/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.19 2001/05/04 10:09:48 vicinanz Major upgrades to the strip structure Revision 1.18 2000/12/04 08:48:20 alibrary Fixing problems in the HEAD Revision 1.17 2000/10/02 21:28:17 fca Removal of useless dependecies via forward declarations Revision 1.16 2000/05/10 16:52:18 vicinanz New TOF version with holes for PHOS/RICH Revision 1.14.2.1 2000/05/10 09:37:16 vicinanz New version with Holes for PHOS/RICH Revision 1.14 1999/11/05 22:39:06 fca New hits structure Revision 1.13 1999/11/02 11:26:39 fca added stdlib.h for exit Revision 1.12 1999/11/01 20:41:57 fca Added protections against using the wrong version of FRAME Revision 1.11 1999/10/22 08:04:14 fca Correct improper use of negative parameters Revision 1.10 1999/10/16 19:30:06 fca Corrected Rotation Matrix and CVS log Revision 1.9 1999/10/15 15:35:20 fca New version for frame1099 with and without holes Revision 1.8 1999/09/29 09:24:33 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Time Of Flight: design of C.Williams FCA // // This class contains the functions for version 1 of the Time Of Flight // // detector. // // // VERSION WITH 5 MODULES AND TILTED STRIPS // // FULL COVERAGE VERSION // // Authors: // // Alessio Seganti // Domenico Vicinanza // // University of Salerno - Italy // // Fabrizio Pierella // University of Bologna - Italy // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// #include #include #include "AliTOFv0.h" #include "TBRIK.h" #include "TGeometry.h" #include "TNode.h" #include "TObject.h" #include #include "AliRun.h" #include "AliMC.h" #include "AliConst.h" ClassImp(AliTOFv0) //_____________________________________________________________________________ AliTOFv0::AliTOFv0() { // // Default constructor // // // Check that FRAME is there otherwise we have no place where to // put TOF AliModule* frame=gAlice->GetModule("FRAME"); if(!frame) { Error("Ctor","TOF needs FRAME to be present\n"); exit(1); } else if(frame->IsVersion()!=1) { Error("Ctor","FRAME version 1 needed with this version of TOF\n"); exit(1); } } //_____________________________________________________________________________ AliTOFv0::AliTOFv0(const char *name, const char *title) : AliTOF(name,title) { // // Standard constructor // } //____________________________________________________________________________ AliTOFv0::~AliTOFv0() { // destructor if ( fHits) { fHits->Delete() ; delete fHits ; fHits = 0 ; } /* if ( fSDigits) { fSDigits->Delete() ; delete fSDigits ; fSDigits = 0 ; } */ if ( fDigits) { fDigits->Delete() ; delete fDigits ; fDigits = 0 ; } } //_____________________________________________________________________________ void AliTOFv0::BuildGeometry() { // Build TOF ROOT geometry for the ALICE event viewver // TNode *node, *top; const int kColorTOF = 27; // Find top TNODE top = gAlice->GetGeometry()->GetNode("alice"); // Position the different copies const Float_t krTof =(fRmax+fRmin)/2; const Float_t khTof = fRmax-fRmin; const Int_t kNTof = fNTof; const Float_t kPi = TMath::Pi(); const Float_t kangle = 2*kPi/kNTof; Float_t ang; // Define TOF basic volume char nodeName0[7], nodeName1[7], nodeName2[7]; char nodeName3[7], nodeName4[7], rotMatNum[7]; new TBRIK("S_TOF_C","TOF box","void", 120*0.5,khTof*0.5,fZlenC*0.5); new TBRIK("S_TOF_B","TOF box","void", 120*0.5,khTof*0.5,fZlenB*0.5); new TBRIK("S_TOF_A","TOF box","void", 120*0.5,khTof*0.5,fZlenA*0.5); for (Int_t nodeNum=1;nodeNum<19;nodeNum++){ if (nodeNum<10) { sprintf(rotMatNum,"rot50%i",nodeNum); sprintf(nodeName0,"FTO00%i",nodeNum); sprintf(nodeName1,"FTO10%i",nodeNum); sprintf(nodeName2,"FTO20%i",nodeNum); sprintf(nodeName3,"FTO30%i",nodeNum); sprintf(nodeName4,"FTO40%i",nodeNum); } if (nodeNum>9) { sprintf(rotMatNum,"rot5%i",nodeNum); sprintf(nodeName0,"FTO0%i",nodeNum); sprintf(nodeName1,"FTO1%i",nodeNum); sprintf(nodeName2,"FTO2%i",nodeNum); sprintf(nodeName3,"FTO3%i",nodeNum); sprintf(nodeName4,"FTO4%i",nodeNum); } new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); ang = (4.5-nodeNum) * kangle; top->cd(); node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); top->cd(); node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); top->cd(); node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); top->cd(); node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); top->cd(); node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); } } //_____________________________________________________________________________ void AliTOFv0::CreateGeometry() { // // Create geometry for Time Of Flight version 0 // //Begin_Html /* */ //End_Html // // Creates common geometry // AliTOF::CreateGeometry(); } //_____________________________________________________________________________ void AliTOFv0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, Float_t zlenB, Float_t zlenA, Float_t ztof0) { // // Definition of the Time Of Fligh Resistive Plate Chambers // xFLT, yFLT, zFLT - sizes of TOF modules (large) Float_t ycoor, zcoor; Float_t par[3]; Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[100]; Int_t nrot = 0; Float_t radius = fRmin+2.;//cm par[0] = xtof * 0.5; par[1] = ytof * 0.5; par[2] = zlenC * 0.5; gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3); par[2] = zlenB * 0.5; gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3); par[2] = zlenA * 0.5; gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3); // Positioning of modules Float_t zcor1 = ztof0 - zlenC*0.5; Float_t zcor2 = ztof0 - zlenC - zlenB*0.5; Float_t zcor3 = 0.; AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.); AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.); gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO3", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO3", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOA", 0, "BTO3", 0, zcor3, 0, idrotm[0], "ONLY"); Float_t db = 0.5;//cm Float_t xFLT, yFLT, zFLTA, zFLTB, zFLTC; xFLT = 122.0;//cm yFLT = ytof; zFLTA = zlenA - db*0.5; zFLTB = zlenB - db*0.5; zFLTC = zlenC - db*0.5; // Sizes of MRPC pads Float_t yPad = 0.505;//cm // Large not sensitive volumes with Insensitive Freon par[0] = xFLT*0.5; par[1] = yFLT*0.5; if (fDebug) cout << ClassName() << ": ************************* TOF geometry **************************"<Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY"); par[2] = (zFLTB * 0.5); gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY"); par[2] = (zFLTC * 0.5); gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY"); ////////// Layers of Aluminum before and after detector ////////// ////////// Aluminum Box for Modules (2.0 mm thickness) ///////// ////////// lateral walls not simulated par[0] = xFLT*0.5; par[1] = 0.1;//cm ycoor = -yFLT/2 + par[1]; par[2] = (zFLTA *0.5); gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY"); ///////////////// Detector itself ////////////////////// Float_t stripWidth = 10.0;//cm const Float_t kdeadBound = 1.5;//cm non-sensitive between the pad edge //and the boundary of the strip const Int_t knx = 48; // number of pads along x const Int_t knz = 2; // number of pads along z const Float_t kspace= 5.5; //cm distance from the front plate of the box Float_t zSenStrip; zSenStrip = stripWidth-2*kdeadBound;//cm par[0] = xFLT/2; par[1] = yPad/2; par[2] = stripWidth/2.; // new description for strip volume // -- all constants are expressed in cm // heigth of different layers const Float_t khhony = 1. ; // heigth of HONY Layer const Float_t khpcby = 0.15 ; // heigth of PCB Layer const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer const Float_t khglasseiy = 0.32; // 2.2 Ext. Glass + 1. Semi Int. Glass (mm) const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture const Float_t kwsensmz = 2*3.5 ; // cm const Float_t klsensmx = 48*2.5; // cm const Float_t kwpadz = 3.5; // cm z dimension of the FPAD volume const Float_t klpadx = 2.5; // cm x dimension of the FPAD volume // heigth of the FSTR Volume (the strip volume) const Float_t khstripy = 2*(khhony+khpcby+khmyly+khgraphy+khglasseiy)+khsensmy; // width of the FSTR Volume (the strip volume) const Float_t kwstripz = 10.; // length of the FSTR Volume (the strip volume) const Float_t klstripx = 122.; Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5}; // coordinates of the strip center in the strip reference frame; used for positioning // internal strip volumes Float_t posfp[3]={0.,0.,0.}; // FSTR volume definition and filling this volume with non sensitive Gas Mixture gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3); //-- HONY Layer definition // parfp[0] = -1; parfp[1] = khhony*0.5; // parfp[2] = -1; gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3); // positioning 2 HONY Layers on FSTR volume posfp[1]=-khstripy*0.5+parfp[1]; gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- PCB Layer definition parfp[1] = khpcby*0.5; gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3); // positioning 2 PCB Layers on FSTR volume posfp[1]=-khstripy*0.5+khhony+parfp[1]; gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- MYLAR Layer definition parfp[1] = khmyly*0.5; gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3); // positioning 2 MYLAR Layers on FSTR volume posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- Graphite Layer definition parfp[1] = khgraphy*0.5; gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3); // positioning 2 Graphite Layers on FSTR volume posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1]; gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- Glass (EXT. +Semi INT.) Layer definition parfp[1] = khglasseiy*0.5; gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3); // positioning 2 Glass Layers on FSTR volume posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1]; gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- Sensitive Mixture Layer definition parfp[0] = klsensmx*0.5; parfp[1] = khsensmy*0.5; parfp[2] = kwsensmz*0.5; gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3); // positioning the sensitive gas Layer on FSTR volume gMC->Gspos("FSEN",0,"FSTR",0.,0.,0.,0,"ONLY"); // dividing FSEN along z in knz=2 and along x in knx=48 gMC->Gsdvn("FSEZ","FSEN",knz,3); gMC->Gsdvn("FSEX","FSEZ",knx,1); // FPAD volume definition parfp[0] = klpadx*0.5; parfp[1] = khsensmy*0.5; parfp[2] = kwpadz*0.5; gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3); // positioning the FPAD volumes on previous divisions gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY"); //// Positioning the Strips (FSTR) in the FLT volumes ///// // Plate A (Central) Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel Float_t gap = 4.; //cm distance between the strip axis Float_t zpos = 0; Float_t ang = 0; Float_t last; Int_t i=1,j=1; nrot = 0; zcoor = 0; ycoor = -14.5 + kspace ; //2 cm over front plate AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.); gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); zcoor -= zSenStrip; j++; Int_t upDown = -1; // upDown=-1 -> Upper strip // upDown=+1 -> Lower strip do{ ang = atan(zcoor/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; ycoor = -14.5+ kspace; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); j += 2; upDown*= -1; // Alternate strips zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2); zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)+ (zSenStrip/2)/TMath::Cos(ang); gap = 6.; zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); ang = atan(zcoor/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; ycoor = -14.5+ kspace; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); ycoor = -29./2.+ kspace;//2 cm over front plate // Plate B nrot = 0; i=1; upDown *= -1; zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang)-0.5/TMath::Cos(ang); ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; ycoor = -29.*0.5+ kspace ; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); i++; upDown*=-1; do { zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; ycoor = -29.*0.5+ kspace ; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); upDown*=-1; i++; } while (TMath::Abs(ang*kRaddeg)<22.5);//till we reach a tilting angle of 22.5 degrees ycoor = -29.*0.5+ kspace ; //2 cm over front plate do { i++; ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; zcoor = zpos+(zFLTB/2+zFLTA/2+db); gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); zpos = zpos - zSenStrip/TMath::Cos(ang); last = stripWidth*TMath::Cos(ang)/2.; } while (zpos>-t+zFLTC+db); // Plate C zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); nrot = 0; i=0; ycoor= -29.*0.5+kspace+gap; do { i++; ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2); gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); zpos = zpos - zSenStrip/TMath::Cos(ang); last = stripWidth*TMath::Cos(ang)*0.5; } while (zpos>-t+last); ////////// Layers after strips ///////////////// // honeycomb (Polyethilene) Layer after (1.2cm) Float_t overSpace = fOverSpc;//cm par[0] = xFLT*0.5; par[1] = 0.6; par[2] = (zFLTA *0.5); ycoor = -yFLT/2 + overSpace + par[1]; gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // Electronics (Cu) after ycoor += par[1]; par[0] = xFLT*0.5; par[1] = 1.43*0.05*0.5; // 5% of X0 par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // cooling WAter after ycoor += par[1]; par[0] = xFLT*0.5; par[1] = 36.1*0.02*0.5; // 2% of X0 par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // frame of Air ycoor += par[1]; par[0] = xFLT*0.5; par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm) par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); /* fp //Back Plate honycomb (2cm) par[0] = -1; par[1] = 2 *0.5; par[2] = -1; ycoor = yFLT/2 - par[1]; gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); fp */ } //_____________________________________________________________________________ void AliTOFv0::DrawModule() { // // Draw a shaded view of the Time Of Flight version 1 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("ALIC","SEEN",0); gMC->Gsatt("FTOA","SEEN",1); gMC->Gsatt("FTOB","SEEN",1); gMC->Gsatt("FTOC","SEEN",1); gMC->Gsatt("FLTA","SEEN",1); gMC->Gsatt("FLTB","SEEN",1); gMC->Gsatt("FLTC","SEEN",1); gMC->Gsatt("FPLA","SEEN",1); gMC->Gsatt("FPLB","SEEN",1); gMC->Gsatt("FPLC","SEEN",1); gMC->Gsatt("FSTR","SEEN",1); gMC->Gsatt("FPEA","SEEN",1); gMC->Gsatt("FPEB","SEEN",1); gMC->Gsatt("FPEC","SEEN",1); gMC->Gsatt("FLZ1","SEEN",0); gMC->Gsatt("FLZ2","SEEN",0); gMC->Gsatt("FLZ3","SEEN",0); gMC->Gsatt("FLX1","SEEN",0); gMC->Gsatt("FLX2","SEEN",0); gMC->Gsatt("FLX3","SEEN",0); gMC->Gsatt("FPAD","SEEN",0); gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02); gMC->Gdhead(1111, "Time Of Flight"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv0::CreateMaterials() { // // Define materials for the Time Of Flight // AliTOF::CreateMaterials(); } //_____________________________________________________________________________ void AliTOFv0::Init() { // // Initialise the detector after the geometry has been defined // if(fDebug) { printf("%s: **************************************" " TOF " "**************************************\n",ClassName()); printf("\n%s: Version 0 of TOF initialing, " "symmetric TOF\n",ClassName()); } AliTOF::Init(); fIdFTOA = gMC->VolId("FTOA"); fIdFTOB = gMC->VolId("FTOB"); fIdFTOC = gMC->VolId("FTOC"); fIdFLTA = gMC->VolId("FLTA"); fIdFLTB = gMC->VolId("FLTB"); fIdFLTC = gMC->VolId("FLTC"); if(fDebug) { printf("%s: **************************************" " TOF " "**************************************\n",ClassName()); } } //_____________________________________________________________________________ void AliTOFv0::StepManager() { // // Procedure called at each step in the Time Of Flight // Float_t hits[8],rho,phi,phid,z; Int_t sector, plate, padx, padz, strip; Int_t copy, padzid, padxid, stripid, i; Int_t vol[4]; Int_t *idtmed = fIdtmed->GetArray()-499; TLorentzVector mom, pos; if(gMC->GetMedium()==idtmed[513] && gMC->IsTrackEntering() && gMC->TrackCharge() && gMC->CurrentVolID(copy)==fIdSens) { // getting information about hit volumes padzid=gMC->CurrentVolOffID(2,copy); padz=copy; padxid=gMC->CurrentVolOffID(1,copy); padx=copy; stripid=gMC->CurrentVolOffID(4,copy); strip=copy; padz = (strip-1)*2+padz; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); rho = sqrt(pos[0]*pos[0]+pos[1]*pos[1]); phi = TMath::ACos(pos[0]/rho); Float_t as = TMath::ASin(pos[1]/rho); if (as<0) phi = 2*3.141592654-phi; z = pos[2]; plate = 0; Float_t limA = fZlenA*0.5; Float_t limB = fZlenB+limA; if (TMath::Abs(z)<=limA) plate = 3; if (z<= limB && z> limA) plate = 2; if (z>=-limB && z<-limA) plate = 4; if (z> limB) plate = 1; if (z<-limB) plate = 5; if (plate==3) padz -= 2; phid = phi*kRaddeg; sector = Int_t (phid/20.); sector++; Double_t ptot = mom.Rho(); Double_t norm = 1/ptot; for(i=0;i<3;++i) { hits[i] = pos[i]; hits[i+3] = mom[i]*norm; } hits[6] = ptot; hits[7] = pos[3]; vol[0] = sector; vol[1] = plate; vol[2] = padx; vol[3] = padz; Int_t track = gAlice->CurrentTrack(); AliTOF::AddHit(track,vol, hits); } }