//-------------------------------------------------------------------------- // // Environment: // This software is part of the EvtGen package developed jointly // for the BaBar and CLEO collaborations. If you use all or part // of it, please give an appropriate acknowledgement. // // Copyright Information: // Copyright (C) 1998 Caltech, UCSB // // Module: EvtVub.cc // // Description: Routine to decay a particle according th phase space // // Modification history: // // Sven Menke January 17, 2001 Module created // //------------------------------------------------------------------------ // #include "EvtGenBase/EvtPatches.hh" #include #include "EvtGenBase/EvtParticle.hh" #include "EvtGenBase/EvtGenKine.hh" #include "EvtGenBase/EvtPDL.hh" #include "EvtGenBase/EvtReport.hh" #include "EvtGenModels/EvtVub.hh" #include #include "EvtGenBase/EvtVector4R.hh" #include "EvtGenModels/EvtPFermi.hh" #include "EvtGenModels/EvtVubdGamma.hh" #include "EvtGenBase/EvtRandom.hh" using std::endl; EvtVub::~EvtVub() { if (_dGamma) delete _dGamma; if (_masses) delete [] _masses; if (_weights) delete [] _weights; } std::string EvtVub::getName(){ return "VUB"; } EvtDecayBase* EvtVub::clone(){ return new EvtVub; } void EvtVub::init(){ // check that there are at least 6 arguments if (getNArg()<6) { report(ERROR,"EvtGen") << "EvtVub generator expected " << " at least 6 arguments (mb,a,alpha_s,Nbins,m1,w1,...) but found: " <0 && _masses[i] <= _masses[i-1]) { report(ERROR,"EvtGen") << "EvtVub generator expected " << " mass bins in ascending order!" << "Will terminate execution!"<= 0, but found: " <<_weights[i] < maxw ) maxw = _weights[i]; } if (maxw == 0) { report(ERROR,"EvtGen") << "EvtVub generator expected at least one " << " weight > 0, but found none! " << "Will terminate execution!"< u-bar specflav l+ nu EvtParticle *xuhad, *lepton, *neutrino; EvtVector4R p4; // R. Faccini 21/02/03 // move the reweighting up , before also shooting the fermi distribution double x,z,p2; double sh=0.0; double mB,ml,xlow,xhigh,qplus; double El=0.0; double Eh=0.0; double kplus; const double lp2epsilon=-10; bool rew(true); while(rew){ p->initializePhaseSpace(getNDaug(),getDaugs()); xuhad=p->getDaug(0); lepton=p->getDaug(1); neutrino=p->getDaug(2); mB = p->mass(); ml = lepton->mass(); xlow = -_mb; xhigh = mB-_mb; // Fermi motion does not need to be computed inside the // tryit loop as m_b in Gamma0 does not need to be replaced by (m_b+kplus). // The difference however should be of the Order (lambda/m_b)^2 which is // beyond the considered orders in the paper anyway ... // for alpha_S = 0 and a mass cut on X_u not all values of kplus are // possible. The maximum value is mB/2-_mb + sqrt(mB^2/4-_masses[0]^2) kplus = 2*xhigh; while( kplus >= xhigh || kplus <= xlow || (_alphas == 0 && kplus >= mB/2-_mb + sqrt(mB*mB/4-_masses[0]*_masses[0]))) { kplus = findPFermi(); //_pFermi->shoot(); kplus = xlow + kplus*(xhigh-xlow); } qplus = mB-_mb-kplus; if( (mB-qplus)/2.<=ml)continue; int tryit = 1; while (tryit) { x = EvtRandom::Flat(); z = EvtRandom::Flat(0,2); p2=EvtRandom::Flat(); p2 = pow(10.0,lp2epsilon*p2); El = x*(mB-qplus)/2; if ( El > ml && El < mB/2) { Eh = z*(mB-qplus)/2+qplus; if ( Eh > 0 && Eh < mB ) { sh = p2*pow(mB-qplus,2)+2*qplus*(Eh-qplus)+qplus*qplus; if ( sh > _masses[0]*_masses[0] && mB*mB + sh - 2*mB*Eh > ml*ml) { double xran = EvtRandom::Flat(); double y = _dGamma->getdGdxdzdp(x,z,p2)/_dGMax*p2; if ( y > 1 ) report(WARNING,"EvtGen")<<"EvtVub decay probability > 1 found: " << y << endl; if ( y >= xran ) tryit = 0; } } } } // reweight the Mx distribution if(_nbins>0){ double xran1 = EvtRandom::Flat(); double m = sqrt(sh);j=0; while ( j < _nbins && m > _masses[j] ) j++; double w = _weights[j-1]; if ( w >= xran1 ) rew = false; } else { rew = false; } } // o.k. we have the three kineamtic variables // now calculate a flat cos Theta_H [-1,1] distribution of the // hadron flight direction w.r.t the B flight direction // because the B is a scalar and should decay isotropic. // Then chose a flat Phi_H [0,2Pi] w.r.t the B flight direction // and and a flat Phi_L [0,2Pi] in the W restframe w.r.t the // W flight direction. double ctH = EvtRandom::Flat(-1,1); double phH = EvtRandom::Flat(0,2*EvtConst::pi); double phL = EvtRandom::Flat(0,2*EvtConst::pi); // now compute the four vectors in the B Meson restframe double ptmp,sttmp; // calculate the hadron 4 vector in the B Meson restframe sttmp = sqrt(1-ctH*ctH); ptmp = sqrt(Eh*Eh-sh); double pHB[4] = {Eh,ptmp*sttmp*cos(phH),ptmp*sttmp*sin(phH),ptmp*ctH}; p4.set(pHB[0],pHB[1],pHB[2],pHB[3]); xuhad->init( getDaug(0), p4); if (_storeQplus ) { // cludge to store the hidden parameter q+ with the decay; // the lifetime of the Xu is abused for this purpose. // tau = 1 ps corresponds to ctau = 0.3 mm -> in order to // stay well below BaBars sensitivity we take q+/(10000 GeV) which // goes up to 0.0005 in the most extreme cases as ctau in mm. // To extract q+ back from the StdHepTrk its necessary to get // delta_ctau = Xu->anyDaughter->getVertexTime()-Xu->getVertexTime() // where these pseudo calls refere to the StdHep time stored at // the production vertex in the lab for each particle. The boost // has to be reversed and the result is: // // q+ = delta_ctau * 10000 GeV/mm * Mass_Xu/Energy_Xu // xuhad->setLifetime(qplus/10000.); } // calculate the W 4 vector in the B Meson restrframe double apWB = ptmp; double pWB[4] = {mB-Eh,-pHB[1],-pHB[2],-pHB[3]}; // first go in the W restframe and calculate the lepton and // the neutrino in the W frame double mW2 = mB*mB + sh - 2*mB*Eh; double beta = ptmp/pWB[0]; double gamma = pWB[0]/sqrt(mW2); double pLW[4]; ptmp = (mW2-ml*ml)/2/sqrt(mW2); pLW[0] = sqrt(ml*ml + ptmp*ptmp); double ctL = (El - gamma*pLW[0])/beta/gamma/ptmp; if ( ctL < -1 ) ctL = -1; if ( ctL > 1 ) ctL = 1; sttmp = sqrt(1-ctL*ctL); // eX' = eZ x eW double xW[3] = {-pWB[2],pWB[1],0}; // eZ' = eW double zW[3] = {pWB[1]/apWB,pWB[2]/apWB,pWB[3]/apWB}; double lx = sqrt(xW[0]*xW[0]+xW[1]*xW[1]); for (j=0;j<2;j++) xW[j] /= lx; // eY' = eZ' x eX' double yW[3] = {-pWB[1]*pWB[3],-pWB[2]*pWB[3],pWB[1]*pWB[1]+pWB[2]*pWB[2]}; double ly = sqrt(yW[0]*yW[0]+yW[1]*yW[1]+yW[2]*yW[2]); for (j=0;j<3;j++) yW[j] /= ly; // p_lep = |p_lep| * ( sin(Theta) * cos(Phi) * eX' // + sin(Theta) * sin(Phi) * eY' // + cos(Theta) * eZ') for (j=0;j<3;j++) pLW[j+1] = sttmp*cos(phL)*ptmp*xW[j] + sttmp*sin(phL)*ptmp*yW[j] + ctL *ptmp*zW[j]; double apLW = ptmp; // boost them back in the B Meson restframe double appLB = beta*gamma*pLW[0] + gamma*ctL*apLW; ptmp = sqrt(El*El-ml*ml); double ctLL = appLB/ptmp; if ( ctLL > 1 ) ctLL = 1; if ( ctLL < -1 ) ctLL = -1; double pLB[4] = {El,0,0,0}; double pNB[4] = {pWB[0]-El,0,0,0}; for (j=1;j<4;j++) { pLB[j] = pLW[j] + (ctLL*ptmp - ctL*apLW)/apWB*pWB[j]; pNB[j] = pWB[j] - pLB[j]; } p4.set(pLB[0],pLB[1],pLB[2],pLB[3]); lepton->init( getDaug(1), p4); p4.set(pNB[0],pNB[1],pNB[2],pNB[3]); neutrino->init( getDaug(2), p4); return ; } double EvtVub::findPFermi() { double ranNum=EvtRandom::Flat(); double oOverBins= 1.0/(float(_pf.size())); int nBinsBelow = 0; // largest k such that I[k] is known to be <= rand int nBinsAbove = _pf.size(); // largest k such that I[k] is known to be > rand int middle; while (nBinsAbove > nBinsBelow+1) { middle = (nBinsAbove + nBinsBelow+1)>>1; if (ranNum >= _pf[middle]) { nBinsBelow = middle; } else { nBinsAbove = middle; } } double bSize = _pf[nBinsAbove] - _pf[nBinsBelow]; // binMeasure is always aProbFunc[nBinsBelow], if ( bSize == 0 ) { // rand lies right in a bin of measure 0. Simply return the center // of the range of that bin. (Any value between k/N and (k+1)/N is // equally good, in this rare case.) return (nBinsBelow + .5) * oOverBins; } double bFract = (ranNum - _pf[nBinsBelow]) / bSize; return (nBinsBelow + bFract) * oOverBins; }