/**************************************************************************
* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
* *
* Author: The ALICE Off-line Project. *
* Contributors are mentioned in the code where appropriate. *
* *
* Permission to use, copy, modify and distribute this software and its *
* documentation strictly for non-commercial purposes is hereby granted *
* without fee, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission notice *
* appear in the supporting documentation. The authors make no claims *
* about the suitability of this software for any purpose. It is *
* provided "as is" without express or implied warranty. *
**************************************************************************/
/* $Id$ */
///////////////////////////////////////////////////////////////////////////////
//
// This class contains the functions for version 2 of the Time Of Flight //
// detector. //
//
// VERSION WITH 5 MODULES AND TILTED STRIPS
//
// HOLES FOR PHOS AND RICH DETECTOR
//
// !Not Official version!
//
// Requested by Andreas Morsch to have TOFv2 full compliant
// with FRAME version 0
//
// Author:
// Fabrizio Pierella
// University of Bologna - Italy
//
//
//Begin_Html
/*
*/
//End_Html
// //
///////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
#include
#include
#include
#include
#include "AliConst.h"
#include "AliMagF.h"
#include "AliRun.h"
#include "AliTOFv2FHoles.h"
#include "AliTOFConstants.h" // AdC
#include "AliMC.h"
ClassImp(AliTOFv2FHoles)
//_____________________________________________________________________________
AliTOFv2FHoles::AliTOFv2FHoles()
{
//
// Default constructor
//
}
//_____________________________________________________________________________
AliTOFv2FHoles::AliTOFv2FHoles(const char *name, const char *title)
: AliTOF(name,title)
{
//
// Standard constructor
//
//
// Check that FRAME is there otherwise we have no place where to
// put TOF
AliModule* frame=gAlice->GetModule("FRAME");
if(!frame) {
Error("Ctor","TOF needs FRAME to be present\n");
exit(1);
} else
if(frame->IsVersion()!=0) {
Error("Ctor","FRAME version 0 needed with this version of TOF\n");
exit(1);
}
}
//____________________________________________________________________________
void AliTOFv2FHoles::BuildGeometry()
{
//
// Build TOF ROOT geometry for the ALICE event display
//
TNode *node, *top;
const int kColorTOF = 27;
// Find top TNODE
top = gAlice->GetGeometry()->GetNode("alice");
// Position the different copies
const Float_t krTof =(fRmax+fRmin)/2;
const Float_t khTof = fRmax-fRmin;
const Int_t kNTof = fNTof;
const Float_t kPi = TMath::Pi();
const Float_t kangle = 2*kPi/kNTof;
Float_t ang;
// fixing parameters as requested by FRAME v0 (Morsch 16-10-2001)
//Float_t zlenA = 124.; // cm (A module length) original size 106. enlarged
Float_t zlenB = 154.; // cm (B module length) original size 141. enlarged
Float_t zlenC = 159.5; // cm (C module length) original size 175.5 reduced
Float_t ztof0 = 375.5; // total half-length of a TOF sector original size 371.5cm
Float_t zOffsetC = ztof0 - zlenC*0.5;
Float_t zOffsetB = ztof0 - zlenC - zlenB*0.5;
Float_t zOffsetA = 0.00;
// Define TOF basic volume
char nodeName0[6], nodeName1[6], nodeName2[6];
char nodeName3[6], nodeName4[6], rotMatNum[6];
new TBRIK("S_TOF_C","TOF box","void",
fStripLn*0.5,khTof*0.5,fZlenC*0.5);
new TBRIK("S_TOF_B","TOF box","void",
fStripLn*0.5,khTof*0.5,fZlenB*0.5);
new TBRIK("S_TOF_A","TOF box","void",
fStripLn*0.5,khTof*0.5,fZlenA*0.5);
for (Int_t nodeNum=1;nodeNum<19;nodeNum++){
if (nodeNum<10) {
sprintf(rotMatNum,"rot50%i",nodeNum);
sprintf(nodeName0,"FTO00%i",nodeNum);
sprintf(nodeName1,"FTO10%i",nodeNum);
sprintf(nodeName2,"FTO20%i",nodeNum);
sprintf(nodeName3,"FTO30%i",nodeNum);
sprintf(nodeName4,"FTO40%i",nodeNum);
}
if (nodeNum>9) {
sprintf(rotMatNum,"rot5%i",nodeNum);
sprintf(nodeName0,"FTO0%i",nodeNum);
sprintf(nodeName1,"FTO1%i",nodeNum);
sprintf(nodeName2,"FTO2%i",nodeNum);
sprintf(nodeName3,"FTO3%i",nodeNum);
sprintf(nodeName4,"FTO4%i",nodeNum);
}
new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0);
ang = (4.5-nodeNum) * kangle;
top->cd();
node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetC,rotMatNum);
node->SetLineColor(kColorTOF);
fNodes->Add(node);
top->cd();
node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetC,rotMatNum);
node->SetLineColor(kColorTOF);
fNodes->Add(node);
if (nodeNum !=1 && nodeNum!=17 && nodeNum !=18)
{
top->cd();
node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetB,rotMatNum);
node->SetLineColor(kColorTOF);
fNodes->Add(node);
top->cd();
node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetB,rotMatNum);
node->SetLineColor(kColorTOF);
fNodes->Add(node);
} // Holes for RICH detector
if ((nodeNum<7 || nodeNum>11) && nodeNum !=1 && nodeNum!=17 && nodeNum !=18)
{
top->cd();
node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetA,rotMatNum);
node->SetLineColor(kColorTOF);
fNodes->Add(node);
} // Holes for PHOS detector (+ Holes for RICH detector, central part)
} // end loop on nodeNum
}
//_____________________________________________________________________________
void AliTOFv2FHoles::CreateGeometry()
{
//
// Create geometry for Time Of Flight version 0
//
//Begin_Html
/*
*/
//End_Html
//
// Creates common geometry
//
AliTOF::CreateGeometry();
}
//_____________________________________________________________________________
void AliTOFv2FHoles::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
Float_t zlenB, Float_t zlenA, Float_t ztof0)
{
//
// Definition of the Time Of Fligh Resistive Plate Chambers
// xFLT, yFLT, zFLT - sizes of TOF modules (large)
Float_t ycoor, zcoor;
Float_t par[3];
Int_t *idtmed = fIdtmed->GetArray()-499;
Int_t idrotm[100];
Int_t nrot = 0;
Float_t hTof = fRmax-fRmin;
Float_t radius = fRmin+2.;//cm
// fixing parameters as requested by FRAME v0 (Morsch 16-10-2001)
zlenA = 124.; // cm (A module length) original size 106. enlarged
zlenB = 154.; // cm (B module length) original size 141. enlarged
zlenC = 159.5; // cm (C module length) original size 175.5 reduced
ztof0 = 375.5; // total half-length of a TOF sector original size 371.5cm
par[0] = xtof * 0.5;
par[1] = ytof * 0.5;
par[2] = zlenC * 0.5;
gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
par[2] = zlenB * 0.5;
gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
par[2] = zlenA * 0.5;
gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
// Positioning of modules
Float_t zcor1 = ztof0 - zlenC*0.5;
Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
Float_t zcor3 = 0.00;
Float_t zcor4 = 156.75 - zlenC*0.5;
Float_t zcor5 = -156.75 + zlenB*0.5;
AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.);
AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
gMC->Gspos("FTOC", 1, "BTO2", 0, zcor4, 0, idrotm[0], "ONLY");
gMC->Gspos("FTOC", 1, "BTO3", 0, 0., 0, idrotm[0], "ONLY");
gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
gMC->Gspos("FTOB", 1, "BTO2", 0, zcor5, 0, idrotm[0], "ONLY");
gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
Float_t db = 0.5;//cm
Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
xFLT = fStripLn;
yFLT = ytof;
zFLTA = zlenA;
zFLTB = zlenB;
zFLTC = zlenC;
xFST = xFLT-fDeadBndX*2; //cm
// Sizes of MRPC pads
Float_t yPad = 0.505; //cm
// Large not sensitive volumes with Insensitive Freon
par[0] = xFLT*0.5;
par[1] = yFLT*0.5;
if(fDebug)
cout <Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon
gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
par[2] = (zFLTB * 0.5);
gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon
gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
par[2] = (zFLTC * 0.5);
gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon
gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
///// Layers of Aluminum before and after detector /////
///// Aluminum Box for Modules (1.8 mm thickness) /////
///// lateral walls not simulated for the time being
//const Float_t khAlWall = 0.18;
// fp to be checked
const Float_t khAlWall = 0.11;
par[0] = xFLT*0.5;
par[1] = khAlWall/2.;//cm
ycoor = -yFLT/2 + par[1];
par[2] = (zFLTA *0.5);
gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium
gMC->Gspos ("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY");
gMC->Gspos ("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY");
par[2] = (zFLTB *0.5);
gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium
gMC->Gspos ("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY");
gMC->Gspos ("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY");
par[2] = (zFLTC *0.5);
gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium
gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY");
gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY");
///////////////// Detector itself //////////////////////
const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge
//and the boundary of the strip
const Int_t knx = fNpadX; // number of pads along x
const Int_t knz = fNpadZ; // number of pads along z
const Float_t kspace = fSpace; //cm distance from the front plate of the box
Float_t zSenStrip = fZpad*fNpadZ;//cm
Float_t stripWidth = zSenStrip + 2*kdeadBound;
par[0] = xFLT*0.5;
par[1] = yPad*0.5;
par[2] = stripWidth*0.5;
// new description for strip volume -double stack strip-
// -- all constants are expressed in cm
// heigth of different layers
const Float_t khhony = 0.8 ; // heigth of HONY Layer
const Float_t khpcby = 0.08 ; // heigth of PCB Layer
const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer
const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer
const Float_t khglasseiy = 0.135; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm)
const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture
const Float_t kwsensmz = 2*3.5 ; // cm
const Float_t klsensmx = 48*2.5; // cm
const Float_t kwpadz = 3.5; // cm z dimension of the FPAD volume
const Float_t klpadx = 2.5; // cm x dimension of the FPAD volume
// heigth of the FSTR Volume (the strip volume)
const Float_t khstripy = 2*khhony+3*khpcby+4*(khmyly+khgraphy+khglasseiy)+2*khsensmy;
// width of the FSTR Volume (the strip volume)
const Float_t kwstripz = 10.;
// length of the FSTR Volume (the strip volume)
const Float_t klstripx = 122.;
Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5};
// coordinates of the strip center in the strip reference frame; used for positioning
// internal strip volumes
Float_t posfp[3]={0.,0.,0.};
// FSTR volume definition and filling this volume with non sensitive Gas Mixture
gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3);
//-- HONY Layer definition
// parfp[0] = -1;
parfp[1] = khhony*0.5;
// parfp[2] = -1;
gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3);
// positioning 2 HONY Layers on FSTR volume
posfp[1]=-khstripy*0.5+parfp[1];
gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
//-- PCB Layer definition
parfp[1] = khpcby*0.5;
gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3);
// positioning 2 PCB Layers on FSTR volume
posfp[1]=-khstripy*0.5+khhony+parfp[1];
gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
// positioning the central PCB layer
gMC->Gspos("FPCB",3,"FSTR",0.,0.,0.,0,"ONLY");
//-- MYLAR Layer definition
parfp[1] = khmyly*0.5;
gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3);
// positioning 2 MYLAR Layers on FSTR volume
posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1];
gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
// adding further 2 MYLAR Layers on FSTR volume
posfp[1] = khpcby*0.5+parfp[1];
gMC->Gspos("FMYL",3,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FMYL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
//-- Graphite Layer definition
parfp[1] = khgraphy*0.5;
gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3);
// positioning 2 Graphite Layers on FSTR volume
posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1];
gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
// adding further 2 Graphite Layers on FSTR volume
posfp[1] = khpcby*0.5+khmyly+parfp[1];
gMC->Gspos("FGRP",3,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FGRP",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
//-- Glass (EXT. +Semi INT.) Layer definition
parfp[1] = khglasseiy*0.5;
gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3);
// positioning 2 Glass Layers on FSTR volume
posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1];
gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
// adding further 2 Glass Layers on FSTR volume
posfp[1] = khpcby*0.5+khmyly+khgraphy+parfp[1];
gMC->Gspos("FGLA",3,"FSTR",0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FGLA",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
//-- Sensitive Mixture Layer definition
parfp[0] = klsensmx*0.5;
parfp[1] = khsensmy*0.5;
parfp[2] = kwsensmz*0.5;
gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3);
gMC->Gsvolu("FNSE","BOX",idtmed[512],parfp,3);
// positioning 2 gas Layers on FSTR volume
// the upper is insensitive freon
// while the remaining is sensitive
posfp[1] = khpcby*0.5+khmyly+khgraphy+khglasseiy+parfp[1];
gMC->Gspos("FNSE",0,"FSTR", 0., posfp[1],0.,0,"ONLY");
gMC->Gspos("FSEN",0,"FSTR", 0.,-posfp[1],0.,0,"ONLY");
// dividing FSEN along z in knz=2 and along x in knx=48
gMC->Gsdvn("FSEZ","FSEN",knz,3);
gMC->Gsdvn("FSEX","FSEZ",knx,1);
// FPAD volume definition
parfp[0] = klpadx*0.5;
parfp[1] = khsensmy*0.5;
parfp[2] = kwpadz*0.5;
gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3);
// positioning the FPAD volumes on previous divisions
gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY");
//// Positioning the Strips (FSTR) in the FLT volumes /////
// Plate A (Central)
Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
Float_t gap = fGapA+1.; //cm updated distance between the strip axis
// 1 cm is a special value exclusively for AliTOFv2FHoles geometry
Float_t zpos = 0;
Float_t ang = 0;
Int_t j=1; // AdC
nrot = 0;
zcoor = 0;
ycoor = -14.5 + kspace ; //2 cm over front plate
AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.);
Int_t centerLoc= (Int_t)(fNStripA/2.) + 1; // AdC
//gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
gMC->Gspos("FSTR",centerLoc,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); // AdC
if(fDebug>=1) {
printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,j); // AdC
printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
}
zcoor -= zSenStrip;
//j++; // AdC
Int_t upDown = -1; // upDown=-1 -> Upper strip
// upDown=+1 -> Lower strip
do{
ang = atan(zcoor/radius);
ang *= kRaddeg;
AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
ang /= kRaddeg;
ycoor = -14.5+ kspace; //2 cm over front plate
ycoor += (1-(upDown+1)/2)*gap;
//gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
//gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
gMC->Gspos("FSTR",centerLoc-j,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); // AdC
gMC->Gspos("FSTR",centerLoc+j,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); // AdC
if(fDebug>=1) {
printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,j); // AdC
printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
}
j++; //j += 2; // AdC
upDown*= -1; // Alternate strips
zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
upDown*gap*TMath::Tan(ang)-
(zSenStrip/2)/TMath::Cos(ang);
} while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
upDown*gap*TMath::Tan(ang)+
(zSenStrip/2)/TMath::Cos(ang);
gap = fGapB;
zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
upDown*gap*TMath::Tan(ang)-
(zSenStrip/2)/TMath::Cos(ang);
ang = atan(zcoor/radius);
ang *= kRaddeg;
AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
ang /= kRaddeg;
ycoor = -14.5+ kspace; //2 cm over front plate
ycoor += (1-(upDown+1)/2)*gap;
/* for FRAME v0
//gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
//gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
gMC->Gspos("FSTR",centerLoc-j,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); // AdC
gMC->Gspos("FSTR",centerLoc+j,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); // AdC
if(fDebug>=1) {
printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,j); // AdC
printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
}
*/
ycoor = -hTof/2.+ kspace;//2 cm over front plate
// Plate B
nrot = 0;
Int_t i=1; // AdC
upDown = 1;
Float_t deadRegion = 1.0;//cm
zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
upDown*gap*TMath::Tan(ang)-
(zSenStrip/2)/TMath::Cos(ang)-
deadRegion/TMath::Cos(ang);
ang = atan(zpos/radius);
ang *= kRaddeg;
AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
ang /= kRaddeg;
ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
ycoor += (1-(upDown+1)/2)*gap;
zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
if(fDebug>=1) {
printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
}
i++;
upDown*=-1;
do {
zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
upDown*gap*TMath::Tan(ang)-
(zSenStrip/2)/TMath::Cos(ang);
ang = atan(zpos/radius);
ang *= kRaddeg;
AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
ang /= kRaddeg;
ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
ycoor += (1-(upDown+1)/2)*gap;
zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
if(fDebug>=1) {
printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
}
upDown*=-1;
i++;
} while (TMath::Abs(ang*kRaddeg)<22.5);
//till we reach a tilting angle of 22.5 degrees
ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
zpos = zpos - zSenStrip/TMath::Cos(ang);
// this avoid overlaps in between outer strips in plate B
Float_t deltaMovingUp=0.8; // [cm]
//Float_t deltaMovingDown=-0.0; // [cm] special value for AliTOFv2FHoles
do {
ang = atan(zpos/radius);
ang *= kRaddeg;
AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
ang /= kRaddeg;
zcoor = zpos+(zFLTB/2+zFLTA/2+db);
gMC->Gspos("FSTR",i, "FLTB", 0., ycoor+deltaMovingUp, zcoor,idrotm[nrot], "ONLY");
deltaMovingUp+=0.8; // update delta moving toward the end of the plate
zpos = zpos - zSenStrip/TMath::Cos(ang);
if(fDebug>=1) {
printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
}
i++;
} while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
// Plate C
zpos = zpos + zSenStrip/TMath::Cos(ang);
zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
gap*TMath::Tan(ang)-
(zSenStrip/2)/TMath::Cos(ang);
nrot = 0;
i=0;
Float_t deltaGap=-2.5; // [cm] update distance from strip center and plate
ycoor= -hTof*0.5+kspace+gap+deltaGap;
do {
i++;
ang = atan(zpos/radius);
ang *= kRaddeg;
AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
ang /= kRaddeg;
zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
if (i!=1)
gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
if(fDebug>=1) {
printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i);
printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
}
zpos = zpos - zSenStrip/TMath::Cos(ang);
} while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t);
////////// Layers after strips /////////////////
// Al Layer thickness (2.3mm) factor 0.7
Float_t overSpace = fOverSpc;//cm
par[0] = xFLT*0.5;
par[1] = 0.115*0.7; // factor 0.7
par[2] = (zFLTA *0.5);
ycoor = -yFLT/2 + overSpace + par[1];
gMC->Gsvolu("FPEA", "BOX ", idtmed[508], par, 3); // Al
gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
par[2] = (zFLTB *0.5);
gMC->Gsvolu("FPEB", "BOX ", idtmed[508], par, 3); // Al
gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
par[2] = (zFLTC *0.5);
gMC->Gsvolu("FPEC", "BOX ", idtmed[508], par, 3); // Al
gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
// plexiglass thickness: 1.5 mm ; factor 0.3
ycoor += par[1];
par[0] = xFLT*0.5;
par[1] = 0.075*0.3; // factor 0.3
par[2] = (zFLTA *0.5);
ycoor += par[1];
gMC->Gsvolu("FECA", "BOX ", idtmed[505], par, 3); // Plexigl.
gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
par[2] = (zFLTB *0.5);
gMC->Gsvolu("FECB", "BOX ", idtmed[505], par, 3); // Plexigl.
gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
par[2] = (zFLTC *0.5);
gMC->Gsvolu("FECC", "BOX ", idtmed[505], par, 3); // Plexigl.
gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
// frame of Air
ycoor += par[1];
par[0] = xFLT*0.5;
par[1] = (yFLT/2-ycoor-khAlWall)*0.5; // Aluminum layer considered (0.18 cm)
par[2] = (zFLTA *0.5);
ycoor += par[1];
gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air
gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
par[2] = (zFLTB *0.5);
gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air
gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
par[2] = (zFLTC *0.5);
gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air
gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
// start with cards and cooling tubes
// finally, cards, cooling tubes and layer for thermal dispersion
// 3 volumes
// card volume definition
// see GEOM200 in GEANT manual
AliMatrix(idrotm[98], 90., 0., 90., 90., 0., 0.); // 0 deg
Float_t cardpar[3];
cardpar[0]= 61.;
cardpar[1]= 5.;
cardpar[2]= 0.1;
gMC->Gsvolu("FCAR", "BOX ", idtmed[504], cardpar, 3); // PCB Card
//alu plate volume definition
cardpar[1]= 3.5;
cardpar[2]= 0.05;
gMC->Gsvolu("FALP", "BOX ", idtmed[508], cardpar, 3); // Alu Plate
// central module positioning (FAIA)
Float_t cardpos[3], aplpos2, stepforcardA=6.89;
cardpos[0]= 0.;
cardpos[1]= -0.5;
cardpos[2]= -62.;
Float_t aplpos1 = -2.;
Int_t icard;
for (icard=0; icard<17; ++icard) {
cardpos[2]= cardpos[2]+stepforcardA;
aplpos2 = cardpos[2]+0.15;
gMC->Gspos("FCAR",icard,"FAIA",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY");
gMC->Gspos("FALP",icard,"FAIA",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY");
}
// intermediate module positioning (FAIB)
Float_t stepforcardB= 7.05;
cardpos[2]= -70.5;
for (icard=0; icard<19; ++icard) {
cardpos[2]= cardpos[2]+stepforcardB;
aplpos2 = cardpos[2]+0.15;
gMC->Gspos("FCAR",icard,"FAIB",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY");
gMC->Gspos("FALP",icard,"FAIB",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY");
}
// outer module positioning (FAIC)
Float_t stepforcardC= 8.45238;
cardpos[2]= -79.75;
for (icard=0; icard<17; ++icard) {
cardpos[2]= cardpos[2]+stepforcardC;
aplpos2 = cardpos[2]+0.15;
gMC->Gspos("FCAR",icard,"FAIC",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY");
gMC->Gspos("FALP",icard,"FAIC",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY");
}
// tube volume definition
Float_t tubepar[3];
tubepar[0]= 0.;
tubepar[1]= 0.4;
tubepar[2]= 61.;
gMC->Gsvolu("FTUB", "TUBE", idtmed[516], tubepar, 3); // cooling tubes (steel)
tubepar[0]= 0.;
tubepar[1]= 0.35;
tubepar[2]= 61.;
gMC->Gsvolu("FITU", "TUBE", idtmed[515], tubepar, 3); // cooling water
// positioning water tube into the steel one
gMC->Gspos("FITU",1,"FTUB",0.,0.,0.,0,"ONLY");
// rotation matrix
AliMatrix(idrotm[99], 180., 90., 90., 90., 90., 0.);
// central module positioning (FAIA)
Float_t tubepos[3], tdis=0.6;
tubepos[0]= 0.;
tubepos[1]= cardpos[1];
tubepos[2]= -62.+tdis;
// tub1pos = 5.;
Int_t itub;
for (itub=0; itub<17; ++itub) {
tubepos[2]= tubepos[2]+stepforcardA;
gMC->Gspos("FTUB",itub,"FAIA",tubepos[0],tubepos[1],tubepos[2],idrotm[99],
"ONLY");
}
// intermediate module positioning (FAIB)
tubepos[2]= -70.5+tdis;
for (itub=0; itub<19; ++itub) {
tubepos[2]= tubepos[2]+stepforcardB;
gMC->Gspos("FTUB",itub,"FAIB",tubepos[0],tubepos[1],tubepos[2],idrotm[99],
"ONLY");
}
// outer module positioning (FAIC)
tubepos[2]= -79.75+tdis;
for (itub=0; itub<17; ++itub) {
tubepos[2]= tubepos[2]+stepforcardC;
gMC->Gspos("FTUB",itub,"FAIC",tubepos[0],tubepos[1],tubepos[2],idrotm[99],
"ONLY");
}
}
//_____________________________________________________________________________
void AliTOFv2FHoles::DrawModule() const
{
//
// Draw a shaded view of the Time Of Flight version 2
//
// Set everything unseen
gMC->Gsatt("*", "seen", -1);
//
// Set ALIC mother transparent
gMC->Gsatt("ALIC","SEEN",0);
//
// Set the volumes visible
gMC->Gsatt("ALIC","SEEN",0);
gMC->Gsatt("FTOA","SEEN",1);
gMC->Gsatt("FTOB","SEEN",1);
gMC->Gsatt("FTOC","SEEN",1);
gMC->Gsatt("FLTA","SEEN",1);
gMC->Gsatt("FLTB","SEEN",1);
gMC->Gsatt("FLTC","SEEN",1);
gMC->Gsatt("FPLA","SEEN",1);
gMC->Gsatt("FPLB","SEEN",1);
gMC->Gsatt("FPLC","SEEN",1);
gMC->Gsatt("FSTR","SEEN",1);
gMC->Gsatt("FPEA","SEEN",1);
gMC->Gsatt("FPEB","SEEN",1);
gMC->Gsatt("FPEC","SEEN",1);
gMC->Gsatt("FLZ1","SEEN",0);
gMC->Gsatt("FLZ2","SEEN",0);
gMC->Gsatt("FLZ3","SEEN",0);
gMC->Gsatt("FLX1","SEEN",0);
gMC->Gsatt("FLX2","SEEN",0);
gMC->Gsatt("FLX3","SEEN",0);
gMC->Gsatt("FPAD","SEEN",0);
gMC->Gdopt("hide", "on");
gMC->Gdopt("shad", "on");
gMC->Gsatt("*", "fill", 7);
gMC->SetClipBox(".");
gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
gMC->DefaultRange();
gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
gMC->Gdhead(1111, "Time Of Flight");
gMC->Gdman(18, 4, "MAN");
gMC->Gdopt("hide","off");
}
//_____________________________________________________________________________
void AliTOFv2FHoles::DrawDetectorModules()
{
//
// Draw a shaded view of the TOF detector version 2
//
//Set ALIC mother transparent
gMC->Gsatt("ALIC","SEEN",0);
//
//Set volumes visible
//
//=====> Level 1
// Level 1 for TOF volumes
gMC->Gsatt("B077","seen",0);
//==========> Level 2
// Level 2
gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped -
gMC->Gsatt("B071","seen",0);
gMC->Gsatt("B074","seen",0);
gMC->Gsatt("B075","seen",0);
gMC->Gsatt("B080","seen",0); // B080 does not has sub-level
// Level 2 of B071
gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped -
gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped -
gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped -
gMC->Gsatt("B069","seen",-1); // all B069 sub-levels skipped -
gMC->Gsatt("B056","seen",0); // B056 does not has sub-levels -
gMC->Gsatt("B059","seen",-1); // all B059 sub-levels skipped -
gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped -
gMC->Gsatt("BTR1","seen",0); // BTR1 do not have sub-levels -
gMC->Gsatt("BTO1","seen",0);
// Level 2 of B074
gMC->Gsatt("BTR2","seen",0); // BTR2 does not has sub-levels -
gMC->Gsatt("BTO2","seen",0);
// Level 2 of B075
gMC->Gsatt("BTR3","seen",0); // BTR3 do not have sub-levels -
gMC->Gsatt("BTO3","seen",0);
// ==================> Level 3
// Level 3 of B071 / Level 2 of BTO1
gMC->Gsatt("FTOC","seen",-2);
gMC->Gsatt("FTOB","seen",-2);
gMC->Gsatt("FTOA","seen",-2);
// Level 3 of B074 / Level 2 of BTO2
// -> cfr previous settings
// Level 3 of B075 / Level 2 of BTO3
// -> cfr previous settings
gMC->Gdopt("hide","on");
gMC->Gdopt("shad","on");
gMC->Gsatt("*", "fill", 5);
gMC->SetClipBox(".");
gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000);
gMC->DefaultRange();
gMC->Gdraw("alic", 45, 40, 0, 10, 10, .015, .015);
gMC->Gdhead(1111,"TOF detector V1");
gMC->Gdman(18, 4, "MAN");
gMC->Gdopt("hide","off");
}
//_____________________________________________________________________________
void AliTOFv2FHoles::DrawDetectorStrips()
{
//
// Draw a shaded view of the TOF strips for version 2
//
//Set ALIC mother transparent
gMC->Gsatt("ALIC","SEEN",0);
//
//Set volumes visible
//=====> Level 1
// Level 1 for TOF volumes
gMC->Gsatt("B077","seen",0);
//==========> Level 2
// Level 2
gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped -
gMC->Gsatt("B071","seen",0);
gMC->Gsatt("B074","seen",0);
gMC->Gsatt("B075","seen",0);
gMC->Gsatt("B080","seen",0); // B080 does not has sub-level
// Level 2 of B071
gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped -
gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped -
gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped -
gMC->Gsatt("B069","seen",-1); // all B069 sub-levels skipped -
gMC->Gsatt("B056","seen",0); // B056 does not has sub-levels -
gMC->Gsatt("B059","seen",-1); // all B059 sub-levels skipped -
gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped -
gMC->Gsatt("BTR1","seen",0); // BTR1 do not have sub-levels -
gMC->Gsatt("BTO1","seen",0);
// ==================> Level 3
// Level 3 of B071 / Level 2 of BTO1
gMC->Gsatt("FTOC","seen",0);
gMC->Gsatt("FTOB","seen",0);
gMC->Gsatt("FTOA","seen",0);
// Level 3 of B074 / Level 2 of BTO2
// -> cfr previous settings
// Level 3 of B075 / Level 2 of BTO3
// -> cfr previous settings
// ==========================> Level 4
// Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOC
gMC->Gsatt("FLTC","seen",0);
// Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOB
gMC->Gsatt("FLTB","seen",0);
// Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOA
gMC->Gsatt("FLTA","seen",0);
// Level 4 of B074 / Level 3 of BTO2 / Level 2 of FTOC
// -> cfr previous settings
// Level 4 of B074 / Level 3 of BTO2 / Level 2 of FTOB
// -> cfr previous settings
// Level 4 of B075 / Level 3 of BTO3 / Level 2 of FTOC
// -> cfr previous settings
//======================================> Level 5
// Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOC / Level 2 of FLTC
gMC->Gsatt("FALC","seen",0); // no children for FALC
gMC->Gsatt("FSTR","seen",-2);
gMC->Gsatt("FPEC","seen",0); // no children for FPEC
gMC->Gsatt("FECC","seen",0); // no children for FECC
gMC->Gsatt("FWAC","seen",0); // no children for FWAC
gMC->Gsatt("FAIC","seen",0); // no children for FAIC
// Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOB / Level 2 of FLTB
gMC->Gsatt("FALB","seen",0); // no children for FALB
//--> gMC->Gsatt("FSTR","seen",-2);
// -> cfr previous settings
gMC->Gsatt("FPEB","seen",0); // no children for FPEB
gMC->Gsatt("FECB","seen",0); // no children for FECB
gMC->Gsatt("FWAB","seen",0); // no children for FWAB
gMC->Gsatt("FAIB","seen",0); // no children for FAIB
// Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOA / Level 2 of FLTA
gMC->Gsatt("FALA","seen",0); // no children for FALB
//--> gMC->Gsatt("FSTR","seen",-2);
// -> cfr previous settings
gMC->Gsatt("FPEA","seen",0); // no children for FPEA
gMC->Gsatt("FECA","seen",0); // no children for FECA
gMC->Gsatt("FWAA","seen",0); // no children for FWAA
gMC->Gsatt("FAIA","seen",0); // no children for FAIA
// Level 2 of B074
gMC->Gsatt("BTR2","seen",0); // BTR2 does not has sub-levels -
gMC->Gsatt("BTO2","seen",0);
// Level 2 of B075
gMC->Gsatt("BTR3","seen",0); // BTR3 do not have sub-levels -
gMC->Gsatt("BTO3","seen",0);
// for others Level 5, cfr. previous settings
gMC->Gdopt("hide","on");
gMC->Gdopt("shad","on");
gMC->Gsatt("*", "fill", 5);
gMC->SetClipBox(".");
gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000);
gMC->DefaultRange();
gMC->Gdraw("alic", 45, 40, 0, 10, 10, .015, .015);
gMC->Gdhead(1111,"TOF Strips V1");
gMC->Gdman(18, 4, "MAN");
gMC->Gdopt("hide","off");
}
//_____________________________________________________________________________
void AliTOFv2FHoles::CreateMaterials()
{
//
// Define materials for the Time Of Flight
//
AliTOF::CreateMaterials();
}
//_____________________________________________________________________________
void AliTOFv2FHoles::Init()
{
//
// Initialise the detector after the geometry has been defined
//
if(fDebug) {
printf("%s: **************************************"
" TOF "
"**************************************\n",ClassName());
printf("\n%s: Version 2 of TOF initialing, "
"TOF with holes for PHOS and RICH \n",ClassName());
}
AliTOF::Init();
fIdFTOA = gMC->VolId("FTOA");
fIdFTOB = gMC->VolId("FTOB");
fIdFTOC = gMC->VolId("FTOC");
fIdFLTA = gMC->VolId("FLTA");
fIdFLTB = gMC->VolId("FLTB");
fIdFLTC = gMC->VolId("FLTC");
if(fDebug) {
printf("%s: **************************************"
" TOF "
"**************************************\n",ClassName());
}
}
//_____________________________________________________________________________
void AliTOFv2FHoles::StepManager()
{
//
// Procedure called at each step in the Time Of Flight
//
TLorentzVector mom, pos;
Float_t xm[3],pm[3],xpad[3],ppad[3];
Float_t hits[13],phi,phid,z;
Int_t vol[5];
Int_t sector, plate, padx, padz, strip;
Int_t copy, padzid, padxid, stripid, i;
Int_t *idtmed = fIdtmed->GetArray()-499;
Float_t incidenceAngle;
if(gMC->CurrentMedium()==idtmed[513] &&
gMC->IsTrackEntering() && gMC->TrackCharge()
&& gMC->CurrentVolID(copy)==fIdSens)
{
// getting information about hit volumes
padzid=gMC->CurrentVolOffID(2,copy);
padz=copy;
padxid=gMC->CurrentVolOffID(1,copy);
padx=copy;
stripid=gMC->CurrentVolOffID(4,copy);
strip=copy;
gMC->TrackPosition(pos);
gMC->TrackMomentum(mom);
// Double_t NormPos=1./pos.Rho();
Double_t normMom=1./mom.Rho();
// getting the cohordinates in pad ref system
xm[0] = (Float_t)pos.X();
xm[1] = (Float_t)pos.Y();
xm[2] = (Float_t)pos.Z();
pm[0] = (Float_t)mom.X()*normMom;
pm[1] = (Float_t)mom.Y()*normMom;
pm[2] = (Float_t)mom.Z()*normMom;
gMC->Gmtod(xm,xpad,1);
gMC->Gmtod(pm,ppad,2);
incidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
z = pos[2];
plate = 0;
/* to be changed
if (TMath::Abs(z) <= fZlenA*0.5) plate = 3;
if (z < (fZlenA*0.5+fZlenB) &&
z > fZlenA*0.5) plate = 4;
if (z >-(fZlenA*0.5+fZlenB) &&
z < -fZlenA*0.5) plate = 2;
if (z > (fZlenA*0.5+fZlenB)) plate = 5;
if (z <-(fZlenA*0.5+fZlenB)) plate = 1;
end to be changed */
if (TMath::Abs(z) <= 124.*0.5) plate = 2; //3; // AdC
if (z < (124.*0.5+154.) &&
z > 124.*0.5) plate = 1; //4; // AdC
if (z >-(124.*0.5+154.) &&
z < -124.*0.5) plate = 3; //2; // AdC
if (z > (124.*0.5+154.)) plate = 0; //5; // AdC
if (z <-(124.*0.5+154.)) plate = 4; //1; // AdC
if (plate==0) strip=AliTOFConstants::fgkNStripC-strip; // AdC
else if (plate==1) strip=AliTOFConstants::fgkNStripB-strip; // AdC
else strip--; // AdC
if (z<=0.) padx=AliTOFConstants::fgkNpadX-padx; // AdC
else padx--; // AdC
if (plate==3 || plate==4) padz=AliTOFConstants::fgkNpadZ-padz; // AdC
else padz--; // AdC
phi = pos.Phi();
if (phi>=0.) phid = phi*kRaddeg; //+180.; // AdC
else phid = phi*kRaddeg + 360.; // AdC
sector = Int_t (phid/20.);
//sector++; // AdC
for(i=0;i<3;++i) {
hits[i] = pos[i];
hits[i+3] = pm[i];
}
hits[6] = mom.Rho();
hits[7] = pos[3];
hits[8] = xpad[0];
hits[9] = xpad[1];
hits[10]= xpad[2];
hits[11]= incidenceAngle;
hits[12]= gMC->Edep();
vol[0]= sector;
vol[1]= plate;
vol[2]= strip;
vol[3]= padx;
vol[4]= padz;
AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(),vol, hits);
}
}