVENTS = 10000000 #Number of events"); sl->SetParameter("PROD_PID = 113 #Channel of interest (not relevant for photonuclear processes)"); sl->SetParameter(Form("RND_SEED = %d #Random number seed", seed)); sl->SetParameter("OUTPUT_FORMAT = 2 #Form of the output"); sl->SetParameter("BREAKUP_MODE = 5 #Controls the nuclear breakup"); sl->SetParameter("INTERFERENCE = 0 #Interference (0 = off, 1 = on)"); sl->SetParameter("IF_STRENGTH = 1. #% of intefernce (0.0 - 0.1)"); sl->SetParameter("COHERENT = 1 #Coherent=1,Incoherent=0"); sl->SetParameter("INCO_FACTOR = 1. #percentage of incoherence"); sl->SetParameter("BFORD = 9.5 #"); sl->SetParameter("INT_PT_MAX = 0.24 #Maximum pt considered, when interference is turned on"); sl->SetParameter("INT_PT_N_BINS = 120 #Number of pt bins when interference is turned on"); sl->Init(); sl->GetTStarLight()->PrintInputs(std::cout); AliGenerator* gener = sl; gener->SetOrigin(0, 0, 0); // vertex position gener->SetSigma(0, 0, 5.3); // Sigma in (X,Y,Z) (cm) on IP position gener->SetCutVertexZ(1.); // Truncate at 1 sigma gener->SetVertexSmear(kPerEvent); gener->SetTrackingFlag(1); gener->Init(); } // // // Size of the interaction diamond // Longitudinal Float_t sigmaz = 5.4 / TMath::Sqrt(2.); // [cm] // if (energy == 900) //sigmaz = 10.5 / TMath::Sqrt(2.); // [cm] //sigmaz = 3.7; if (energy == 7000) sigmaz = 6.3 / TMath::Sqrt(2.); // [cm] // // Transverse Float_t betast = 10; // beta* [m] if (runNumber >= 117048) betast = 2.; if (runNumber > 122375) betast = 3.5; // starting with fill 1179 Float_t eps = 5.e-6; // emittance [m] Float_t gamma = energy / 2.0 / 0.938272; // relativistic gamma [1] Float_t sigmaxy = TMath::Sqrt(eps * betast / gamma) / TMath::Sqrt(2.) * 100.; // [cm] printf("\n \n Diamond size x-y: %10.3e z: %10.3e\n \n", sigmaxy, sigmaz); gener->SetSigma(sigmaxy, sigmaxy, sigmaz); // Sigma in (X,Y,Z) (cm) on IP position gener->SetVertexSmear(kPerEvent); gener->Init(); printf("\n \n Comment: %s \n \n", comment.Data()); //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TGeoGlobalMagField::Instance()->SetField(new AliMagF("Maps","Maps", -1., -1., AliMagF::k5kG, AliMagF::kBeamTypepp, pBeamEnergy)); rl->CdGAFile(); Int_t iABSO = 1; Int_t iACORDE= 0; Int_t iDIPO = 1; Int_t iEMCAL = 1; Int_t iFMD = 1; Int_t iFRAME = 1; Int_t iHALL = 1; Int_t iITS = 1; Int_t iMAG = 1; Int_t iMUON = 1; Int_t iPHOS = 1; Int_t iPIPE = 1; Int_t iPMD = 1; Int_t iHMPID = 1; Int_t iSHIL = 1; Int_t iT0 = 1; Int_t iTOF = 1; Int_t iTPC = 1; Int_t iTRD = 1; Int_t iVZERO = 1; Int_t iZDC = 1; //=================== Alice BODY parameters ============================= AliBODY *BODY = new AliBODY("BODY", "Alice envelop"); if (iMAG) { //=================== MAG parameters ============================ // --- Start with Magnet since detector layouts may be depending --- // --- on the selected Magnet dimensions --- AliMAG *MAG = new AliMAG("MAG", "Magnet"); } if (iABSO) { //=================== ABSO parameters ============================ AliABSO *ABSO = new AliABSOv3("ABSO", "Muon Absorber"); } if (iDIPO) { //=================== DIPO parameters ============================ AliDIPO *DIPO = new AliDIPOv3("DIPO", "Dipole version 3"); } if (iHALL) { //=================== HALL parameters ============================ AliHALL *HALL = new AliHALLv3("HALL", "Alice Hall"); } if (iFRAME) { //=================== FRAME parameters ============================ AliFRAMEv2 *FRAME = new AliFRAMEv2("FRAME", "Space Frame"); FRAME->SetHoles(1); } if (iSHIL) { //=================== SHIL parameters ============================ AliSHIL *SHIL = new AliSHILv3("SHIL", "Shielding Version 3"); } if (iPIPE) { //=================== PIPE parameters ============================ AliPIPE *PIPE = new AliPIPEv3("PIPE", "Beam Pipe"); } if (iITS) { //=================== ITS parameters ============================ AliITS *ITS = new AliITSv11("ITS","ITS v11"); } if (iTPC) { //============================ TPC parameters ===================== AliTPC *TPC = new AliTPCv2("TPC", "Default"); } if (iTOF) { //=================== TOF parameters ============================ AliTOF *TOF = new AliTOFv6T0("TOF", "normal TOF"); } if (iHMPID) { //=================== HMPID parameters =========================== AliHMPID *HMPID = new AliHMPIDv3("HMPID", "normal HMPID"); } if (iZDC) { //=================== ZDC parameters ============================ AliZDC *ZDC = new AliZDCv3("ZDC", "normal ZDC"); } if (iTRD) { //=================== TRD parameters ============================ AliTRD *TRD = new AliTRDv1("TRD", "TRD slow simulator"); AliTRDgeometry *geoTRD = TRD->GetGeometry(); // Partial geometry: modules at 0,1,7,8,9,16,17 // starting at 3h in positive direction geoTRD->SetSMstatus(2,0); geoTRD->SetSMstatus(3,0); geoTRD->SetSMstatus(4,0); geoTRD->SetSMstatus(5,0); geoTRD->SetSMstatus(6,0); geoTRD->SetSMstatus(11,0); geoTRD->SetSMstatus(12,0); geoTRD->SetSMstatus(13,0); geoTRD->SetSMstatus(14,0); geoTRD->SetSMstatus(15,0); geoTRD->SetSMstatus(16,0); } if (iFMD) { //=================== FMD parameters ============================ AliFMD *FMD = new AliFMDv1("FMD", "normal FMD"); } if (iMUON) { //=================== MUON parameters =========================== // New MUONv1 version (geometry defined via builders) AliMUON *MUON = new AliMUONv1("MUON", "default"); } if (iPHOS) { //=================== PHOS parameters =========================== AliPHOS *PHOS = new AliPHOSv1("PHOS", "noCPV_Modules123"); } if (iPMD) { //=================== PMD parameters ============================ AliPMD *PMD = new AliPMDv1("PMD", "normal PMD"); } if (iT0) { //=================== T0 parameters ============================ AliT0 *T0 = new AliT0v1("T0", "T0 Detector"); } if (iEMCAL) { //=================== EMCAL parameters ============================ AliEMCAL *EMCAL = new AliEMCALv2("EMCAL", "EMCAL_FIRSTYEAR"); } if (iACORDE) { //=================== ACORDE parameters ============================ AliACORDE *ACORDE = new AliACORDEv1("ACORDE", "normal ACORDE"); } if (iVZERO) { //=================== ACORDE parameters ============================ AliVZERO *VZERO = new AliVZEROv7("VZERO", "normal VZERO"); } } void ProcessEnvironmentVars() { // Run type if (gSystem->Getenv("CONFIG_RUN_TYPE")) { for (Int_t iRun = 0; iRun < kRunMax; iRun++) { if (strcmp(gSystem->Getenv("CONFIG_RUN_TYPE"), pprRunName[iRun])==0) { proc = (PDC06Proc_t)iRun; cout<<"Run type set to "<Getenv("CONFIG_FIELD")) { for (Int_t iField = 0; iField < kFieldMax; iField++) { if (strcmp(gSystem->Getenv("CONFIG_FIELD"), pprField[iField])==0) { mag = (Mag_t)iField; cout<<"Field set to "<Getenv("CONFIG_ENERGY")) { energy = atoi(gSystem->Getenv("CONFIG_ENERGY")); cout<<"Energy set to "<Getenv("CONFIG_SEED")) { seed = atoi(gSystem->Getenv("CONFIG_SEED")); } // Run number if (gSystem->Getenv("DC_RUN")) { runNumber = atoi(gSystem->Getenv("DC_RUN")); } // Event offset if (gSystem->Getenv("DC_EVENT")) { eventOffset = 400*(atoi(gSystem->Getenv("DC_EVENT")) - 1); // 400 events per job (->sim.C) std::cout << "eventOffset= " << eventOffset << std::endl; } }