/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ */ /////////////////////////////////////////////////////////////////////////////// // // // Time Of Flight // // This class contains the basic functions for the Time Of Flight // // detector. Functions specific to one particular geometry are // // contained in the derived classes // // // //Begin_Html /* */ //End_Html // // // // /////////////////////////////////////////////////////////////////////////////// #include "AliTOF.h" #include #include #include #include "AliRun.h" #include "AliConst.h" #include ClassImp(AliTOF) //_____________________________________________________________________________ AliTOF::AliTOF() { // // Default constructor // fIshunt = 0; } //_____________________________________________________________________________ AliTOF::AliTOF(const char *name, const char *title) : AliDetector(name,title) { // // AliTOF standard constructor // fHits = new TClonesArray("AliTOFhit", 405); // fIshunt = 0; // SetMarkerColor(7); SetMarkerStyle(2); SetMarkerSize(0.4); // // Check that FRAME is there otherwise we have no place where to // put TOF AliModule* FRAME=gAlice->GetModule("FRAME"); if(!FRAME) { Error("Ctor","TOF needs FRAME to be present\n"); exit(1); } } //_____________________________________________________________________________ void AliTOF::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // // Add a TOF hit // TClonesArray &lhits = *fHits; new(lhits[fNhits++]) AliTOFhit(fIshunt,track,vol,hits); } //_____________________________________________________________________________ void AliTOF::BuildGeometry() { // // Build TOF ROOT geometry for the ALICE event viewver // TNode *Node, *Top; const int kColorTOF = 27; // // Find top TNODE Top=gAlice->GetGeometry()->GetNode("alice"); // // Define rotation matrixes new TRotMatrix("rot501","rot501",90,-20,90,90-20,0,0); new TRotMatrix("rot502","rot502",90,-40,90,90-40,0,0); new TRotMatrix("rot503","rot503",90,-60,90,90-60,0,0); new TRotMatrix("rot504","rot504",90,-80,90,90-80,0,0); new TRotMatrix("rot505","rot505",90,-100,90,90-100,0,0); new TRotMatrix("rot506","rot506",90,-120,90,90-120,0,0); new TRotMatrix("rot507","rot507",90,-140,90,90-140,0,0); new TRotMatrix("rot508","rot508",90,-160,90,90-160,0,0); new TRotMatrix("rot509","rot509",90,-180,90,90-180,0,0); new TRotMatrix("rot510","rot510",90,-200,90,90-200,0,0); new TRotMatrix("rot511","rot511",90,-220,90,90-220,0,0); new TRotMatrix("rot512","rot512",90,-240,90,90-240,0,0); new TRotMatrix("rot513","rot513",90,-260,90,90-260,0,0); new TRotMatrix("rot514","rot514",90,-280,90,90-280,0,0); new TRotMatrix("rot515","rot515",90,-300,90,90-300,0,0); new TRotMatrix("rot516","rot516",90,-320,90,90-320,0,0); new TRotMatrix("rot517","rot517",90,-340,90,90-340,0,0); new TRotMatrix("rot518","rot518",90,-360,90,90-360,0,0); // // Position the different copies const Float_t rtof=(399+370)/2; const Int_t ntof=18; const Float_t angle=2*kPI/ntof; Float_t ang; // // Define TOF basic volume new TBRIK("S_TOF1","TOF box","void",130/2,29/2,190.); // // Position it Top->cd(); ang=2.5*angle; Node = new TNode("FTO002","FTO02","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot502"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO102","FTO102","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot502"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=1.5*angle; Node = new TNode("FTO003","FTO003","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot503"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO103","FTO103","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot503"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=0.5*angle; Node = new TNode("FTO004","FTO004","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot504"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO104","FTO104","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot504"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=-0.5*angle; Node = new TNode("FTO005","FTO005","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot505"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO105","FTO105","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot505"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=-1.5*angle; Node = new TNode("FTO006","FTO006","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot506"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO106","FTO106","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot506"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI+1.5*angle; Node = new TNode("FTO012","FTO012","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot512"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO112","FTO112","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot512"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI+0.5*angle; Node = new TNode("FTO013","FTO013","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot513"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO113","FTO113","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot513"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI-0.5*angle; Node = new TNode("FTO014","FTO04","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot514"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO114","FTO114","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot514"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI-1.5*angle; Node = new TNode("FTO015","FTO015","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot515"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO115","FTO115","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot515"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI-2.5*angle; Node = new TNode("FTO016","FTO016","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),190,"rot516"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO116","FTO116","S_TOF1",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-190,"rot516"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // // Define second TOF volume new TBRIK("S_TOF2","TOF box","void",130/2,29/2,170.); // // Position the volume Top->cd(); ang=-2.5*angle; Node = new TNode("FTO007","FTO007","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-170),"rot507"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO107","FTO107","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-170),"rot507"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=-3.5*angle; Node = new TNode("FTO008","FTO008","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-170),"rot508"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO108","FTO108","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-170),"rot508"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=-kPI/2; Node = new TNode("FTO009","FTO009","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-170),"rot509"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO109","FTO109","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-170),"rot509"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI+3.5*angle; Node = new TNode("FTO010","FTO010","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-170),"rot510"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO110","FTO110","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-170),"rot510"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI+2.5*angle; Node = new TNode("FTO011","FTO011","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-170),"rot511"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO111","FTO111","S_TOF2",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-170),"rot511"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // // Define third TOF volume new TBRIK("S_TOF3","TOF box","void",130/2.,29/2,75.); // // Position it Top->cd(); ang=3.5*angle; Node = new TNode("FTO001","FTO001","S_TOF3",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-75),"rot501"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO101","FTO101","S_TOF3",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-75),"rot501"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI-3.5*angle; Node = new TNode("FTO017","FTO017","S_TOF3",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-75),"rot517"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO117","FTO117","S_TOF3",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-75),"rot517"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // // Top->cd(); ang=kPI/2; Node = new TNode("FTO018","FTO018","S_TOF3",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),(2*190-75),"rot518"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); // Top->cd(); Node = new TNode("FTO118","FTO118","S_TOF3",rtof*TMath::Cos(ang),rtof*TMath::Sin(ang),-(2*190-75),"rot518"); Node->SetLineColor(kColorTOF); fNodes->Add(Node); } //_____________________________________________________________________________ void AliTOF::CreateGeometry() { // // Common geometry code // //Begin_Html /* */ //End_Html // const Double_t kPi=TMath::Pi(); const Double_t kDegrad=kPi/180; // Int_t lmax; Float_t xtof, ytof, fil_step; Float_t zcor1, zcor2, zcor3; Float_t ztof0, ztof1, ztof2; Float_t zl, rmin, rmax, xm, ym, dwall; Int_t idrotm[18]; Float_t zm0, zm1, zm2; Float_t par[10]; // Int_t *idtmed = fIdtmed->GetArray()-499; // // barrel iner radius rmin = 370.; // barrel outer radius rmax = rmin+29; // barrel length along Z axis zl = (rmin+2/*distance to sencetive layer*/+7/2)*2; // // frame inbetween TOF modules dwall = 4.; // Sizes of TOF module with its support etc.. xtof = 2 * (rmin*TMath::Tan(10*kDegrad)-dwall/2-.5); ytof = rmax-rmin; ztof0 = zl/2; // Is it full coverage version (3) or not if (IsVersion() != 3) { ztof1 = ztof0-rmax*TMath::Tan(7.8*kDegrad); // minus Z size of PHOS ztof2 = ztof0-rmax*TMath::Tan(54.34/2*kDegrad); // minus Z size of HMPID; } else { ztof1 = ztof0; ztof2 = ztof0; } // Number of TOF-modules lmax = 18; // /* //Some imitation of TRD par[0] = 281; par[1] = 350.282; par[2] = zl/2; gMC->Gsvolu("FTRD", "TUBE", idtmed[510], par, 3); gMC->Gspos("FTRD", 1, "ALIC", 0., 0., 0., 0, "ONLY"); par[0] = 0.; par[1] = 360.; par[2] = lmax; par[3] = 2.; par[4] = -zl/2; par[5] = rmin; par[6] = rmax; par[7] = zl/2; par[8] = rmin; par[9] = rmax; gMC->Gsvolu("FBAR", "PGON", idtmed[500], par, 10); gMC->Gspos("FBAR", 1, "ALIC", 0., 0., 0., 0, "ONLY"); */ // // TOF size (CO2) par[0] = xtof / 2.; par[1] = ytof / 2.; par[2] = ztof0 / 2.; gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3); par[2] = ztof1 / 2.; gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3); par[2] = ztof2 / 2.; gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3); /* // Frame wall par[0]=dwall/2.; par[1]=(rmax-rmin)/2.; par[2]=ztof0/2.; gMC->Gsvolu("FFR1", "BOX ", idtmed[508], par, 3); gMC->Gsatt("FFR1", "SEEN", -2); par[2]=ztof1/2.; gMC->Gsvolu("FFR2", "BOX ", idtmed[508], par, 3); gMC->Gsatt("FFR2", "SEEN", -2); par[2]=ztof2/2.; gMC->Gsvolu("FFR2", "BOX ", idtmed[508], par, 3); gMC->Gsatt("FFR2", "SEEN", -2); */ // // Subtraction the distanse to TOF module boundaries xm = xtof -(.5 +.5)*2; ym = ytof; zm0 = ztof0; zm1 = ztof1; zm2 = ztof2; // /////////////// TOF module internal definitions ////////////// TOFpc(xm, ym, zm0, zm1, zm2); ///////////////////////////////////////////////////////////// // // Position of modules fil_step = 360./lmax; zcor1 = ztof0/2; zcor2 = ztof0 - ztof1 / 2.; zcor3 = ztof0 - ztof2 / 2.; /* for (i = 1; i <= lmax; ++i) { fil1 = fil_step * i; xcor2 = (rmin+rmax)/2 * TMath::Sin(fil1 * kDegrad); ycor2 = (rmin+rmax)/2 * TMath::Cos(fil1 * kDegrad); lmax1 = i + lmax; AliMatrix(idrotm[i], 90., -fil1, 90., 90. -fil1, 0., 0.); if (i>=7 && i<=11) { // free space for PHOS // if (fil1 >= 180-50 && fil1 <= 180+50) { gMC->Gspos("FTO2", i, "FBAR", xcor2, ycor2, zcor2, idrotm[i], "ONLY"); gMC->Gspos("FTO2", lmax1, "FBAR", xcor2, ycor2, -zcor2, idrotm[i], "ONLY"); } else if (i>=17 || i==1) { // free space for RICH // } else if (fil1 <= 30 || fil1 >= 360. - 30) { gMC->Gspos("FTO3", i, "FBAR", xcor2, ycor2, zcor3, idrotm[i], "ONLY"); gMC->Gspos("FTO3", lmax1, "FBAR", xcor2, ycor2, -zcor3, idrotm[i], "ONLY"); } else { gMC->Gspos("FTO1", i, "FBAR", xcor2, ycor2, zcor1, idrotm[i], "ONLY"); gMC->Gspos("FTO1", lmax1, "FBAR", xcor2, ycor2, -zcor1, idrotm[i], "ONLY"); } } */ AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.); gMC->Gspos("FTO2", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO2", 2, "BTO2", 0, -zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO3", 1, "BTO3", 0, zcor3, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO3", 2, "BTO3", 0, -zcor3, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO1", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[0], "ONLY"); } //_____________________________________________________________________________ void AliTOF::DrawModule() { // // Draw a shaded view of the common part of the TOF geometry // cout << " Drawing of AliTOF"<< endl; // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("FBAR","SEEN",0); gMC->Gsatt("FTO1","SEEN",1); gMC->Gsatt("FTO2","SEEN",1); gMC->Gsatt("FTO3","SEEN",1); gMC->Gsatt("FBT1","SEEN",1); gMC->Gsatt("FBT2","SEEN",1); gMC->Gsatt("FBT3","SEEN",1); gMC->Gsatt("FLT1","SEEN",1); gMC->Gsatt("FLT2","SEEN",1); gMC->Gsatt("FLT3","SEEN",1); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02); gMC->Gdhead(1111, "Time Of Flight"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOF::CreateMaterials() { // // Defines TOF materials for all versions // Authors : Maxim Martemianov, Boris Zagreev (ITEP) 18/09/98 // Int_t ISXFLD = gAlice->Field()->Integ(); Float_t SXMGMX = gAlice->Field()->Max(); // //--- Quartz (SiO2) Float_t aq[2] = { 28.0855,15.9994 }; Float_t zq[2] = { 14.,8. }; Float_t wq[2] = { 1.,2. }; Float_t dq = 2.20; Int_t nq = -2; // --- Freon Float_t afre[2] = { 12.011,18.9984032 }; Float_t zfre[2] = { 6.,9. }; Float_t wfre[2] = { 5.,12. }; Float_t densfre = 1.5; Int_t nfre = -2; // --- CO2 Float_t ac[2] = { 12.,16. }; Float_t zc[2] = { 6.,8. }; Float_t wc[2] = { 1.,2. }; Float_t dc = .001977; Int_t nc = -2; // For mylar (C5H4O2) Float_t amy[3] = { 12., 1., 16. }; Float_t zmy[3] = { 6., 1., 8. }; Float_t wmy[3] = { 5., 4., 2. }; Float_t dmy = 1.39; Int_t nmy = -3; // For polyethilene (CH2) for honeycomb!!!! Float_t ape[2] = { 12., 1. }; Float_t zpe[2] = { 6., 1. }; Float_t wpe[2] = { 1., 2. }; Float_t dpe = 0.935*0.479; //To have 1%X0 for 1cm as for honeycomb Int_t npe = -2; // --- G10 Float_t ag10[4] = { 12.,1.,16.,28. }; Float_t zg10[4] = { 6.,1.,8.,14. }; Float_t wmatg10[4] = { .259,.288,.248,.205 }; Float_t densg10 = 1.7; Int_t nlmatg10 = -4; // --- DME Float_t adme[5] = { 12.,1.,16.,19.,79. }; Float_t zdme[5] = { 6.,1.,8.,9.,35. }; Float_t wmatdme[5] = { .4056,.0961,.2562,.1014,.1407 }; Float_t densdme = .00205; Int_t nlmatdme = 5; // ---- ALUMINA (AL203) Float_t aal[2] = { 27.,16. }; Float_t zal[2] = { 13.,8. }; Float_t wmatal[2] = { 2.,3. }; Float_t densal = 2.3; Int_t nlmatal = -2; // -- Water Float_t awa[2] = { 1., 16. }; Float_t zwa[2] = { 1., 8. }; Float_t wwa[2] = { 2., 1. }; Float_t dwa = 1.0; Int_t nwa = -2; // // //AliMaterial(0, "Vacuum$", 1e-16, 1e-16, 1e-16, 1e16, 1e16); AliMaterial(1, "Air$",14.61,7.3,0.001205,30423.24,67500.); AliMaterial(2, "Cu $", 63.54, 29.0, 8.96, 1.43, 14.8); AliMaterial(3, "C $", 12.01, 6.0, 2.265,18.8, 74.4); AliMixture(4, "Polyethilene$", ape, zpe, dpe, npe, wpe); AliMixture(5, "G10$", ag10, zg10, densg10, nlmatg10, wmatg10); AliMixture(6, "DME ", adme, zdme, densdme, nlmatdme, wmatdme); AliMixture(7, "CO2$", ac, zc, dc, nc, wc); AliMixture(8, "ALUMINA$", aal, zal, densal, nlmatal, wmatal); AliMaterial(9, "Al $", 26.98, 13., 2.7, 8.9, 37.2); // (TRD simulation) thickness = 69.282cm/18.8cm = 3.685 X/X0 // AliMaterial(10, "C-TRD$", 12.01, 6., 2.265*18.8/69.282*10.2/100, 18.8, 74.4); // for 10.2% AliMaterial(10, "C-TRD$", 12.01, 6., 2.265*18.8/69.282*15./100, 18.8, 74.4); // for 15% // AliMaterial(10, "C-TRD$", 12.01, 6., 2.265*18.8/69.282*20./100, 18.8, 74.4); // for 20% AliMixture(11, "Mylar$", amy, zmy, dmy, nmy, wmy); AliMixture(12, "Freon$", afre, zfre, densfre, nfre, wfre); AliMixture(13, "Quartz$", aq, zq, dq, nq, wq); AliMixture(14, "Water$", awa, zwa, dwa, nwa, wwa); Float_t epsil, stmin, deemax, stemax; // Previous data // EPSIL = 0.1 ! Tracking precision, // STEMAX = 0.1 ! Maximum displacement for multiple scattering // DEEMAX = 0.1 ! Maximum fractional energy loss, DLS // STMIN = 0.1 // New data from epsil = .001; stemax = -1.; deemax = -.3; stmin = -.8; // AliMedium(0, "Vacuum $", 0, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(1, "Air$", 1, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(2, "Cu $", 2, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(3, "C $", 3, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(4, "Pol$", 4, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(5, "G10$", 5, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(6, "DME$", 6, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(7, "CO2$", 7, 0, ISXFLD, SXMGMX, 10., -.01, -.1, .01, -.01); AliMedium(8, "ALUMINA$", 8, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(9, "Al Frame$", 9, 0, ISXFLD, SXMGMX, 10, stemax, deemax, epsil, stmin); AliMedium(10, "DME-S$", 6, 1, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(11, "C-TRD$", 10, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(12, "Myl$", 11, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(13, "Fre$", 12, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(14, "Fre-S$", 12, 1, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(15, "Glass$", 13, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(16, "Water$", 14, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ Int_t AliTOF::DistancetoPrimitive(Int_t , Int_t ) { // // Returns distance from mouse pointer to detector, default version // return 9999; } //_____________________________________________________________________________ void AliTOF::Init() { // // Initialise TOF detector after it has been built // Int_t i; // printf("\n"); for(i=0;i<35;i++) printf("*"); printf(" TOF_INIT "); for(i=0;i<35;i++) printf("*"); printf("\n"); cout << "TOF version " << IsVersion() <<" initialized" << endl; // // Set id of TOF sensitive volume if (IsVersion() !=0) fIdSens=gMC->VolId("FPG0"); // for(i=0;i<80;i++) printf("*"); printf("\n"); } ClassImp(AliTOFhit) //___________________________________________ AliTOFhit::AliTOFhit(Int_t shunt, Int_t track, Int_t *vol, Float_t *hits): AliHit(shunt, track) { // // Store a TOF hit // Int_t i; for (i=0;i<3;i++) fVolume[i] = vol[i]; // // Position fX=hits[0]; fY=hits[1]; fZ=hits[2]; // // Momentum fPx=hits[3]; fPy=hits[4]; fPz=hits[5]; fPmom=hits[6]; // // Time Of Flight fTof=hits[7]; }