/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ #include #include "AliModule.h" #include "AliRun.h" #include "TClonesArray.h" #include "TFlukaGeo.h" #include "TCallf77.h" //For the fortran calls #include "Fdblprc.h" //(DBLPRC) fluka common #include "Fepisor.h" //(EPISOR) fluka common #include "Ffinuc.h" //(FINUC) fluka common #include "Fiounit.h" //(IOUNIT) fluka common #include "Fpaprop.h" //(PAPROP) fluka common #include "Fpart.h" //(PART) fluka common #include "Ftrackr.h" //(TRACKR) fluka common #include "Fpaprop.h" //(PAPROP) fluka common #include "Ffheavy.h" //(FHEAVY) fluka common #include "TVirtualMC.h" #include "TGeoManager.h" #include "TGeoMaterial.h" #include "TGeoMedium.h" #include "TFlukaMCGeometry.h" #include "TFlukaCerenkov.h" #include "TLorentzVector.h" // Fluka methods that may be needed. #ifndef WIN32 # define flukam flukam_ # define fluka_openinp fluka_openinp_ # define fluka_closeinp fluka_closeinp_ # define mcihad mcihad_ # define mpdgha mpdgha_ #else # define flukam FLUKAM # define fluka_openinp FLUKA_OPENINP # define fluka_closeinp FLUKA_CLOSEINP # define mcihad MCIHAD # define mpdgha MPDGHA #endif extern "C" { // // Prototypes for FLUKA functions // void type_of_call flukam(const int&); void type_of_call fluka_openinp(const int&, DEFCHARA); void type_of_call fluka_closeinp(const int&); int type_of_call mcihad(const int&); int type_of_call mpdgha(const int&); } // // Class implementation for ROOT // ClassImp(TFluka) // //---------------------------------------------------------------------------- // TFluka constructors and destructors. //______________________________________________________________________________ TFluka::TFluka() :TVirtualMC(), fVerbosityLevel(0), sInputFileName("") { // // Default constructor // fNVolumes = 0; fCurrentFlukaRegion = -1; fGeom = 0; fMaterials = 0; } //______________________________________________________________________________ TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported) :TVirtualMC("TFluka",title, isRootGeometrySupported), fVerbosityLevel(verbosity), sInputFileName(""), fTrackIsEntering(0), fTrackIsExiting(0), fTrackIsNew(0) { // create geometry interface if (fVerbosityLevel >=3) cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl; fNVolumes = 0; fCurrentFlukaRegion = -1; fGeom = new TFlukaMCGeometry("geom", "ALICE geometry"); fMaterials = 0; } //______________________________________________________________________________ TFluka::~TFluka() { if (fVerbosityLevel >=3) cout << "==> TFluka::~TFluka() destructor called." << endl; delete fGeom; if (fVerbosityLevel >=3) cout << "<== TFluka::~TFluka() destructor called." << endl; } // //______________________________________________________________________________ // TFluka control methods //______________________________________________________________________________ void TFluka::Init() { if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl; if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry"); fApplication->ConstructGeometry(); TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First(); gGeoManager->SetTopVolume(top); gGeoManager->CloseGeometry("di"); gGeoManager->DefaultColors(); // to be removed fNVolumes = fGeom->NofVolumes(); printf("== Number of volumes: %i\n ==", fNVolumes); fGeom->CreateFlukaMatFile("flukaMat.inp"); cout << "\t* InitPhysics() - Prepare input file to be called" << endl; // now we have TGeo geometry created and we have to patch alice.inp // with the material mapping file FlukaMat.inp } //______________________________________________________________________________ void TFluka::FinishGeometry() { // // Build-up table with region to medium correspondance // if (fVerbosityLevel >=3) cout << "==> TFluka::FinishGeometry() called." << endl; printf("----FinishGeometry - nothing to do with TGeo\n"); if (fVerbosityLevel >=3) cout << "<== TFluka::FinishGeometry() called." << endl; } //______________________________________________________________________________ void TFluka::BuildPhysics() { if (fVerbosityLevel >=3) cout << "==> TFluka::BuildPhysics() called." << endl; InitPhysics(); // prepare input file with the current physics settings cout << "\t* InitPhysics() - Prepare input file was called" << endl; if (fVerbosityLevel >=2) cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F') << ") in fluka..." << endl; GLOBAL.lfdrtr = true; if (fVerbosityLevel >=2) cout << "\t* Opening file " << sInputFileName << endl; const char* fname = sInputFileName; fluka_openinp(lunin, PASSCHARA(fname)); if (fVerbosityLevel >=2) cout << "\t* Calling flukam..." << endl; flukam(1); if (fVerbosityLevel >=2) cout << "\t* Closing file " << sInputFileName << endl; fluka_closeinp(lunin); FinishGeometry(); if (fVerbosityLevel >=3) cout << "<== TFluka::Init() called." << endl; if (fVerbosityLevel >=3) cout << "<== TFluka::BuildPhysics() called." << endl; } //______________________________________________________________________________ void TFluka::ProcessEvent() { if (fVerbosityLevel >=3) cout << "==> TFluka::ProcessEvent() called." << endl; fApplication->GeneratePrimaries(); EPISOR.lsouit = true; flukam(1); if (fVerbosityLevel >=3) cout << "<== TFluka::ProcessEvent() called." << endl; } //______________________________________________________________________________ void TFluka::ProcessRun(Int_t nevent) { if (fVerbosityLevel >=3) cout << "==> TFluka::ProcessRun(" << nevent << ") called." << endl; if (fVerbosityLevel >=2) { cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl; cout << "\t* Calling flukam again..." << endl; } fApplication->InitGeometry(); fApplication->BeginEvent(); ProcessEvent(); fApplication->FinishEvent(); if (fVerbosityLevel >=3) cout << "<== TFluka::ProcessRun(" << nevent << ") called." << endl; } //_____________________________________________________________________________ // methods for building/management of geometry // functions from GCONS //____________________________________________________________________________ void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, Float_t &dens, Float_t &radl, Float_t &absl, Float_t* ubuf, Int_t& nbuf) { // fGeom->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf); } //______________________________________________________________________________ void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, Double_t &dens, Double_t &radl, Double_t &absl, Double_t* ubuf, Int_t& nbuf) { // fGeom->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf); } // detector composition //______________________________________________________________________________ void TFluka::Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Float_t* buf, Int_t nwbuf) { // fGeom->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf); } //______________________________________________________________________________ void TFluka::Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Double_t* buf, Int_t nwbuf) { // fGeom->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf); } //______________________________________________________________________________ void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a, Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) { // fGeom->Mixture(kmat, name, a, z, dens, nlmat, wmat); } //______________________________________________________________________________ void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a, Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) { // fGeom->Mixture(kmat, name, a, z, dens, nlmat, wmat); } //______________________________________________________________________________ void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Float_t* ubuf, Int_t nbuf) { // fGeom->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin, ubuf, nbuf); } //______________________________________________________________________________ void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Double_t* ubuf, Int_t nbuf) { // fGeom->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin, ubuf, nbuf); } //______________________________________________________________________________ void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, Double_t thetaY, Double_t phiY, Double_t thetaZ, Double_t phiZ) { // fGeom->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ); } //______________________________________________________________________________ void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) { // // Is it needed with TGeo ??? - to clear-up // printf("Gstpar called with %6d %5s %12.4e %6d\n", itmed, param, parval, fGeom->GetFlukaMaterial(itmed)); Bool_t process = kFALSE; if (strncmp(param, "DCAY", 4) == 0 || strncmp(param, "PAIR", 4) == 0 || strncmp(param, "COMP", 4) == 0 || strncmp(param, "PHOT", 4) == 0 || strncmp(param, "PFIS", 4) == 0 || strncmp(param, "DRAY", 4) == 0 || strncmp(param, "ANNI", 4) == 0 || strncmp(param, "BREM", 4) == 0 || strncmp(param, "MUNU", 4) == 0 || strncmp(param, "CKOV", 4) == 0 || strncmp(param, "HADR", 4) == 0 || strncmp(param, "LOSS", 4) == 0 || strncmp(param, "MULS", 4) == 0 || strncmp(param, "RAYL", 4) == 0) { process = kTRUE; } if (process) { SetProcess(param, Int_t (parval), fGeom->GetFlukaMaterial(itmed)); } else { SetCut(param, parval, fGeom->GetFlukaMaterial(itmed)); } } // functions from GGEOM //_____________________________________________________________________________ void TFluka::Gsatt(const char *name, const char *att, Int_t val) { fGeom->Gsatt(name,att, val); } //______________________________________________________________________________ Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Float_t *upar, Int_t np) { // return fGeom->Gsvolu(name, shape, nmed, upar, np); } //______________________________________________________________________________ Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Double_t *upar, Int_t np) { // return fGeom->Gsvolu(name, shape, nmed, upar, np); } //______________________________________________________________________________ void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv, Int_t iaxis) { // fGeom->Gsdvn(name, mother, ndiv, iaxis); } //______________________________________________________________________________ void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv, Int_t iaxis, Double_t c0i, Int_t numed) { // fGeom->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); } //______________________________________________________________________________ void TFluka::Gsdvt(const char *name, const char *mother, Double_t step, Int_t iaxis, Int_t numed, Int_t ndvmx) { // fGeom->Gsdvt(name, mother, step, iaxis, numed, ndvmx); } //______________________________________________________________________________ void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step, Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) { // fGeom->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); } //______________________________________________________________________________ void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) { // // Nothing to do with TGeo } //______________________________________________________________________________ void TFluka::Gspos(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly) { // fGeom->Gspos(name, nr, mother, x, y, z, irot, konly); } //______________________________________________________________________________ void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Float_t *upar, Int_t np) { // fGeom->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); } //______________________________________________________________________________ void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Double_t *upar, Int_t np) { // fGeom->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); } //______________________________________________________________________________ void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) { // // Nothing to do with TGeo Warning("Gsbool", "Not implemented with TGeo"); } //______________________________________________________________________________ void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov, Float_t* absco, Float_t* effic, Float_t* rindex) { // // Set Cerenkov properties for medium itmed // // npckov: number of sampling points // ppckov: energy values // absco: absorption length // effic: quantum efficiency // rindex: refraction index // // // // Create object holding Cerenkov properties // TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex); // // Pass object to medium TGeoMedium* medium = gGeoManager->GetMedium(itmed); medium->SetCerenkovProperties(cerenkovProperties); } //______________________________________________________________________________ void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/, Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) { // // Not implemented with TGeo - what G4 did ? Any FLUKA card generated? Warning("SetCerenkov", "Not implemented with TGeo"); } // Euclid //______________________________________________________________________________ void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/, Int_t /*number*/, Int_t /*nlevel*/) { // // Not with TGeo Warning("WriteEuclid", "Not implemented with TGeo"); } //_____________________________________________________________________________ // methods needed by the stepping //____________________________________________________________________________ Int_t TFluka::GetMedium() const { // // Get the medium number for the current fluka region // return fGeom->GetMedium(); // this I need to check due to remapping !!! } //____________________________________________________________________________ // particle table usage // ID <--> PDG transformations //_____________________________________________________________________________ Int_t TFluka::IdFromPDG(Int_t pdg) const { // // Return Fluka code from PDG and pseudo ENDF code // Catch the feedback photons if (pdg == 50000051) return (-1); // MCIHAD() goes from pdg to fluka internal. Int_t intfluka = mcihad(pdg); // KPTOIP array goes from internal to official return GetFlukaKPTOIP(intfluka); } //______________________________________________________________________________ Int_t TFluka::PDGFromId(Int_t id) const { // // Return PDG code and pseudo ENDF code from Fluka code // IPTOKP array goes from official to internal if (id == -1) { // Cerenkov photon if (fVerbosityLevel >= 1) printf("\n PDGFromId: Cerenkov Photon \n"); return 50000050; } // Error id if (id == 0) { if (fVerbosityLevel >= 1) printf("PDGFromId: Error id = 0\n"); return -1; } // Good id Int_t intfluka = GetFlukaIPTOKP(id); if (intfluka == 0) { if (fVerbosityLevel >= 1) printf("PDGFromId: Error intfluka = 0: %d\n", id); return -1; } else if (intfluka < 0) { if (fVerbosityLevel >= 1) printf("PDGFromId: Error intfluka < 0: %d\n", id); return -1; } if (fVerbosityLevel >= 3) printf("mpdgha called with %d %d \n", id, intfluka); // MPDGHA() goes from fluka internal to pdg. return mpdgha(intfluka); } //_____________________________________________________________________________ // methods for physics management //____________________________________________________________________________ // // set methods // void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed) { strcpy(&fProcessFlag[fNbOfProc][0],flagName); fProcessValue[fNbOfProc] = flagValue; fProcessMedium[fNbOfProc] = imed; fNbOfProc++; } //______________________________________________________________________________ void TFluka::SetProcess(const char* flagName, Int_t flagValue) { Int_t i; if (fNbOfProc < 100) { for (i=0; iGetLastMaterialIndex(); printf(" last FLUKA material is %g\n", fLastMaterial); // Prepare Cerenkov TList *matList = gGeoManager->GetListOfMaterials(); Int_t nmaterial = matList->GetSize(); fMaterials = new Int_t[nmaterial]; // construct file names TString sAliceCoreInp = getenv("ALICE_ROOT"); TString sGaliceCuts = sAliceCoreInp; sAliceCoreInp +="/TFluka/input/"; TString sAliceTmp = "flukaMat.inp"; TString sAliceInp = GetInputFileName(); sAliceCoreInp += GetCoreInputFileName(); sGaliceCuts +="/data/galice.cuts"; // open files if ((pAliceCoreInp = fopen(sAliceCoreInp.Data(),"r")) == NULL) { printf("\nCannot open file %s\n",sAliceCoreInp.Data()); exit(1); } if ((pAliceFlukaMat = fopen(sAliceTmp.Data(),"r")) == NULL) { printf("\nCannot open file %s\n",sAliceTmp.Data()); exit(1); } if ((pAliceInp = fopen(sAliceInp.Data(),"w")) == NULL) { printf("\nCannot open file %s\n",sAliceInp.Data()); exit(1); } if ((pGaliceCuts = fopen(sGaliceCuts.Data(),"r")) == NULL) { printf("\nCannot open file %s\n",sGaliceCuts.Data()); exit(1); } // copy core input file Char_t sLine[255]; Float_t fEventsPerRun; while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { if (strncmp(sLine,"GEOEND",6) != 0) fprintf(pAliceInp,"%s",sLine); // copy until GEOEND card else { fprintf(pAliceInp,"GEOEND\n"); // add GEOEND card goto flukamat; } } // end of while until GEOEND card flukamat: while ((fgets(sLine,255,pAliceFlukaMat)) != NULL) { // copy flukaMat.inp file fprintf(pAliceInp,"%s\n",sLine); } while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { if (strncmp(sLine,"START",5) != 0) fprintf(pAliceInp,"%s\n",sLine); else { sscanf(sLine+10,"%10f",&fEventsPerRun); goto fin; } } //end of while until START card fin: // in G3 the process control values meaning can be different for // different processes, but for most of them is: // 0 process is not activated // 1 process is activated WITH generation of secondaries // 2 process is activated WITHOUT generation of secondaries // if process does not generate secondaries => 1 same as 2 // // Exceptions: // MULS: also 3 // LOSS: also 3, 4 // RAYL: only 0,1 // HADR: may be > 2 // // Loop over number of SetProcess calls fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n"); fprintf(pAliceInp,"*----- The following data are generated from SetProcess and SetCut calls ----- \n"); fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n"); for (i = 0; i < fNbOfProc; i++) { Float_t matMin = three; Float_t matMax = fLastMaterial; Bool_t global = kTRUE; if (fProcessMedium[i] != -1) { matMin = Float_t(fProcessMedium[i]); matMax = matMin; global = kFALSE; } // annihilation // G3 default value: 1 // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation // Particles: e+ // Physics: EM // flag = 0 no annihilation // flag = 1 annihilation, decays processed // flag = 2 annihilation, no decay product stored // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR if (strncmp(&fProcessFlag[i][0],"ANNI",4) == 0) { if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n"); // -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0) // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices // "ANNH-THR"; fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,matMin,matMax,one); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*No annihilation - no FLUKA card generated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',0)\n"); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // bremsstrahlung and pair production are both activated // G3 default value: 1 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung, // G4MuBremsstrahlung/G4IMuBremsstrahlung, // G4LowEnergyBremstrahlung // Particles: e-/e+; mu+/mu- // Physics: EM // flag = 0 no bremsstrahlung // flag = 1 bremsstrahlung, photon processed // flag = 2 bremsstrahlung, no photon stored // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR // G3 default value: 1 // G4 processes: G4GammaConversion, // G4MuPairProduction/G4IMuPairProduction // G4LowEnergyGammaConversion // Particles: gamma, mu // Physics: EM // flag = 0 no delta rays // flag = 1 delta rays, secondaries processed // flag = 2 delta rays, no secondaries stored // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR else if ((strncmp(&fProcessFlag[i][0],"PAIR",4) == 0) && (fProcessValue[i] == 1 || fProcessValue[i] == 2)) { for (j=0; jSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons fCut = 0.0; for (k=0; kSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung fCut = 0.0; for (k=0; kSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons // one = pair production by muons and charged hadrons is activated // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production. // zero = no explicit bremsstrahlung production is simulated // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); // for e+ and e- fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n"); fCut = -1.0; for (j=0; jSetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR else if (strncmp(&fProcessFlag[i][0],"BREM",4) == 0) { for (j = 0; j < fNbOfProc; j++) { if ((strncmp(&fProcessFlag[j][0],"PAIR",4) == 0) && fProcessValue[j] == 1 && (fProcessMedium[j] == fProcessMedium[i])) goto NOBREM; } if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { fprintf(pAliceInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n"); fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n"); // two = bremsstrahlung by muons and charged hadrons is activated // zero = no meaning // muon and hadron bremsstrahlung // G4 particles: "gamma" // G3 default value: CUTGAM=0.001 GeV //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung fCut = 0.0; for (j=0; jSetProcess("CKOV",1); // ??? Cerenkov photon generation else if (strncmp(&fProcessFlag[i][0],"CKOV",4) == 0) { if ((fProcessValue[i] == 1 || fProcessValue[i] == 2) && global) { // Write comments fprintf(pAliceInp, "* \n"); fprintf(pAliceInp, "*Cerenkov photon generation\n"); fprintf(pAliceInp, "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n"); // Loop over media for (Int_t im = 0; im < nmaterial; im++) { TGeoMaterial* material = dynamic_cast (matList->At(im)); Int_t idmat = material->GetIndex(); if (!global && idmat != fProcessMedium[i]) continue; fMaterials[idmat] = im; // Skip media with no Cerenkov properties TFlukaCerenkov* cerenkovProp; if (!(cerenkovProp = dynamic_cast(material->GetCerenkovProperties()))) continue; // // This medium has Cerenkov properties // // // Write OPT-PROD card for each medium Float_t emin = cerenkovProp->GetMinimumEnergy(); Float_t emax = cerenkovProp->GetMaximumEnergy(); fprintf(pAliceInp, "OPT-PROD %10.4g%10.4g%10.4g%10.4g%10.4g%10.4gCERENKOV\n", emin, emax, 0., Float_t(idmat), Float_t(idmat), 0.); // // Write OPT-PROP card for each medium // Forcing FLUKA to call user routines (queffc.cxx, rflctv.cxx, rfrndx.cxx) // fprintf(pAliceInp, "OPT-PROP %10.4g%10.4g%10.4g%10.1f%10.1f%10.1fWV-LIMIT\n", cerenkovProp->GetMinimumWavelength(), cerenkovProp->GetMaximumWavelength(), cerenkovProp->GetMaximumWavelength(), Float_t(idmat), Float_t(idmat), 0.0); if (cerenkovProp->IsMetal()) { fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fMETAL\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } else { fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } for (Int_t j = 0; j < 3; j++) { fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f&\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } // Photon detection efficiency user defined if (cerenkovProp->IsSensitive()) fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fSENSITIV\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } // materials } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*No Cerenkov photon generation\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',0)\n"); // zero = not used // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices //"CERE-OFF"; fprintf(pAliceInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,matMin,matMax,one); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"CKOV",4) == 0) // Compton scattering // G3 default value: 1 // G4 processes: G4ComptonScattering, // G4LowEnergyCompton, // G4PolarizedComptonScattering // Particles: gamma // Physics: EM // flag = 0 no Compton scattering // flag = 1 Compton scattering, electron processed // flag = 2 Compton scattering, no electron stored // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR else if (strncmp(&fProcessFlag[i][0],"COMP",4) == 0) { if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { fprintf(pAliceInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',1);\n"); // - one = energy threshold (GeV) for Compton scattering - resets to default=0. // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices //"PHOT-THR"; fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,matMin,matMax,one); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*No Compton scattering - no FLUKA card generated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',0)\n"); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"COMP",4) == 0) // decay // G3 default value: 1 // G4 process: G4Decay // // Particles: all which decay is applicable for // Physics: General // flag = 0 no decays // flag = 1 decays, secondaries processed // flag = 2 decays, no secondaries stored //gMC ->SetProcess("DCAY",1); // not available else if ((strncmp(&fProcessFlag[i][0],"DCAY",4) == 0) && fProcessValue[i] == 1) cout << "SetProcess for flag=" << &fProcessFlag[i][0] << " value=" << fProcessValue[i] << " not avaliable!" << endl; // delta-ray // G3 default value: 2 // !! G4 treats delta rays in different way // G4 processes: G4eIonisation/G4IeIonization, // G4MuIonisation/G4IMuIonization, // G4hIonisation/G4IhIonisation // Particles: charged // Physics: EM // flag = 0 no energy loss // flag = 1 restricted energy loss fluctuations // flag = 2 complete energy loss fluctuations // flag = 3 same as 1 // flag = 4 no energy loss fluctuations // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0. else if (strncmp(&fProcessFlag[i][0],"DRAY",4) == 0) { if (fProcessValue[i] == 0 || fProcessValue[i] == 4) { fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n"); fprintf(pAliceInp,"*No delta ray production by muons - threshold set artificially high\n"); Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) // zero = ignored // zero = ignored // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,matMin,matMax,one); } else if (fProcessValue[i] == 1 || fProcessValue[i] == 2 || fProcessValue[i] == 3) { fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n"); fprintf(pAliceInp,"*Delta ray production by muons switched on\n"); fprintf(pAliceInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n"); fCut = 1.0e+6; for (j = 0; j < fNbOfCut; j++) { if (strncmp(&fCutFlag[j][0],"DCUTM",5) == 0 && fCutMedium[j] == fProcessMedium[i]) fCut = fCutValue[j]; } // fCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) // zero = ignored // zero = ignored // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",fCut,zero,zero,matMin,matMax,one); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"DRAY",4) == 0) // hadronic process // G3 default value: 1 // G4 processes: all defined by TG4PhysicsConstructorHadron // // Particles: hadrons // Physics: Hadron // flag = 0 no multiple scattering // flag = 1 hadronic interactions, secondaries processed // flag = 2 hadronic interactions, no secondaries stored // gMC ->SetProcess("HADR",1); // ??? hadronic process //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ????? else if (strncmp(&fProcessFlag[i][0],"HADR",4) == 0) { if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { fprintf(pAliceInp,"*\n*Hadronic interaction is ON by default in FLUKA\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*Hadronic interaction is set OFF\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('HADR',0);\n"); // zero = ignored // three = multiple scattering for hadrons and muons is completely suppressed // zero = no spin-relativistic corrections // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,zero,matMin,matMax); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"HADR",4) == 0) // energy loss // G3 default value: 2 // G4 processes: G4eIonisation/G4IeIonization, // G4MuIonisation/G4IMuIonization, // G4hIonisation/G4IhIonisation // // Particles: charged // Physics: EM // flag=0 no energy loss // flag=1 restricted energy loss fluctuations // flag=2 complete energy loss fluctuations // flag=3 same as 1 // flag=4 no energy loss fluctuations // If the value ILOSS is changed, then (in G3) cross-sections and energy // loss tables must be recomputed via the command 'PHYSI' // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss else if (strncmp(&fProcessFlag[i][0],"LOSS",4) == 0) { if (fProcessValue[i] == 2) { // complete energy loss fluctuations fprintf(pAliceInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',2);\n"); fprintf(pAliceInp,"*flag=2=complete energy loss fluctuations\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } else if (fProcessValue[i] == 1 || fProcessValue[i] == 3) { // restricted energy loss fluctuations fprintf(pAliceInp,"*\n*Restricted energy loss fluctuations\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n"); // one = restricted energy loss fluctuations (for hadrons and muons) switched on // one = restricted energy loss fluctuations (for e+ and e-) switched on // one = minimal accuracy // matMin = lower bound of the material indices in which the respective thresholds apply // upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); } else if (fProcessValue[i] == 4) { // no energy loss fluctuations fprintf(pAliceInp,"*\n*No energy loss fluctuations\n"); fprintf(pAliceInp,"*\n*Generated from call: SetProcess('LOSS',4)\n"); // - one = restricted energy loss fluctuations (for hadrons and muons) switched off // - one = restricted energy loss fluctuations (for e+ and e-) switched off // one = minimal accuracy // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,matMin,matMax); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"LOSS",4) == 0) // multiple scattering // G3 default value: 1 // G4 process: G4MultipleScattering/G4IMultipleScattering // // Particles: charged // Physics: EM // flag = 0 no multiple scattering // flag = 1 Moliere or Coulomb scattering // flag = 2 Moliere or Coulomb scattering // flag = 3 Gaussian scattering // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering else if (strncmp(&fProcessFlag[i][0],"MULS",4) == 0) { if (fProcessValue[i] == 1 || fProcessValue[i] == 2 || fProcessValue[i] == 3) { fprintf(pAliceInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*Multiple scattering is set OFF\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('MULS',0);\n"); // zero = ignored // three = multiple scattering for hadrons and muons is completely suppressed // three = multiple scattering for e+ and e- is completely suppressed // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,matMin,matMax); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"MULS",4) == 0) // muon nuclear interaction // G3 default value: 0 // G4 processes: G4MuNuclearInteraction, // G4MuonMinusCaptureAtRest // // Particles: mu // Physics: Not set // flag = 0 no muon-nuclear interaction // flag = 1 nuclear interaction, secondaries processed // flag = 2 nuclear interaction, secondaries not processed // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat else if (strncmp(&fProcessFlag[i][0],"MUNU",4) == 0) { if (fProcessValue[i] == 1) { fprintf(pAliceInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n"); fprintf(pAliceInp,"*\n*Generated from call: SetProcess('MUNU',1);\n"); // one = full simulation of muon nuclear interactions and production of secondary hadrons // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); } else if (fProcessValue[i] == 2) { fprintf(pAliceInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',2);\n"); // two = full simulation of muon nuclear interactions and production of secondary hadrons // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,matMin,matMax); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',0)\n"); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"MUNU",4) == 0) // photofission // G3 default value: 0 // G4 process: ?? // // Particles: gamma // Physics: ?? // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0. // flag = 0 no photon fission // flag = 1 photon fission, secondaries processed // flag = 2 photon fission, no secondaries stored else if (strncmp(&fProcessFlag[i][0],"PFIS",4) == 0) { if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*No photonuclear interactions\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0);\n"); // - one = no photonuclear interactions // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,matMin,matMax); } else if (fProcessValue[i] == 1) { fprintf(pAliceInp,"*\n*Photon nuclear interactions are activated at all energies\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',1);\n"); // one = photonuclear interactions are activated at all energies // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*No photofission - no FLUKA card generated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0)\n"); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // photo electric effect // G3 default value: 1 // G4 processes: G4PhotoElectricEffect // G4LowEnergyPhotoElectric // Particles: gamma // Physics: EM // flag = 0 no photo electric effect // flag = 1 photo electric effect, electron processed // flag = 2 photo electric effect, no electron stored // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR else if (strncmp(&fProcessFlag[i][0],"PHOT",4) == 0) { if (fProcessValue[i] == 1 || fProcessValue[i] == 2) { fprintf(pAliceInp,"*\n*Photo electric effect is activated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',1);\n"); // zero = ignored // - one = resets to default=0. // zero = ignored // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices //"PHOT-THR"; fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,matMin,matMax,one); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*No photo electric effect - no FLUKA card generated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',0)\n"); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // else if (strncmp(&fProcessFlag[i][0],"PHOT",4) == 0) // Rayleigh scattering // G3 default value: 0 // G4 process: G4OpRayleigh // // Particles: optical photon // Physics: Optical // flag = 0 Rayleigh scattering off // flag = 1 Rayleigh scattering on //xx gMC ->SetProcess("RAYL",1); else if (strncmp(&fProcessFlag[i][0],"RAYL",4) == 0) { if (fProcessValue[i] == 1) { fprintf(pAliceInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } else if (fProcessValue[i] == 0) { fprintf(pAliceInp,"*\n*Rayleigh scattering is set OFF\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('RAYL',0);\n"); // - one = no Rayleigh scattering and no binding corrections for Compton // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,matMin,matMax); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(&fProcessFlag[i][0],"RAYL",4) == 0) // synchrotron radiation in magnetic field // G3 default value: 0 // G4 process: G4SynchrotronRadiation // // Particles: ?? // Physics: Not set // flag = 0 no synchrotron radiation // flag = 1 synchrotron radiation //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation else if (strncmp(&fProcessFlag[i][0],"SYNC",4) == 0) { fprintf(pAliceInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } // Automatic calculation of tracking medium parameters // flag = 0 no automatic calculation // flag = 1 automatic calculation //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters else if (strncmp(&fProcessFlag[i][0],"AUTO",4) == 0) { fprintf(pAliceInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } // To control energy loss fluctuation model // flag = 0 Urban model // flag = 1 PAI model // flag = 2 PAI+ASHO model (not active at the moment) //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model else if (strncmp(&fProcessFlag[i][0],"STRA",4) == 0) { if (fProcessValue[i] == 0 || fProcessValue[i] == 2 || fProcessValue[i] == 3) { fprintf(pAliceInp,"*\n*Ionization energy losses calculation is activated\n"); fprintf(pAliceInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n"); // one = restricted energy loss fluctuations (for hadrons and muons) switched on // one = restricted energy loss fluctuations (for e+ and e-) switched on // one = minimal accuracy // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); } else { fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n"); fprintf(pAliceInp,"*No FLUKA card generated\n"); } } // else if (strncmp(&fProcessFlag[i][0],"STRA",4) == 0) else { // processes not yet treated // light photon absorption (Cerenkov photons) // it is turned on when Cerenkov process is turned on // G3 default value: 0 // G4 process: G4OpAbsorption, G4OpBoundaryProcess // // Particles: optical photon // Physics: Optical // flag = 0 no absorption of Cerenkov photons // flag = 1 absorption of Cerenkov photons // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption cout << "SetProcess for flag=" << &fProcessFlag[i][0] << " value=" << fProcessValue[i] << " not yet implemented!" << endl; } } //end of loop number of SetProcess calls // Loop over number of SetCut calls for (Int_t i = 0; i < fNbOfCut; i++) { Float_t matMin = three; Float_t matMax = fLastMaterial; Bool_t global = kTRUE; if (fCutMedium[i] != -1) { matMin = Float_t(fCutMedium[i]); matMax = matMin; global = kFALSE; } // cuts handled in SetProcess calls if (strncmp(&fCutFlag[i][0],"BCUTM",5) == 0) continue; else if (strncmp(&fCutFlag[i][0],"BCUTE",5) == 0) continue; else if (strncmp(&fCutFlag[i][0],"DCUTM",5) == 0) continue; else if (strncmp(&fCutFlag[i][0],"PPCUTM",6) == 0) continue; // gammas // G4 particles: "gamma" // G3 default value: 0.001 GeV // gMC ->SetCut("CUTGAM",cut); // cut for gammas else if (strncmp(&fCutFlag[i][0],"CUTGAM",6) == 0 && global) { fprintf(pAliceInp,"*\n*Cut for gamma\n"); fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); // -fCutValue[i]; // 7.0 = lower bound of the particle id-numbers to which the cut-off fprintf(pAliceInp,"PART-THR %10.4g%10.1f\n",-fCutValue[i],7.0); } else if (strncmp(&fCutFlag[i][0],"CUTGAM",6) == 0 && !global) { fprintf(pAliceInp,"*\n*Cut specific to material for gamma\n"); fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); // -fCutValue[i]; // 7.0 = lower bound of the particle id-numbers to which the cut-off fprintf(pAliceInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", 0., fCutValue[i], zero, matMin, matMax, one); } // electrons // G4 particles: "e-" // ?? positrons // G3 default value: 0.001 GeV //gMC ->SetCut("CUTELE",cut); // cut for e+,e- else if (strncmp(&fCutFlag[i][0],"CUTELE",6) == 0 && global) { fprintf(pAliceInp,"*\n*Cut for electrons\n"); fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n"); // -fCutValue[i]; // three = lower bound of the particle id-numbers to which the cut-off // 4.0 = upper bound of the particle id-numbers to which the cut-off // one = step length in assigning numbers fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],three,4.0,one); } else if (strncmp(&fCutFlag[i][0],"CUTELE",6) == 0 && !global) { fprintf(pAliceInp,"*\n*Cut specific to material for electrons\n"); fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n"); // -fCutValue[i]; // three = lower bound of the particle id-numbers to which the cut-off // 4.0 = upper bound of the particle id-numbers to which the cut-off // one = step length in assigning numbers fprintf(pAliceInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", -fCutValue[i], zero, zero, matMin, matMax, one); } // neutral hadrons // G4 particles: of type "baryon", "meson", "nucleus" with zero charge // G3 default value: 0.01 GeV //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons else if (strncmp(&fCutFlag[i][0],"CUTNEU",6) == 0 && global) { fprintf(pAliceInp,"*\n*Cut for neutral hadrons\n"); fprintf(pAliceInp,"*Generated from call: SetCut('CUTNEU',cut);\n"); // 8.0 = Neutron // 9.0 = Antineutron fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],8.0,9.0); // 12.0 = Kaon zero long // 12.0 = Kaon zero long fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],12.0,12.0); // 17.0 = Lambda, 18.0 = Antilambda // 19.0 = Kaon zero short fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],17.0,19.0); // 22.0 = Sigma zero, Pion zero, Kaon zero // 25.0 = Antikaon zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],22.0,25.0); // 32.0 = Antisigma zero // 32.0 = Antisigma zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],32.0,32.0); // 34.0 = Xi zero // 35.0 = AntiXi zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],34.0,35.0); // 47.0 = D zero // 48.0 = AntiD zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],47.0,48.0); // 53.0 = Xi_c zero // 53.0 = Xi_c zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],53.0,53.0); // 55.0 = Xi'_c zero // 56.0 = Omega_c zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],55.0,56.0); // 59.0 = AntiXi_c zero // 59.0 = AntiXi_c zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],59.0,59.0); // 61.0 = AntiXi'_c zero // 62.0 = AntiOmega_c zero fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],61.0,62.0); } // charged hadrons // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge // G3 default value: 0.01 GeV //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons else if (strncmp(&fCutFlag[i][0],"CUTHAD",6) == 0 && global) { fprintf(pAliceInp,"*\n*Cut for charged hadrons\n"); fprintf(pAliceInp,"*Generated from call: SetCut('CUTHAD',cut);\n"); // 1.0 = Proton // 2.0 = Antiproton fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],1.0,2.0); // 13.0 = Positive Pion, Negative Pion, Positive Kaon // 16.0 = Negative Kaon fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],13.0,16.0); // 20.0 = Negative Sigma // 21.0 = Positive Sigma fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],20.0,21.0); // 31.0 = Antisigma minus // 33.0 = Antisigma plus // 2.0 = step length fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],31.0,33.0,2.0); // 36.0 = Negative Xi, Positive Xi, Omega minus // 39.0 = Antiomega fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],36.0,39.0); // 45.0 = D plus // 46.0 = D minus fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],45.0,46.0); // 49.0 = D_s plus, D_s minus, Lambda_c plus // 52.0 = Xi_c plus fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],49.0,52.0); // 54.0 = Xi'_c plus // 60.0 = AntiXi'_c minus // 6.0 = step length fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],54.0,60.0,6.0); // 57.0 = Antilambda_c minus // 58.0 = AntiXi_c minus fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],57.0,58.0); } // muons // G4 particles: "mu+", "mu-" // G3 default value: 0.01 GeV //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu- else if (strncmp(&fCutFlag[i][0],"CUTMUO",6)== 0 && global) { fprintf(pAliceInp,"*\n*Cut for muons\n"); fprintf(pAliceInp,"*Generated from call: SetCut('CUTMUO',cut);\n"); // 10.0 = Muon+ // 11.0 = Muon- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],10.0,11.0); } // delta-rays by electrons // G4 particles: "e-" // G3 default value: 10**4 GeV // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ??????????????? else if (strncmp(&fCutFlag[i][0],"DCUTE",5) == 0) { fprintf(pAliceInp,"*\n*Cut for delta rays by electrons ????????????\n"); fprintf(pAliceInp,"*Generated from call: SetCut('DCUTE',cut);\n"); // -fCutValue[i]; // zero = ignored // zero = ignored // matMin = lower bound of the material indices in which the respective thresholds apply // fLastMaterial = upper bound of the material indices in which the respective thresholds apply fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",-fCutValue[i],zero,zero,matMin,matMax); fprintf(pAliceInp,"DELTARAY %10.4g%10.3f%10.3f%10.1f%10.1f%10.1f\n",fCutValue[i], 100., 1.03, matMin, matMax, 1.0); fprintf(pAliceInp,"STEPSIZE %10.4g%10.3f%10.3f%10.1f%10.1f\n", 0.1, 1.0, 1.00, Float_t(gGeoManager->GetListOfUVolumes()->GetEntriesFast()-1), 1.0); } // // time of flight cut in seconds // G4 particles: all // G3 default value: 0.01 GeV //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds else if (strncmp(&fCutFlag[i][0],"TOFMAX",6) == 0) { fprintf(pAliceInp,"*\n*Time of flight cuts in seconds\n"); fprintf(pAliceInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n"); // zero = ignored // zero = ignored // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied fprintf(pAliceInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",fCutValue[i]*1.e9,zero,zero,-6.0,64.0); } else if (global){ cout << "SetCut for flag=" << &fCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl; } else { cout << "SetCut for flag=" << &fCutFlag[i][0] << " value=" << fCutValue[i] << " (material specific) not yet implemented!" << endl; } } //end of loop over SetCut calls // Add START and STOP card fprintf(pAliceInp,"START %10.1f\n",fEventsPerRun); fprintf(pAliceInp,"STOP \n"); // Close files fclose(pAliceCoreInp); fclose(pAliceFlukaMat); fclose(pAliceInp); fclose(pGaliceCuts); } // end of InitPhysics //______________________________________________________________________________ void TFluka::SetMaxStep(Double_t) { // SetMaxStep is dummy procedure in TFluka ! if (fVerbosityLevel >=3) cout << "SetMaxStep is dummy procedure in TFluka !" << endl; } //______________________________________________________________________________ void TFluka::SetMaxNStep(Int_t) { // SetMaxNStep is dummy procedure in TFluka ! if (fVerbosityLevel >=3) cout << "SetMaxNStep is dummy procedure in TFluka !" << endl; } //______________________________________________________________________________ void TFluka::SetUserDecay(Int_t) { // SetUserDecay is dummy procedure in TFluka ! if (fVerbosityLevel >=3) cout << "SetUserDecay is dummy procedure in TFluka !" << endl; } // // dynamic properties // //______________________________________________________________________________ void TFluka::TrackPosition(TLorentzVector& position) const { // Return the current position in the master reference frame of the // track being transported // TRACKR.atrack = age of the particle // TRACKR.xtrack = x-position of the last point // TRACKR.ytrack = y-position of the last point // TRACKR.ztrack = z-position of the last point Int_t caller = GetCaller(); if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw position.SetX(GetXsco()); position.SetY(GetYsco()); position.SetZ(GetZsco()); position.SetT(TRACKR.atrack); } else if (caller == 4) { // mgdraw position.SetX(TRACKR.xtrack[TRACKR.ntrack]); position.SetY(TRACKR.ytrack[TRACKR.ntrack]); position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); position.SetT(TRACKR.atrack); } else if (caller == 5) { // sodraw position.SetX(TRACKR.xtrack[TRACKR.ntrack]); position.SetY(TRACKR.ytrack[TRACKR.ntrack]); position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); position.SetT(0); } else Warning("TrackPosition","position not available"); } //______________________________________________________________________________ void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const { // Return the current position in the master reference frame of the // track being transported // TRACKR.atrack = age of the particle // TRACKR.xtrack = x-position of the last point // TRACKR.ytrack = y-position of the last point // TRACKR.ztrack = z-position of the last point Int_t caller = GetCaller(); if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw x = GetXsco(); y = GetYsco(); z = GetZsco(); } else if (caller == 4 || caller == 5) { // mgdraw, sodraw x = TRACKR.xtrack[TRACKR.ntrack]; y = TRACKR.ytrack[TRACKR.ntrack]; z = TRACKR.ztrack[TRACKR.ntrack]; } else Warning("TrackPosition","position not available"); } //______________________________________________________________________________ void TFluka::TrackMomentum(TLorentzVector& momentum) const { // Return the direction and the momentum (GeV/c) of the track // currently being transported // TRACKR.ptrack = momentum of the particle (not always defined, if // < 0 must be obtained from etrack) // TRACKR.cx,y,ztrck = direction cosines of the current particle // TRACKR.etrack = total energy of the particle // TRACKR.jtrack = identity number of the particle // PAPROP.am[TRACKR.jtrack] = particle mass in gev Int_t caller = GetCaller(); if (caller != 2) { // not eedraw if (TRACKR.ptrack >= 0) { momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck); momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck); momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck); momentum.SetE(TRACKR.etrack); return; } else { Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); momentum.SetPx(p*TRACKR.cxtrck); momentum.SetPy(p*TRACKR.cytrck); momentum.SetPz(p*TRACKR.cztrck); momentum.SetE(TRACKR.etrack); return; } } else Warning("TrackMomentum","momentum not available"); } //______________________________________________________________________________ void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const { // Return the direction and the momentum (GeV/c) of the track // currently being transported // TRACKR.ptrack = momentum of the particle (not always defined, if // < 0 must be obtained from etrack) // TRACKR.cx,y,ztrck = direction cosines of the current particle // TRACKR.etrack = total energy of the particle // TRACKR.jtrack = identity number of the particle // PAPROP.am[TRACKR.jtrack] = particle mass in gev Int_t caller = GetCaller(); if (caller != 2) { // not eedraw if (TRACKR.ptrack >= 0) { px = TRACKR.ptrack*TRACKR.cxtrck; py = TRACKR.ptrack*TRACKR.cytrck; pz = TRACKR.ptrack*TRACKR.cztrck; e = TRACKR.etrack; return; } else { Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); px = p*TRACKR.cxtrck; py = p*TRACKR.cytrck; pz = p*TRACKR.cztrck; e = TRACKR.etrack; return; } } else Warning("TrackMomentum","momentum not available"); } //______________________________________________________________________________ Double_t TFluka::TrackStep() const { // Return the length in centimeters of the current step // TRACKR.ctrack = total curved path Int_t caller = GetCaller(); if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw return 0.0; else if (caller == 4) //mgdraw return TRACKR.ctrack; else return -1.0; } //______________________________________________________________________________ Double_t TFluka::TrackLength() const { // TRACKR.cmtrck = cumulative curved path since particle birth Int_t caller = GetCaller(); if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw return TRACKR.cmtrck; else return -1.0; } //______________________________________________________________________________ Double_t TFluka::TrackTime() const { // Return the current time of flight of the track being transported // TRACKR.atrack = age of the particle Int_t caller = GetCaller(); if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw return TRACKR.atrack; else return -1; } //______________________________________________________________________________ Double_t TFluka::Edep() const { // Energy deposition // if TRACKR.ntrack = 0, TRACKR.mtrack = 0: // -->local energy deposition (the value and the point are not recorded in TRACKR) // but in the variable "rull" of the procedure "endraw.cxx" // if TRACKR.ntrack > 0, TRACKR.mtrack = 0: // -->no energy loss along the track // if TRACKR.ntrack > 0, TRACKR.mtrack > 0: // -->energy loss distributed along the track // TRACKR.dtrack = energy deposition of the jth deposition even // If coming from bxdraw we have 2 steps of 0 length and 0 edep Int_t caller = GetCaller(); if (caller == 11 || caller==12) return 0.0; Double_t sum = 0; for ( Int_t j=0;j= 0 && isec < FINUC.np) { particleId = PDGFromId(FINUC.kpart[isec]); position.SetX(fXsco); position.SetY(fYsco); position.SetZ(fZsco); position.SetT(TRACKR.atrack); momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]); momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]); momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]); momentum.SetE(FINUC.tki[isec] + PAPROP.am[FINUC.kpart[isec]+6]); } else if (isec >= FINUC.np && isec < FINUC.np + FHEAVY.npheav) { Int_t jsec = isec - FINUC.np; particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!! position.SetX(fXsco); position.SetY(fYsco); position.SetZ(fZsco); position.SetT(TRACKR.atrack); momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]); momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]); momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]); if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6) momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]); else if (FHEAVY.tkheav[jsec] > 6) momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!! } else Warning("GetSecondary","isec out of range"); } else Warning("GetSecondary","no secondaries available"); } // end of GetSecondary //______________________________________________________________________________ TMCProcess TFluka::ProdProcess(Int_t) const // Name of the process that has produced the secondary particles // in the current step { const TMCProcess kIpNoProc = kPNoProcess; const TMCProcess kIpPDecay = kPDecay; const TMCProcess kIpPPair = kPPair; // const TMCProcess kIpPPairFromPhoton = kPPairFromPhoton; // const TMCProcess kIpPPairFromVirtualPhoton = kPPairFromVirtualPhoton; const TMCProcess kIpPCompton = kPCompton; const TMCProcess kIpPPhotoelectric = kPPhotoelectric; const TMCProcess kIpPBrem = kPBrem; // const TMCProcess kIpPBremFromHeavy = kPBremFromHeavy; // const TMCProcess kIpPBremFromElectronOrPositron = kPBremFromElectronOrPositron; const TMCProcess kIpPDeltaRay = kPDeltaRay; // const TMCProcess kIpPMoller = kPMoller; // const TMCProcess kIpPBhabha = kPBhabha; const TMCProcess kIpPAnnihilation = kPAnnihilation; // const TMCProcess kIpPAnnihilInFlight = kPAnnihilInFlight; // const TMCProcess kIpPAnnihilAtRest = kPAnnihilAtRest; const TMCProcess kIpPHadronic = kPHadronic; const TMCProcess kIpPMuonNuclear = kPMuonNuclear; const TMCProcess kIpPPhotoFission = kPPhotoFission; const TMCProcess kIpPRayleigh = kPRayleigh; // const TMCProcess kIpPCerenkov = kPCerenkov; // const TMCProcess kIpPSynchrotron = kPSynchrotron; Int_t mugamma = TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11; if (fIcode == 102) return kIpPDecay; else if (fIcode == 104 || fIcode == 217) return kIpPPair; // else if (fIcode == 104) return kIpPairFromPhoton; // else if (fIcode == 217) return kIpPPairFromVirtualPhoton; else if (fIcode == 219) return kIpPCompton; else if (fIcode == 221) return kIpPPhotoelectric; else if (fIcode == 105 || fIcode == 208) return kIpPBrem; // else if (fIcode == 105) return kIpPBremFromHeavy; // else if (fIcode == 208) return kPBremFromElectronOrPositron; else if (fIcode == 103 || fIcode == 400) return kIpPDeltaRay; else if (fIcode == 210 || fIcode == 212) return kIpPDeltaRay; // else if (fIcode == 210) return kIpPMoller; // else if (fIcode == 212) return kIpPBhabha; else if (fIcode == 214 || fIcode == 215) return kIpPAnnihilation; // else if (fIcode == 214) return kIpPAnnihilInFlight; // else if (fIcode == 215) return kIpPAnnihilAtRest; else if (fIcode == 101) return kIpPHadronic; else if (fIcode == 101) { if (!mugamma) return kIpPHadronic; else if (TRACKR.jtrack == 7) return kIpPPhotoFission; else return kIpPMuonNuclear; } else if (fIcode == 225) return kIpPRayleigh; // Fluka codes 100, 300 and 400 still to be investigasted else return kIpNoProc; } //Int_t StepProcesses(TArrayI &proc) const // Return processes active in the current step //{ //ck = total energy of the particl ???????????????? //} //______________________________________________________________________________ Int_t TFluka::VolId2Mate(Int_t id) const { // // Returns the material number for a given volume ID // return fGeom->VolId2Mate(id); } //______________________________________________________________________________ const char* TFluka::VolName(Int_t id) const { // // Returns the volume name for a given volume ID // return fGeom->VolName(id); } //______________________________________________________________________________ Int_t TFluka::VolId(const Text_t* volName) const { // // Converts from volume name to volume ID. // Time consuming. (Only used during set-up) // Could be replaced by hash-table // return fGeom->VolId(volName); } //______________________________________________________________________________ Int_t TFluka::CurrentVolID(Int_t& copyNo) const { // // Return the logical id and copy number corresponding to the current fluka region // return fGeom->CurrentVolID(copyNo); } //______________________________________________________________________________ Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const { // // Return the logical id and copy number of off'th mother // corresponding to the current fluka region // return fGeom->CurrentVolOffID(off, copyNo); } //______________________________________________________________________________ const char* TFluka::CurrentVolName() const { // // Return the current volume name // return fGeom->CurrentVolName(); } //______________________________________________________________________________ const char* TFluka::CurrentVolOffName(Int_t off) const { // // Return the volume name of the off'th mother of the current volume // return fGeom->CurrentVolOffName(off); } //______________________________________________________________________________ Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/, Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const { // // Return the current medium number ??? what about material properties // Int_t copy; Int_t id = TFluka::CurrentVolID(copy); Int_t med = TFluka::VolId2Mate(id); return med; } //______________________________________________________________________________ void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) { // Transforms a position from the world reference frame // to the current volume reference frame. // // Geant3 desription: // ================== // Computes coordinates XD (in DRS) // from known coordinates XM in MRS // The local reference system can be initialized by // - the tracking routines and GMTOD used in GUSTEP // - a call to GMEDIA(XM,NUMED) // - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) // (inverse routine is GDTOM) // // If IFLAG=1 convert coordinates // IFLAG=2 convert direction cosinus // // --- fGeom->Gmtod(xm,xd,iflag); } //______________________________________________________________________________ void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) { // Transforms a position from the world reference frame // to the current volume reference frame. // // Geant3 desription: // ================== // Computes coordinates XD (in DRS) // from known coordinates XM in MRS // The local reference system can be initialized by // - the tracking routines and GMTOD used in GUSTEP // - a call to GMEDIA(XM,NUMED) // - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) // (inverse routine is GDTOM) // // If IFLAG=1 convert coordinates // IFLAG=2 convert direction cosinus // // --- fGeom->Gmtod(xm,xd,iflag); } //______________________________________________________________________________ void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) { // Transforms a position from the current volume reference frame // to the world reference frame. // // Geant3 desription: // ================== // Computes coordinates XM (Master Reference System // knowing the coordinates XD (Detector Ref System) // The local reference system can be initialized by // - the tracking routines and GDTOM used in GUSTEP // - a call to GSCMED(NLEVEL,NAMES,NUMBER) // (inverse routine is GMTOD) // // If IFLAG=1 convert coordinates // IFLAG=2 convert direction cosinus // // --- fGeom->Gdtom(xd,xm,iflag); } //______________________________________________________________________________ void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag) { // Transforms a position from the current volume reference frame // to the world reference frame. // // Geant3 desription: // ================== // Computes coordinates XM (Master Reference System // knowing the coordinates XD (Detector Ref System) // The local reference system can be initialized by // - the tracking routines and GDTOM used in GUSTEP // - a call to GSCMED(NLEVEL,NAMES,NUMBER) // (inverse routine is GMTOD) // // If IFLAG=1 convert coordinates // IFLAG=2 convert direction cosinus // // --- fGeom->Gdtom(xd,xm,iflag); } //______________________________________________________________________________ void TFluka::SetMreg(Int_t l) { // Set current fluka region fCurrentFlukaRegion = l; fGeom->SetMreg(l); }