/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //////////////////////////////////////////////////////////////////////////////// // // // AliTPCCorrection class // // // // This class provides a general framework to deal with space point // // distortions. An correction class which inherits from here is for example // // AliTPCExBBShape or AliTPCExBTwist // // // // General functions are (for example): // // CorrectPoint(x,roc) where x is the vector of inital positions in // // cartesian coordinates and roc represents the Read Out chamber number // // according to the offline naming convention. The vector x is overwritten // // with the corrected coordinates. // // // // An alternative usage would be CorrectPoint(x,roc,dx), which leaves the // // vector x untouched, put returns the distortions via the vector dx // // // // The class allows "effective Omega Tau" corrections to be shifted to the // // single distortion classes. // // // // Note: This class is normally used via the class AliTPCComposedCorrection // // // // date: 27/04/2010 // // Authors: Magnus Mager, Stefan Rossegger, Jim Thomas // //////////////////////////////////////////////////////////////////////////////// #include #include #include #include "AliTPCCorrection.h" // FIXME: the following values should come from the database const Double_t AliTPCCorrection::fgkTPC_Z0 =249.7; // nominal gating grid position const Double_t AliTPCCorrection::fgkIFCRadius= 83.06; // Mean Radius of the Inner Field Cage ( 82.43 min, 83.70 max) (cm) const Double_t AliTPCCorrection::fgkOFCRadius=254.5; // Mean Radius of the Outer Field Cage (252.55 min, 256.45 max) (cm) const Double_t AliTPCCorrection::fgkZOffSet = 0.2; // Offset from CE: calculate all distortions closer to CE as if at this point const Double_t AliTPCCorrection::fgkCathodeV =-100000.0; // Cathode Voltage (volts) const Double_t AliTPCCorrection::fgkGG =-70.0; // Gating Grid voltage (volts) // FIXME: List of interpolation points (course grid in the middle, fine grid on the borders) const Double_t AliTPCCorrection::fgkRList[AliTPCCorrection::kNR] = { 84.0, 84.5, 85.0, 85.5, 86.0, 87.0, 88.0, 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0, 112.0, 114.0, 116.0, 118.0, 120.0, 122.0, 124.0, 126.0, 128.0, 130.0, 132.0, 134.0, 136.0, 138.0, 140.0, 142.0, 144.0, 146.0, 148.0, 150.0, 152.0, 154.0, 156.0, 158.0, 160.0, 162.0, 164.0, 166.0, 168.0, 170.0, 172.0, 174.0, 176.0, 178.0, 180.0, 182.0, 184.0, 186.0, 188.0, 190.0, 192.0, 194.0, 196.0, 198.0, 200.0, 202.0, 204.0, 206.0, 208.0, 210.0, 212.0, 214.0, 216.0, 218.0, 220.0, 222.0, 224.0, 226.0, 228.0, 230.0, 232.0, 234.0, 236.0, 238.0, 240.0, 242.0, 244.0, 246.0, 248.0, 249.0, 249.5, 250.0, 251.5, 252.0 } ; const Double_t AliTPCCorrection::fgkZList[AliTPCCorrection::kNZ] = { -249.5, -249.0, -248.5, -248.0, -247.0, -246.0, -245.0, -243.0, -242.0, -241.0, -240.0, -238.0, -236.0, -234.0, -232.0, -230.0, -228.0, -226.0, -224.0, -222.0, -220.0, -218.0, -216.0, -214.0, -212.0, -210.0, -208.0, -206.0, -204.0, -202.0, -200.0, -198.0, -196.0, -194.0, -192.0, -190.0, -188.0, -186.0, -184.0, -182.0, -180.0, -178.0, -176.0, -174.0, -172.0, -170.0, -168.0, -166.0, -164.0, -162.0, -160.0, -158.0, -156.0, -154.0, -152.0, -150.0, -148.0, -146.0, -144.0, -142.0, -140.0, -138.0, -136.0, -134.0, -132.0, -130.0, -128.0, -126.0, -124.0, -122.0, -120.0, -118.0, -116.0, -114.0, -112.0, -110.0, -108.0, -106.0, -104.0, -102.0, -100.0, -98.0, -96.0, -94.0, -92.0, -90.0, -88.0, -86.0, -84.0, -82.0, -80.0, -78.0, -76.0, -74.0, -72.0, -70.0, -68.0, -66.0, -64.0, -62.0, -60.0, -58.0, -56.0, -54.0, -52.0, -50.0, -48.0, -46.0, -44.0, -42.0, -40.0, -38.0, -36.0, -34.0, -32.0, -30.0, -28.0, -26.0, -24.0, -22.0, -20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0, -2.0, -1.0, -0.5, -0.2, -0.1, -0.05, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0, 26.0, 28.0, 30.0, 32.0, 34.0, 36.0, 38.0, 40.0, 42.0, 44.0, 46.0, 48.0, 50.0, 52.0, 54.0, 56.0, 58.0, 60.0, 62.0, 64.0, 66.0, 68.0, 70.0, 72.0, 74.0, 76.0, 78.0, 80.0, 82.0, 84.0, 86.0, 88.0, 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0, 112.0, 114.0, 116.0, 118.0, 120.0, 122.0, 124.0, 126.0, 128.0, 130.0, 132.0, 134.0, 136.0, 138.0, 140.0, 142.0, 144.0, 146.0, 148.0, 150.0, 152.0, 154.0, 156.0, 158.0, 160.0, 162.0, 164.0, 166.0, 168.0, 170.0, 172.0, 174.0, 176.0, 178.0, 180.0, 182.0, 184.0, 186.0, 188.0, 190.0, 192.0, 194.0, 196.0, 198.0, 200.0, 202.0, 204.0, 206.0, 208.0, 210.0, 212.0, 214.0, 216.0, 218.0, 220.0, 222.0, 224.0, 226.0, 228.0, 230.0, 232.0, 234.0, 236.0, 238.0, 240.0, 242.0, 243.0, 244.0, 245.0, 246.0, 247.0, 248.0, 248.5, 249.0, 249.5 } ; AliTPCCorrection::AliTPCCorrection() : TNamed("correction_unity","unity"),fJLow(0),fKLow(0) { // // default constructor // } AliTPCCorrection::AliTPCCorrection(const char *name,const char *title) : TNamed(name,title),fJLow(0),fKLow(0) { // // default constructor, that set the name and title // } AliTPCCorrection::~AliTPCCorrection() { // // virtual destructor // } void AliTPCCorrection::CorrectPoint(Float_t x[],const Short_t roc) { // // Corrects the initial coordinates x (cartesian coordinates) // according to the given effect (inherited classes) // roc represents the TPC read out chamber (offline numbering convention) // Float_t dx[3]; GetCorrection(x,roc,dx); for (Int_t j=0;j<3;++j) x[j]+=dx[j]; } void AliTPCCorrection::CorrectPoint(const Float_t x[],const Short_t roc,Float_t xp[]) { // // Corrects the initial coordinates x (cartesian coordinates) and stores the new // (distorted) coordinates in xp. The distortion is set according to the given effect (inherited classes) // roc represents the TPC read out chamber (offline numbering convention) // Float_t dx[3]; GetCorrection(x,roc,dx); for (Int_t j=0;j<3;++j) xp[j]=x[j]+dx[j]; } void AliTPCCorrection::DistortPoint(Float_t x[],const Short_t roc) { // // Distorts the initial coordinates x (cartesian coordinates) // according to the given effect (inherited classes) // roc represents the TPC read out chamber (offline numbering convention) // Float_t dx[3]; GetDistortion(x,roc,dx); for (Int_t j=0;j<3;++j) x[j]+=dx[j]; } void AliTPCCorrection::DistortPoint(const Float_t x[],const Short_t roc,Float_t xp[]) { // // Distorts the initial coordinates x (cartesian coordinates) and stores the new // (distorted) coordinates in xp. The distortion is set according to the given effect (inherited classes) // roc represents the TPC read out chamber (offline numbering convention) // Float_t dx[3]; GetDistortion(x,roc,dx); for (Int_t j=0;j<3;++j) xp[j]=x[j]+dx[j]; } void AliTPCCorrection::GetCorrection(const Float_t /*x*/[],const Short_t /*roc*/,Float_t dx[]) { // // This function delivers the correction values dx in respect to the inital coordinates x // roc represents the TPC read out chamber (offline numbering convention) // Note: The dx is overwritten by the inherited effectice class ... // for (Int_t j=0;j<3;++j) { dx[j]=0.; } } void AliTPCCorrection::GetDistortion(const Float_t x[],const Short_t roc,Float_t dx[]) { // // This function delivers the distortion values dx in respect to the inital coordinates x // roc represents the TPC read out chamber (offline numbering convention) // GetCorrection(x,roc,dx); for (Int_t j=0;j<3;++j) dx[j]=-dx[j]; } void AliTPCCorrection::Init() { // // Initialization funtion (not used at the moment) // } void AliTPCCorrection::Print(Option_t* /*option*/) const { // // Print function to check which correction classes are used // option=="d" prints details regarding the setted magnitude // option=="a" prints the C0 and C1 coefficents for calibration purposes // printf("TPC spacepoint correction: \"%s\"\n",GetTitle()); } void AliTPCCorrection:: SetOmegaTauT1T2(Float_t /*omegaTau*/,Float_t /*t1*/,Float_t /*t2*/) { // // Virtual funtion to pass the wt values (might become event dependent) to the inherited classes // t1 and t2 represent the "effective omegaTau" corrections and were measured in a dedicated // calibration run // // SetOmegaTauT1T2(omegaTau, t1, t2); } TH2F* AliTPCCorrection::CreateHistoDRinXY(Float_t z,Int_t nx,Int_t ny) { // // Simple plot functionality. // Returns a 2d hisogram which represents the corrections in radial direction (dr) // in respect to position z within the XY plane. // The histogramm has nx times ny entries. // TH2F *h=CreateTH2F("dr_xy",GetTitle(),"x [cm]","y [cm]","dr [cm]", nx,-250.,250.,ny,-250.,250.); Float_t x[3],dx[3]; x[2]=z; Int_t roc=z>0.?0:18; // FIXME for (Int_t iy=1;iy<=ny;++iy) { x[1]=h->GetYaxis()->GetBinCenter(iy); for (Int_t ix=1;ix<=nx;++ix) { x[0]=h->GetXaxis()->GetBinCenter(ix); GetCorrection(x,roc,dx); Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] )); if (90.<=r0 && r0<=250.) { Float_t r1=TMath::Sqrt((x[0]+dx[0])*(x[0]+dx[0])+(x[1]+dx[1])*(x[1]+dx[1])); h->SetBinContent(ix,iy,r1-r0); } else h->SetBinContent(ix,iy,0.); } } return h; } TH2F* AliTPCCorrection::CreateHistoDRPhiinXY(Float_t z,Int_t nx,Int_t ny) { // // Simple plot functionality. // Returns a 2d hisogram which represents the corrections in rphi direction (drphi) // in respect to position z within the XY plane. // The histogramm has nx times ny entries. // TH2F *h=CreateTH2F("drphi_xy",GetTitle(),"x [cm]","y [cm]","drphi [cm]", nx,-250.,250.,ny,-250.,250.); Float_t x[3],dx[3]; x[2]=z; Int_t roc=z>0.?0:18; // FIXME for (Int_t iy=1;iy<=ny;++iy) { x[1]=h->GetYaxis()->GetBinCenter(iy); for (Int_t ix=1;ix<=nx;++ix) { x[0]=h->GetXaxis()->GetBinCenter(ix); GetCorrection(x,roc,dx); Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] )); if (90.<=r0 && r0<=250.) { Float_t phi0=TMath::ATan2(x[1] ,x[0] ); Float_t phi1=TMath::ATan2(x[1]+dx[1],x[0]+dx[0]); Float_t dphi=phi1-phi0; if (dphiTMath::Pi()) dphi-=TMath::TwoPi(); h->SetBinContent(ix,iy,r0*dphi); } else h->SetBinContent(ix,iy,0.); } } return h; } TH2F* AliTPCCorrection::CreateHistoDRinZR(Float_t phi,Int_t nz,Int_t nr) { // // Simple plot functionality. // Returns a 2d hisogram which represents the corrections in r direction (dr) // in respect to angle phi within the ZR plane. // The histogramm has nx times ny entries. // TH2F *h=CreateTH2F("dr_zr",GetTitle(),"z [cm]","r [cm]","dr [cm]", nz,-250.,250.,nr,85.,250.); Float_t x[3],dx[3]; for (Int_t ir=1;ir<=nr;++ir) { Float_t radius=h->GetYaxis()->GetBinCenter(ir); x[0]=radius*TMath::Cos(phi); x[1]=radius*TMath::Sin(phi); for (Int_t iz=1;iz<=nz;++iz) { x[2]=h->GetXaxis()->GetBinCenter(iz); Int_t roc=x[2]>0.?0:18; // FIXME GetCorrection(x,roc,dx); Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] )); Float_t r1=TMath::Sqrt((x[0]+dx[0])*(x[0]+dx[0])+(x[1]+dx[1])*(x[1]+dx[1])); h->SetBinContent(iz,ir,r1-r0); } } printf("SDF\n"); return h; } TH2F* AliTPCCorrection::CreateHistoDRPhiinZR(Float_t phi,Int_t nz,Int_t nr) { // // Simple plot functionality. // Returns a 2d hisogram which represents the corrections in rphi direction (drphi) // in respect to angle phi within the ZR plane. // The histogramm has nx times ny entries. // TH2F *h=CreateTH2F("drphi_zr",GetTitle(),"z [cm]","r [cm]","drphi [cm]", nz,-250.,250.,nr,85.,250.); Float_t x[3],dx[3]; for (Int_t iz=1;iz<=nz;++iz) { x[2]=h->GetXaxis()->GetBinCenter(iz); Int_t roc=x[2]>0.?0:18; // FIXME for (Int_t ir=1;ir<=nr;++ir) { Float_t radius=h->GetYaxis()->GetBinCenter(ir); x[0]=radius*TMath::Cos(phi); x[1]=radius*TMath::Sin(phi); GetCorrection(x,roc,dx); Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] )); Float_t phi0=TMath::ATan2(x[1] ,x[0] ); Float_t phi1=TMath::ATan2(x[1]+dx[1],x[0]+dx[0]); Float_t dphi=phi1-phi0; if (dphiTMath::Pi()) dphi-=TMath::TwoPi(); h->SetBinContent(iz,ir,r0*dphi); } } return h; } TH2F* AliTPCCorrection::CreateTH2F(const char *name,const char *title, const char *xlabel,const char *ylabel,const char *zlabel, Int_t nbinsx,Double_t xlow,Double_t xup, Int_t nbinsy,Double_t ylow,Double_t yup) { // // Helper function to create a 2d histogramm of given size // TString hname=name; Int_t i=0; if (gDirectory) { while (gDirectory->FindObject(hname.Data())) { hname =name; hname+="_"; hname+=i; ++i; } } TH2F *h=new TH2F(hname.Data(),title, nbinsx,xlow,xup, nbinsy,ylow,yup); h->GetXaxis()->SetTitle(xlabel); h->GetYaxis()->SetTitle(ylabel); h->GetZaxis()->SetTitle(zlabel); h->SetStats(0); return h; } // Simple Interpolation functions: e.g. with bi(tri)cubic interpolations (not yet in TH2 and TH3) void AliTPCCorrection::Interpolate2DEdistortion( const Int_t order, const Double_t r, const Double_t z, const Double_t er[kNZ][kNR], Double_t &er_value ) { // // Interpolate table - 2D interpolation // Double_t save_er[10] ; Search( kNZ, fgkZList, z, fJLow ) ; Search( kNR, fgkRList, r, fKLow ) ; if ( fJLow < 0 ) fJLow = 0 ; // check if out of range if ( fKLow < 0 ) fKLow = 0 ; if ( fJLow + order >= kNZ - 1 ) fJLow = kNZ - 1 - order ; if ( fKLow + order >= kNR - 1 ) fKLow = kNR - 1 - order ; for ( Int_t j = fJLow ; j < fJLow + order + 1 ; j++ ) { save_er[j-fJLow] = Interpolate( &fgkRList[fKLow], &er[j][fKLow], order, r ) ; } er_value = Interpolate( &fgkZList[fJLow], save_er, order, z ) ; } Double_t AliTPCCorrection::Interpolate( const Double_t xArray[], const Double_t yArray[], const Int_t order, const Double_t x ) { // // Interpolate function Y(x) using linear (order=1) or quadratic (order=2) interpolation. // Double_t y ; if ( order == 2 ) { // Quadratic Interpolation = 2 y = (x-xArray[1]) * (x-xArray[2]) * yArray[0] / ( (xArray[0]-xArray[1]) * (xArray[0]-xArray[2]) ) ; y += (x-xArray[2]) * (x-xArray[0]) * yArray[1] / ( (xArray[1]-xArray[2]) * (xArray[1]-xArray[0]) ) ; y += (x-xArray[0]) * (x-xArray[1]) * yArray[2] / ( (xArray[2]-xArray[0]) * (xArray[2]-xArray[1]) ) ; } else { // Linear Interpolation = 1 y = yArray[0] + ( yArray[1]-yArray[0] ) * ( x-xArray[0] ) / ( xArray[1] - xArray[0] ) ; } return (y); } void AliTPCCorrection::Search( const Int_t n, const Double_t xArray[], const Double_t x, Int_t &low ) { // // Search an ordered table by starting at the most recently used point // Long_t middle, high ; Int_t ascend = 0, increment = 1 ; if ( xArray[n-1] >= xArray[0] ) ascend = 1 ; // Ascending ordered table if true if ( low < 0 || low > n-1 ) { low = -1 ; high = n ; } else { // Ordered Search phase if ( (Int_t)( x >= xArray[low] ) == ascend ) { if ( low == n-1 ) return ; high = low + 1 ; while ( (Int_t)( x >= xArray[high] ) == ascend ) { low = high ; increment *= 2 ; high = low + increment ; if ( high > n-1 ) { high = n ; break ; } } } else { if ( low == 0 ) { low = -1 ; return ; } high = low - 1 ; while ( (Int_t)( x < xArray[low] ) == ascend ) { high = low ; increment *= 2 ; if ( increment >= high ) { low = -1 ; break ; } else low = high - increment ; } } } while ( (high-low) != 1 ) { // Binary Search Phase middle = ( high + low ) / 2 ; if ( (Int_t)( x >= xArray[middle] ) == ascend ) low = middle ; else high = middle ; } if ( x == xArray[n-1] ) low = n-2 ; if ( x == xArray[0] ) low = 0 ; } ClassImp(AliTPCCorrection)