/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.29 2001/11/14 19:44:25 hristov Numeric const casted (Alpha) Revision 1.28 2001/11/14 16:35:58 cblume Inherits now from AliDetector Revision 1.27 2001/11/14 10:50:45 cblume Changes in digits IO. Add merging of summable digits Revision 1.26 2001/11/06 17:19:41 cblume Add detailed geometry and simple simulator Revision 1.25 2001/06/27 09:54:44 cblume Moved fField initialization to InitDetector() Revision 1.24 2001/05/21 16:45:47 hristov Last minute changes (C.Blume) Revision 1.23 2001/05/07 08:04:48 cblume New TRF and PRF. Speedup of the code. Digits from amplification region included Revision 1.22 2001/03/30 14:40:14 cblume Update of the digitization parameter Revision 1.21 2001/03/13 09:30:35 cblume Update of digitization. Moved digit branch definition to AliTRD Revision 1.20 2001/02/25 20:19:00 hristov Minor correction: loop variable declared only once for HP, Sun Revision 1.19 2001/02/14 18:22:26 cblume Change in the geometry of the padplane Revision 1.18 2001/01/26 19:56:57 hristov Major upgrade of AliRoot code Revision 1.17 2000/12/08 12:53:27 cblume Change in Copy() function for HP-compiler Revision 1.16 2000/12/07 12:20:46 cblume Go back to array compression. Use sampled PRF to speed up digitization Revision 1.15 2000/11/23 14:34:08 cblume Fixed bug in expansion routine of arrays (initialize buffers properly) Revision 1.14 2000/11/20 08:54:44 cblume Switch off compression as default Revision 1.13 2000/11/10 14:57:52 cblume Changes in the geometry constants for the DEC compiler Revision 1.12 2000/11/01 14:53:20 cblume Merge with TRD-develop Revision 1.1.4.9 2000/10/26 17:00:22 cblume Fixed bug in CheckDetector() Revision 1.1.4.8 2000/10/23 13:41:35 cblume Added protection against Log(0) in the gas gain calulation Revision 1.1.4.7 2000/10/17 02:27:34 cblume Get rid of global constants Revision 1.1.4.6 2000/10/16 01:16:53 cblume Changed timebin 0 to be the one closest to the readout Revision 1.1.4.5 2000/10/15 23:34:29 cblume Faster version of the digitizer Revision 1.1.4.4 2000/10/06 16:49:46 cblume Made Getters const Revision 1.1.4.3 2000/10/04 16:34:58 cblume Replace include files by forward declarations Revision 1.1.4.2 2000/09/22 14:41:10 cblume Bug fix in PRF. Included time response. New structure Revision 1.10 2000/10/05 07:27:53 cblume Changes in the header-files by FCA Revision 1.9 2000/10/02 21:28:19 fca Removal of useless dependecies via forward declarations Revision 1.8 2000/06/09 11:10:07 cblume Compiler warnings and coding conventions, next round Revision 1.7 2000/06/08 18:32:58 cblume Make code compliant to coding conventions Revision 1.6 2000/06/07 16:27:32 cblume Try to remove compiler warnings on Sun and HP Revision 1.5 2000/05/09 16:38:57 cblume Removed PadResponse(). Merge problem Revision 1.4 2000/05/08 15:53:45 cblume Resolved merge conflict Revision 1.3 2000/04/28 14:49:27 cblume Only one declaration of iDict in MakeDigits() Revision 1.1.4.1 2000/05/08 14:42:04 cblume Introduced AliTRDdigitsManager Revision 1.1 2000/02/28 19:00:13 cblume Add new TRD classes */ /////////////////////////////////////////////////////////////////////////////// // // // Creates and handles digits from TRD hits // // Author: C. Blume (C.Blume@gsi.de) // // // // The following effects are included: // // - Diffusion // // - ExB effects // // - Gas gain including fluctuations // // - Pad-response (simple Gaussian approximation) // // - Time-response // // - Electronics noise // // - Electronics gain // // - Digitization // // - ADC threshold // // The corresponding parameter can be adjusted via the various // // Set-functions. If these parameters are not explicitly set, default // // values are used (see Init-function). // // As an example on how to use this class to produce digits from hits // // have a look at the macro hits2digits.C // // The production of summable digits is demonstrated in hits2sdigits.C // // and the subsequent conversion of the s-digits into normal digits is // // explained in sdigits2digits.C. // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include "AliRun.h" #include "AliMagF.h" #include "AliRunDigitizer.h" #include "AliTRD.h" #include "AliTRDhit.h" #include "AliTRDdigitizer.h" #include "AliTRDdataArrayI.h" #include "AliTRDdataArrayF.h" #include "AliTRDsegmentArray.h" #include "AliTRDdigitsManager.h" #include "AliTRDgeometry.h" ClassImp(AliTRDdigitizer) //_____________________________________________________________________________ AliTRDdigitizer::AliTRDdigitizer() { // // AliTRDdigitizer default constructor // fInputFile = NULL; fDigitsManager = NULL; fSDigitsManagerList = NULL; fSDigitsManager = NULL; fTRD = NULL; fGeo = NULL; fPRFsmp = NULL; fTRFsmp = NULL; fEvent = 0; fGasGain = 0.0; fNoise = 0.0; fChipGain = 0.0; fADCoutRange = 0.0; fADCinRange = 0.0; fADCthreshold = 0; fDiffusionOn = 0; fDiffusionT = 0.0; fDiffusionL = 0.0; fElAttachOn = 0; fElAttachProp = 0.0; fExBOn = 0; fOmegaTau = 0.0; fPRFOn = 0; fTRFOn = 0; fDriftVelocity = 0.0; fPadCoupling = 0.0; fTimeCoupling = 0.0; fTimeBinWidth = 0.0; fField = 0.0; fPRFbin = 0; fPRFlo = 0.0; fPRFhi = 0.0; fPRFwid = 0.0; fPRFpad = 0; fTRFbin = 0; fTRFlo = 0.0; fTRFhi = 0.0; fTRFwid = 0.0; fCompress = kTRUE; fVerbose = 0; fSDigits = kFALSE; fSDigitsScale = 0.0; } //_____________________________________________________________________________ AliTRDdigitizer::AliTRDdigitizer(const Text_t *name, const Text_t *title) :AliDigitizer(name,title) { // // AliTRDdigitizer constructor // fInputFile = NULL; fDigitsManager = NULL; fSDigitsManager = NULL; fSDigitsManagerList = NULL; fTRD = NULL; fGeo = NULL; fPRFsmp = NULL; fTRFsmp = NULL; fEvent = 0; fCompress = kTRUE; fVerbose = 0; fSDigits = kFALSE; Init(); } //_____________________________________________________________________________ AliTRDdigitizer::AliTRDdigitizer(AliRunDigitizer *manager , const Text_t *name, const Text_t *title) :AliDigitizer(manager,name,title) { // // AliTRDdigitizer constructor // fInputFile = NULL; fDigitsManager = NULL; fSDigitsManager = NULL; fSDigitsManagerList = NULL; fTRD = NULL; fGeo = NULL; fPRFsmp = NULL; fTRFsmp = NULL; fEvent = 0; fCompress = kTRUE; fVerbose = 0; fSDigits = kFALSE; Init(); } //_____________________________________________________________________________ AliTRDdigitizer::AliTRDdigitizer(const AliTRDdigitizer &d) { // // AliTRDdigitizer copy constructor // ((AliTRDdigitizer &) d).Copy(*this); } //_____________________________________________________________________________ AliTRDdigitizer::~AliTRDdigitizer() { // // AliTRDdigitizer destructor // if (fInputFile) { fInputFile->Close(); delete fInputFile; fInputFile = NULL; } if (fDigitsManager) { delete fDigitsManager; fDigitsManager = NULL; } if (fSDigitsManager) { delete fSDigitsManager; fSDigitsManager = NULL; } if (fSDigitsManagerList) { fSDigitsManagerList->Delete(); delete fSDigitsManagerList; fSDigitsManagerList = NULL; } if (fTRFsmp) { delete fTRFsmp; fTRFsmp = NULL; } if (fPRFsmp) { delete fPRFsmp; fPRFsmp = NULL; } } //_____________________________________________________________________________ AliTRDdigitizer &AliTRDdigitizer::operator=(const AliTRDdigitizer &d) { // // Assignment operator // if (this != &d) ((AliTRDdigitizer &) d).Copy(*this); return *this; } //_____________________________________________________________________________ void AliTRDdigitizer::Copy(TObject &d) { // // Copy function // Int_t iBin; ((AliTRDdigitizer &) d).fInputFile = NULL; ((AliTRDdigitizer &) d).fSDigitsManagerList = NULL; ((AliTRDdigitizer &) d).fSDigitsManager = NULL; ((AliTRDdigitizer &) d).fDigitsManager = NULL; ((AliTRDdigitizer &) d).fTRD = NULL; ((AliTRDdigitizer &) d).fGeo = NULL; ((AliTRDdigitizer &) d).fEvent = 0; ((AliTRDdigitizer &) d).fGasGain = fGasGain; ((AliTRDdigitizer &) d).fNoise = fNoise; ((AliTRDdigitizer &) d).fChipGain = fChipGain; ((AliTRDdigitizer &) d).fADCoutRange = fADCoutRange; ((AliTRDdigitizer &) d).fADCinRange = fADCinRange; ((AliTRDdigitizer &) d).fADCthreshold = fADCthreshold; ((AliTRDdigitizer &) d).fDiffusionOn = fDiffusionOn; ((AliTRDdigitizer &) d).fDiffusionT = fDiffusionT; ((AliTRDdigitizer &) d).fDiffusionL = fDiffusionL; ((AliTRDdigitizer &) d).fElAttachOn = fElAttachOn; ((AliTRDdigitizer &) d).fElAttachProp = fElAttachProp; ((AliTRDdigitizer &) d).fExBOn = fExBOn; ((AliTRDdigitizer &) d).fOmegaTau = fOmegaTau; ((AliTRDdigitizer &) d).fLorentzFactor = fLorentzFactor; ((AliTRDdigitizer &) d).fDriftVelocity = fDriftVelocity; ((AliTRDdigitizer &) d).fPadCoupling = fPadCoupling; ((AliTRDdigitizer &) d).fTimeCoupling = fTimeCoupling; ((AliTRDdigitizer &) d).fTimeBinWidth = fTimeBinWidth; ((AliTRDdigitizer &) d).fField = fField; ((AliTRDdigitizer &) d).fPRFOn = fPRFOn; ((AliTRDdigitizer &) d).fTRFOn = fTRFOn; ((AliTRDdigitizer &) d).fCompress = fCompress; ((AliTRDdigitizer &) d).fVerbose = fVerbose; ((AliTRDdigitizer &) d).fSDigits = fSDigits; ((AliTRDdigitizer &) d).fSDigitsScale = fSDigitsScale; ((AliTRDdigitizer &) d).fPRFbin = fPRFbin; ((AliTRDdigitizer &) d).fPRFlo = fPRFlo; ((AliTRDdigitizer &) d).fPRFhi = fPRFhi; ((AliTRDdigitizer &) d).fPRFwid = fPRFwid; ((AliTRDdigitizer &) d).fPRFpad = fPRFpad; if (((AliTRDdigitizer &) d).fPRFsmp) delete ((AliTRDdigitizer &) d).fPRFsmp; ((AliTRDdigitizer &) d).fPRFsmp = new Float_t[fPRFbin]; for (iBin = 0; iBin < fPRFbin; iBin++) { ((AliTRDdigitizer &) d).fPRFsmp[iBin] = fPRFsmp[iBin]; } ((AliTRDdigitizer &) d).fTRFbin = fTRFbin; ((AliTRDdigitizer &) d).fTRFlo = fTRFlo; ((AliTRDdigitizer &) d).fTRFhi = fTRFhi; ((AliTRDdigitizer &) d).fTRFwid = fTRFwid; if (((AliTRDdigitizer &) d).fTRFsmp) delete ((AliTRDdigitizer &) d).fTRFsmp; ((AliTRDdigitizer &) d).fTRFsmp = new Float_t[fTRFbin]; for (iBin = 0; iBin < fTRFbin; iBin++) { ((AliTRDdigitizer &) d).fTRFsmp[iBin] = fTRFsmp[iBin]; } } //_____________________________________________________________________________ Int_t AliTRDdigitizer::Diffusion(Float_t driftlength, Float_t *xyz) { // // Applies the diffusion smearing to the position of a single electron // Float_t driftSqrt = TMath::Sqrt(driftlength); Float_t sigmaT = driftSqrt * fDiffusionT; Float_t sigmaL = driftSqrt * fDiffusionL; xyz[0] = gRandom->Gaus(xyz[0], sigmaL * fLorentzFactor); xyz[1] = gRandom->Gaus(xyz[1], sigmaT * fLorentzFactor); xyz[2] = gRandom->Gaus(xyz[2], sigmaT); return 1; } //_____________________________________________________________________________ Int_t AliTRDdigitizer::ExB(Float_t driftlength, Float_t *xyz) { // // Applies E x B effects to the position of a single electron // xyz[0] = xyz[0]; xyz[1] = xyz[1] + fOmegaTau * driftlength; xyz[2] = xyz[2]; return 1; } //_____________________________________________________________________________ Int_t AliTRDdigitizer::PadResponse(Float_t signal, Float_t dist, Float_t *pad) { // // Applies the pad response // Int_t iBin = ((Int_t) (( - dist - fPRFlo) / fPRFwid)); Int_t iBin0 = iBin - fPRFpad; Int_t iBin1 = iBin; Int_t iBin2 = iBin + fPRFpad; if ((iBin0 >= 0) && (iBin2 < fPRFbin)) { pad[0] = signal * fPRFsmp[iBin0]; pad[1] = signal * fPRFsmp[iBin1]; pad[2] = signal * fPRFsmp[iBin2]; return 1; } else { return 0; } } //_____________________________________________________________________________ Float_t AliTRDdigitizer::TimeResponse(Float_t time) { // // Applies the preamp shaper time response // Int_t iBin = ((Int_t) ((time - fTRFlo) / fTRFwid)); if ((iBin >= 0) && (iBin < fTRFbin)) { return fTRFsmp[iBin]; } else { return 0.0; } } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::Init() { // // Initializes the digitization procedure with standard values // // The default parameter for the digitization fGasGain = 2800.; fChipGain = 6.1; fNoise = 1000.; fADCoutRange = 1023.; // 10-bit ADC fADCinRange = 1000.; // 1V input range fADCthreshold = 1; // For the summable digits fSDigitsScale = 100.; // The drift velocity (cm / mus) fDriftVelocity = 1.5; // Diffusion on fDiffusionOn = 1; // E x B effects fExBOn = 0; // Propability for electron attachment fElAttachOn = 0; fElAttachProp = 0.0; // The pad response function fPRFOn = 1; // The time response function fTRFOn = 1; // The pad coupling factor (same number as for the TPC) fPadCoupling = 0.5; // The time coupling factor (same number as for the TPC) fTimeCoupling = 0.4; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::ReInit() { // // Reinitializes the digitization procedure after a change in the parameter // if (!fGeo) { printf("AliTRDdigitizer::ReInit -- "); printf("No geometry defined. Run InitDetector() first\n"); return kFALSE; } // Calculate the time bin width in ns fTimeBinWidth = fGeo->GetTimeBinSize() / fDriftVelocity * 1000.0; // The range and the binwidth for the sampled TRF fTRFbin = 100; // Start 0.2 mus before the signal fTRFlo = -0.2 * fDriftVelocity; // End the maximum driftlength after the signal fTRFhi = AliTRDgeometry::DrThick() + fGeo->GetTimeAfter() * fGeo->GetTimeBinSize(); fTRFwid = (fTRFhi - fTRFlo) / ((Float_t) fTRFbin); // Transverse and longitudinal diffusion coefficients (Xe/CO2) fDiffusionT = GetDiffusionT(fDriftVelocity,fField); fDiffusionL = GetDiffusionL(fDriftVelocity,fField); // omega * tau.= tan(Lorentz-angle) fOmegaTau = GetOmegaTau(fDriftVelocity,fField); // The Lorentz factor if (fExBOn) { fLorentzFactor = 1.0 / (1.0 + fOmegaTau*fOmegaTau); } else { fLorentzFactor = 1.0; } return kTRUE; } //_____________________________________________________________________________ void AliTRDdigitizer::SampleTRF() { // // Samples the time response function // It is defined according to Vasiles simulation of the preamp shaper // output and includes the effect of the ion tail (based on Tariqs // Garfield simulation) and a shaping time of 125 ns FWHM // Int_t ipos1; Int_t ipos2; Float_t diff; const Int_t kNpasa = 200; Float_t time[kNpasa] = { -0.280000, -0.270000, -0.260000, -0.250000 , -0.240000, -0.230000, -0.220000, -0.210000 , -0.200000, -0.190000, -0.180000, -0.170000 , -0.160000, -0.150000, -0.140000, -0.130000 , -0.120000, -0.110000, -0.100000, -0.090000 , -0.080000, -0.070000, -0.060000, -0.050000 , -0.040000, -0.030000, -0.020000, -0.010000 , -0.000000, 0.010000, 0.020000, 0.030000 , 0.040000, 0.050000, 0.060000, 0.070000 , 0.080000, 0.090000, 0.100000, 0.110000 , 0.120000, 0.130000, 0.140000, 0.150000 , 0.160000, 0.170000, 0.180000, 0.190000 , 0.200000, 0.210000, 0.220000, 0.230000 , 0.240000, 0.250000, 0.260000, 0.270000 , 0.280000, 0.290000, 0.300000, 0.310000 , 0.320000, 0.330000, 0.340000, 0.350000 , 0.360000, 0.370000, 0.380000, 0.390000 , 0.400000, 0.410000, 0.420000, 0.430000 , 0.440000, 0.450000, 0.460000, 0.470000 , 0.480000, 0.490000, 0.500000, 0.510000 , 0.520000, 0.530000, 0.540000, 0.550000 , 0.560000, 0.570000, 0.580000, 0.590000 , 0.600000, 0.610000, 0.620000, 0.630000 , 0.640000, 0.650000, 0.660000, 0.670000 , 0.680000, 0.690000, 0.700000, 0.710000 , 0.720000, 0.730000, 0.740000, 0.750000 , 0.760000, 0.770000, 0.780000, 0.790000 , 0.800000, 0.810000, 0.820000, 0.830000 , 0.840000, 0.850000, 0.860000, 0.870000 , 0.880000, 0.890000, 0.900000, 0.910000 , 0.920000, 0.930000, 0.940000, 0.950000 , 0.960000, 0.970000, 0.980000, 0.990000 , 1.000000, 1.010000, 1.020000, 1.030000 , 1.040000, 1.050000, 1.060000, 1.070000 , 1.080000, 1.090000, 1.100000, 1.110000 , 1.120000, 1.130000, 1.140000, 1.150000 , 1.160000, 1.170000, 1.180000, 1.190000 , 1.200000, 1.210000, 1.220000, 1.230000 , 1.240000, 1.250000, 1.260000, 1.270000 , 1.280000, 1.290000, 1.300000, 1.310000 , 1.320000, 1.330000, 1.340000, 1.350000 , 1.360000, 1.370000, 1.380000, 1.390000 , 1.400000, 1.410000, 1.420000, 1.430000 , 1.440000, 1.450000, 1.460000, 1.470000 , 1.480000, 1.490000, 1.500000, 1.510000 , 1.520000, 1.530000, 1.540000, 1.550000 , 1.560000, 1.570000, 1.580000, 1.590000 , 1.600000, 1.610000, 1.620000, 1.630000 , 1.640000, 1.650000, 1.660000, 1.670000 , 1.680000, 1.690000, 1.700000, 1.710000 }; Float_t signal[kNpasa] = { 0.000000, 0.000000, 0.000000, 0.000000 , 0.000000, 0.000000, 0.000000, 0.000000 , 0.000000, 0.000000, 0.000000, 0.000000 , 0.000000, 0.000000, 0.000000, 0.000098 , 0.003071, 0.020056, 0.066053, 0.148346 , 0.263120, 0.398496, 0.540226, 0.674436 , 0.790977, 0.883083, 0.947744, 0.985714 , 0.999248, 0.992105, 0.967669, 0.930827 , 0.884586, 0.833083, 0.778571, 0.723684 , 0.669173, 0.617293, 0.567669, 0.521805 , 0.479699, 0.440977, 0.405639, 0.373985 , 0.345526, 0.320038, 0.297256, 0.276917 , 0.258797, 0.242632, 0.228195, 0.215301 , 0.203759, 0.193383, 0.184023, 0.175564 , 0.167895, 0.160940, 0.154549, 0.148722 , 0.143308, 0.138346, 0.133722, 0.129398 , 0.125376, 0.121617, 0.118045, 0.114699 , 0.111541, 0.108571, 0.105714, 0.103008 , 0.100414, 0.097970, 0.095602, 0.093346 , 0.091165, 0.089060, 0.087068, 0.085150 , 0.083308, 0.081541, 0.079812, 0.078158 , 0.076541, 0.075000, 0.073496, 0.072068 , 0.070677, 0.069286, 0.068008, 0.066729 , 0.065489, 0.064286, 0.063120, 0.061992 , 0.060902, 0.059850, 0.058797, 0.057820 , 0.056842, 0.055902, 0.054962, 0.054060 , 0.053158, 0.052293, 0.051466, 0.050639 , 0.049850, 0.049060, 0.048308, 0.047556 , 0.046842, 0.046128, 0.045451, 0.044774 , 0.044098, 0.043459, 0.042820, 0.042218 , 0.041617, 0.041015, 0.040451, 0.039887 , 0.039323, 0.038797, 0.038271, 0.037744 , 0.037237, 0.036744, 0.036259, 0.035786 , 0.035323, 0.034872, 0.034429, 0.033996 , 0.033575, 0.033162, 0.032756, 0.032361 , 0.031974, 0.031594, 0.031222, 0.030857 , 0.030496, 0.030143, 0.029793, 0.029451 , 0.029109, 0.028774, 0.028444, 0.028113 , 0.027793, 0.027477, 0.027165, 0.026861 , 0.026564, 0.026271, 0.025981, 0.025699 , 0.025421, 0.025147, 0.024880, 0.024613 , 0.024353, 0.024094, 0.023842, 0.023590 , 0.023346, 0.023102, 0.022865, 0.022628 , 0.022398, 0.022173, 0.021951, 0.021733 , 0.021519, 0.021308, 0.021098, 0.020891 , 0.020688, 0.020485, 0.020286, 0.020090 , 0.019895, 0.019707, 0.019519, 0.019335 , 0.019150, 0.018974, 0.018797, 0.018624 , 0.018451, 0.018282, 0.018113, 0.017947 , 0.017782, 0.017617, 0.017455, 0.017297 }; if (fTRFsmp) delete fTRFsmp; fTRFsmp = new Float_t[fTRFbin]; Float_t loTRF = TMath::Max(fTRFlo / fDriftVelocity,time[0]); Float_t hiTRF = TMath::Min(fTRFhi / fDriftVelocity,time[kNpasa-1]); Float_t binWidth = (hiTRF - loTRF) / ((Float_t) fTRFbin); // Take the linear interpolation for (Int_t iBin = 0; iBin < fTRFbin; iBin++) { Float_t bin = (((Float_t) iBin) + 0.5) * binWidth + loTRF; ipos1 = ipos2 = 0; diff = 0; do { diff = bin - time[ipos2++]; } while (diff > 0); ipos2--; if (ipos2 > kNpasa) ipos2 = kNpasa - 1; ipos1 = ipos2 - 1; fTRFsmp[iBin] = signal[ipos2] + diff * (signal[ipos2] - signal[ipos1]) / ( time[ipos2] - time[ipos1]); } } //_____________________________________________________________________________ void AliTRDdigitizer::SamplePRF() { // // Samples the pad response function // const Int_t kPRFbin = 61; Float_t prf[kPRFbin] = { 0.002340, 0.003380, 0.004900, 0.007080, 0.010220 , 0.014740, 0.021160, 0.030230, 0.042800, 0.059830 , 0.082030, 0.109700, 0.142550, 0.179840, 0.220610 , 0.263980, 0.309180, 0.355610, 0.402790, 0.450350 , 0.497930, 0.545190, 0.591740, 0.637100, 0.680610 , 0.721430, 0.758400, 0.790090, 0.814720, 0.830480 , 0.835930, 0.830480, 0.814710, 0.790070, 0.758390 , 0.721410, 0.680590, 0.637080, 0.591730, 0.545180 , 0.497920, 0.450340, 0.402790, 0.355610, 0.309190 , 0.263990, 0.220630, 0.179850, 0.142570, 0.109720 , 0.082040, 0.059830, 0.042820, 0.030230, 0.021170 , 0.014740, 0.010230, 0.007080, 0.004900, 0.003380 , 0.002340 }; fPRFlo = -1.5; fPRFhi = 1.5; fPRFbin = kPRFbin; fPRFwid = (fPRFhi - fPRFlo) / ((Float_t) fPRFbin); fPRFpad = ((Int_t) (1.0 / fPRFwid)); if (fPRFsmp) delete fPRFsmp; fPRFsmp = new Float_t[fPRFbin]; for (Int_t iBin = 0; iBin < fPRFbin; iBin++) { fPRFsmp[iBin] = prf[iBin]; } } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::Open(const Char_t *name, Int_t nEvent) { // // Opens a ROOT-file with TRD-hits and reads in the hit-tree // // Connect the AliRoot file containing Geometry, Kine, and Hits fInputFile = (TFile*) gROOT->GetListOfFiles()->FindObject(name); if (!fInputFile) { if (fVerbose > 0) { printf("AliTRDdigitizer::Open -- "); printf("Open the AliROOT-file %s.\n",name); } fInputFile = new TFile(name,"UPDATE"); } else { if (fVerbose > 0) { printf("AliTRDdigitizer::Open -- "); printf("%s is already open.\n",name); } } gAlice = (AliRun*) fInputFile->Get("gAlice"); if (gAlice) { if (fVerbose > 0) { printf("AliTRDdigitizer::Open -- "); printf("AliRun object found on file.\n"); } } else { printf("AliTRDdigitizer::Open -- "); printf("Could not find AliRun object.\n"); return kFALSE; } fEvent = nEvent; // Import the Trees for the event nEvent in the file Int_t nparticles = gAlice->GetEvent(fEvent); if (nparticles <= 0) { printf("AliTRDdigitizer::Open -- "); printf("No entries in the trees for event %d.\n",fEvent); return kFALSE; } if (InitDetector()) { return MakeBranch(); } else { return kFALSE; } } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::InitDetector() { // // Sets the pointer to the TRD detector and the geometry // // Get the pointer to the detector class and check for version 1 fTRD = (AliTRD*) gAlice->GetDetector("TRD"); if (fTRD->IsVersion() != 1) { printf("AliTRDdigitizer::InitDetector -- "); printf("TRD must be version 1 (slow simulator).\n"); exit(1); } // Get the geometry fGeo = fTRD->GetGeometry(); if (fVerbose > 0) { printf("AliTRDdigitizer::InitDetector -- "); printf("Geometry version %d\n",fGeo->IsVersion()); } // The magnetic field strength in Tesla fField = 0.2 * gAlice->Field()->Factor(); // Create a digits manager fDigitsManager = new AliTRDdigitsManager(); fDigitsManager->SetSDigits(fSDigits); fDigitsManager->CreateArrays(); fDigitsManager->SetEvent(fEvent); fDigitsManager->SetVerbose(fVerbose); // The list for the input s-digits manager to be merged fSDigitsManagerList = new TList(); return ReInit(); } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::MakeBranch(const Char_t *file) { // // Create the branches for the digits array // return fDigitsManager->MakeBranch(file); } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::MakeDigits() { // // Creates digits. // /////////////////////////////////////////////////////////////// // Parameter /////////////////////////////////////////////////////////////// // Converts number of electrons to fC const Double_t kEl2fC = 1.602E-19 * 1.0E15; /////////////////////////////////////////////////////////////// // Number of pads included in the pad response const Int_t kNpad = 3; // Number of track dictionary arrays const Int_t kNDict = AliTRDdigitsManager::kNDict; // Half the width of the amplification region const Float_t kAmWidth = AliTRDgeometry::AmThick() / 2.; Int_t iRow, iCol, iTime, iPad; Int_t iDict = 0; Int_t nBytes = 0; Int_t totalSizeDigits = 0; Int_t totalSizeDict0 = 0; Int_t totalSizeDict1 = 0; Int_t totalSizeDict2 = 0; Int_t timeTRDbeg = 0; Int_t timeTRDend = 1; Float_t pos[3]; Float_t rot[3]; Float_t xyz[3]; Float_t padSignal[kNpad]; Float_t signalOld[kNpad]; AliTRDdataArrayF *signals = 0; AliTRDdataArrayI *digits = 0; AliTRDdataArrayI *dictionary[kNDict]; // Create a container for the amplitudes AliTRDsegmentArray *signalsArray = new AliTRDsegmentArray("AliTRDdataArrayF",AliTRDgeometry::Ndet()); if (fTRFOn) { timeTRDbeg = ((Int_t) (-fTRFlo / fGeo->GetTimeBinSize())) - 1; timeTRDend = ((Int_t) ( fTRFhi / fGeo->GetTimeBinSize())) - 1; if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Sample the TRF between -%d and %d\n",timeTRDbeg,timeTRDend); } } Float_t elAttachProp = fElAttachProp / 100.; // Create the sampled PRF SamplePRF(); // Create the sampled TRF SampleTRF(); if (!fGeo) { printf("AliTRDdigitizer::MakeDigits -- "); printf("No geometry defined\n"); return kFALSE; } if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Start creating digits.\n"); } // Get the pointer to the hit tree TTree *HitTree = gAlice->TreeH(); // Get the number of entries in the hit tree // (Number of primary particles creating a hit somewhere) Int_t nTrack = (Int_t) HitTree->GetEntries(); if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Found %d primary particles\n",nTrack); } Int_t detectorOld = -1; Int_t countHits = 0; // Loop through all entries in the tree for (Int_t iTrack = 0; iTrack < nTrack; iTrack++) { gAlice->ResetHits(); nBytes += HitTree->GetEvent(iTrack); // Get the number of hits in the TRD created by this particle Int_t nHit = fTRD->Hits()->GetEntriesFast(); if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Found %d hits for primary particle %d\n",nHit,iTrack); } // Loop through the TRD hits for (Int_t iHit = 0; iHit < nHit; iHit++) { countHits++; AliTRDhit *hit = (AliTRDhit *) fTRD->Hits()->UncheckedAt(iHit); pos[0] = hit->X(); pos[1] = hit->Y(); pos[2] = hit->Z(); Float_t q = hit->GetCharge(); Int_t track = hit->Track(); Int_t detector = hit->GetDetector(); Int_t plane = fGeo->GetPlane(detector); Int_t sector = fGeo->GetSector(detector); Int_t chamber = fGeo->GetChamber(detector); if (!(CheckDetector(plane,chamber,sector))) continue; Int_t nRowMax = fGeo->GetRowMax(plane,chamber,sector); Int_t nColMax = fGeo->GetColMax(plane); Int_t nTimeMax = fGeo->GetTimeMax(); Int_t nTimeBefore = fGeo->GetTimeBefore(); Int_t nTimeAfter = fGeo->GetTimeAfter(); Int_t nTimeTotal = fGeo->GetTimeTotal(); Float_t row0 = fGeo->GetRow0(plane,chamber,sector); Float_t col0 = fGeo->GetCol0(plane); Float_t time0 = fGeo->GetTime0(plane); Float_t rowPadSize = fGeo->GetRowPadSize(plane,chamber,sector); Float_t colPadSize = fGeo->GetColPadSize(plane); Float_t timeBinSize = fGeo->GetTimeBinSize(); Float_t divideRow = 1.0 / rowPadSize; Float_t divideCol = 1.0 / colPadSize; Float_t divideTime = 1.0 / timeBinSize; if (fVerbose > 1) { printf("Analyze hit no. %d ",iHit); printf("-----------------------------------------------------------\n"); hit->Dump(); printf("plane = %d, sector = %d, chamber = %d\n" ,plane,sector,chamber); printf("nRowMax = %d, nColMax = %d, nTimeMax = %d\n" ,nRowMax,nColMax,nTimeMax); printf("nTimeBefore = %d, nTimeAfter = %d, nTimeTotal = %d\n" ,nTimeBefore,nTimeAfter,nTimeTotal); printf("row0 = %f, col0 = %f, time0 = %f\n" ,row0,col0,time0); printf("rowPadSize = %f, colPadSize = %f, timeBinSize = %f\n" ,rowPadSize,colPadSize,timeBinSize); } // Don't analyze test hits if (hit->FromTest()) continue; if (detector != detectorOld) { if (fVerbose > 1) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Get new container. New det = %d, Old det = %d\n" ,detector,detectorOld); } // Compress the old one if enabled if ((fCompress) && (detectorOld > -1)) { if (fVerbose > 1) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Compress the old container ..."); } signals->Compress(1,0); for (iDict = 0; iDict < kNDict; iDict++) { dictionary[iDict]->Compress(1,0); } if (fVerbose > 1) printf("done\n"); } // Get the new container signals = (AliTRDdataArrayF *) signalsArray->At(detector); if (signals->GetNtime() == 0) { // Allocate a new one if not yet existing if (fVerbose > 1) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Allocate a new container ... "); } signals->Allocate(nRowMax,nColMax,nTimeTotal); } else { // Expand an existing one if (fCompress) { if (fVerbose > 1) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Expand an existing container ... "); } signals->Expand(); } } // The same for the dictionary for (iDict = 0; iDict < kNDict; iDict++) { dictionary[iDict] = fDigitsManager->GetDictionary(detector,iDict); if (dictionary[iDict]->GetNtime() == 0) { dictionary[iDict]->Allocate(nRowMax,nColMax,nTimeTotal); } else { if (fCompress) dictionary[iDict]->Expand(); } } if (fVerbose > 1) printf("done\n"); detectorOld = detector; } // Rotate the sectors on top of each other fGeo->Rotate(detector,pos,rot); // The driftlength. It is negative if the hit is in the // amplification region. Float_t driftlength = time0 - rot[0]; // Take also the drift in the amplification region into account // The drift length is at the moment still the same, regardless of // the position relativ to the wire. This non-isochronity needs still // to be implemented. Float_t driftlengthL = TMath::Abs(driftlength + kAmWidth); if (fExBOn) driftlengthL /= TMath::Sqrt(fLorentzFactor); // Loop over all electrons of this hit // TR photons produce hits with negative charge Int_t nEl = ((Int_t) TMath::Abs(q)); for (Int_t iEl = 0; iEl < nEl; iEl++) { xyz[0] = rot[0]; xyz[1] = rot[1]; xyz[2] = rot[2]; // Electron attachment if (fElAttachOn) { if (gRandom->Rndm() < (driftlengthL * elAttachProp)) continue; } // Apply the diffusion smearing if (fDiffusionOn) { if (!(Diffusion(driftlengthL,xyz))) continue; } // Apply E x B effects (depends on drift direction) if (fExBOn) { if (!(ExB(driftlength+kAmWidth,xyz))) continue; } // The electron position after diffusion and ExB in pad coordinates // The pad row (z-direction) Int_t rowE = ((Int_t) ((xyz[2] - row0) * divideRow)); if ((rowE < 0) || (rowE >= nRowMax)) continue; // The pad column (rphi-direction) Int_t colE = ((Int_t) ((xyz[1] - col0) * divideCol)); if ((colE < 0) || (colE >= nColMax)) continue; // The time bin (negative for hits in the amplification region) // In the amplification region the electrons drift from both sides // to the middle (anode wire plane) Float_t timeDist = time0 - xyz[0]; Float_t timeOffset = 0; Int_t timeE = 0; if (timeDist > 0) { // The time bin timeE = ((Int_t) (timeDist * divideTime)); // The distance of the position to the middle of the timebin timeOffset = ((((Float_t) timeE) + 0.5) * timeBinSize) - timeDist; } else { // Difference between half of the amplification gap width and // the distance to the anode wire Float_t anodeDist = kAmWidth - TMath::Abs(timeDist + kAmWidth); // The time bin timeE = -1 * (((Int_t ) (anodeDist * divideTime)) + 1); // The distance of the position to the middle of the timebin timeOffset = ((((Float_t) timeE) + 0.5) * timeBinSize) + anodeDist; } // Apply the gas gain including fluctuations Float_t ggRndm = 0.0; do { ggRndm = gRandom->Rndm(); } while (ggRndm <= 0); Int_t signal = (Int_t) (-fGasGain * TMath::Log(ggRndm)); // Apply the pad response if (fPRFOn) { // The distance of the electron to the center of the pad // in units of pad width Float_t dist = (xyz[1] - col0 - (colE + 0.5) * colPadSize) * divideCol; if (!(PadResponse(signal,dist,padSignal))) continue; } else { padSignal[0] = 0.0; padSignal[1] = signal; padSignal[2] = 0.0; } // Sample the time response inside the drift region // + additional time bins before and after. // The sampling is done always in the middle of the time bin for (Int_t iTimeBin = TMath::Max(timeE-timeTRDbeg, -nTimeBefore) ;iTimeBin < TMath::Min(timeE+timeTRDend,nTimeMax+nTimeAfter ) ;iTimeBin++) { // Apply the time response Float_t timeResponse = 1.0; if (fTRFOn) { Float_t time = (iTimeBin - timeE) * timeBinSize + timeOffset; timeResponse = TimeResponse(time); } signalOld[0] = 0.0; signalOld[1] = 0.0; signalOld[2] = 0.0; for (iPad = 0; iPad < kNpad; iPad++) { Int_t colPos = colE + iPad - 1; if (colPos < 0) continue; if (colPos >= nColMax) break; // Add the signals // Note: The time bin number is shifted by nTimeBefore to avoid negative // time bins. This has to be subtracted later. Int_t iCurrentTimeBin = iTimeBin + nTimeBefore; signalOld[iPad] = signals->GetDataUnchecked(rowE,colPos,iCurrentTimeBin); signalOld[iPad] += padSignal[iPad] * timeResponse; signals->SetDataUnchecked(rowE,colPos,iCurrentTimeBin,signalOld[iPad]); // Store the track index in the dictionary // Note: We store index+1 in order to allow the array to be compressed if (signalOld[iPad] > 0) { for (iDict = 0; iDict < kNDict; iDict++) { Int_t oldTrack = dictionary[iDict]->GetDataUnchecked(rowE ,colPos ,iCurrentTimeBin); if (oldTrack == track+1) break; if (oldTrack == 0) { dictionary[iDict]->SetDataUnchecked(rowE,colPos,iCurrentTimeBin,track+1); break; } } } } } } } } // All hits finished if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Finished analyzing %d hits\n",countHits); } // The total conversion factor Float_t convert = kEl2fC * fPadCoupling * fTimeCoupling * fChipGain; // Loop through all chambers to finalize the digits for (Int_t iDet = 0; iDet < AliTRDgeometry::Ndet(); iDet++) { Int_t plane = fGeo->GetPlane(iDet); Int_t sector = fGeo->GetSector(iDet); Int_t chamber = fGeo->GetChamber(iDet); Int_t nRowMax = fGeo->GetRowMax(plane,chamber,sector); Int_t nColMax = fGeo->GetColMax(plane); Int_t nTimeMax = fGeo->GetTimeMax(); Int_t nTimeTotal = fGeo->GetTimeTotal(); if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Digitization for chamber %d\n",iDet); } // Add a container for the digits of this detector digits = fDigitsManager->GetDigits(iDet); // Allocate memory space for the digits buffer digits->Allocate(nRowMax,nColMax,nTimeTotal); // Get the signal container signals = (AliTRDdataArrayF *) signalsArray->At(iDet); if (signals->GetNtime() == 0) { // Create missing containers signals->Allocate(nRowMax,nColMax,nTimeTotal); } else { // Expand the container if neccessary if (fCompress) signals->Expand(); } // Create the missing dictionary containers for (iDict = 0; iDict < kNDict; iDict++) { dictionary[iDict] = fDigitsManager->GetDictionary(iDet,iDict); if (dictionary[iDict]->GetNtime() == 0) { dictionary[iDict]->Allocate(nRowMax,nColMax,nTimeTotal); } } Int_t nDigits = 0; // Don't create noise in detectors that are switched off if (CheckDetector(plane,chamber,sector)) { // Create the digits for this chamber for (iRow = 0; iRow < nRowMax; iRow++ ) { for (iCol = 0; iCol < nColMax; iCol++ ) { for (iTime = 0; iTime < nTimeTotal; iTime++) { // Create summable digits if (fSDigits) { Float_t signalAmp = signals->GetDataUnchecked(iRow,iCol,iTime); signalAmp *= fSDigitsScale; signalAmp = TMath::Min(signalAmp,(Float_t)1.0e9); Int_t adc = (Int_t) signalAmp; nDigits++; digits->SetDataUnchecked(iRow,iCol,iTime,adc); } // Create normal digits else { Float_t signalAmp = signals->GetDataUnchecked(iRow,iCol,iTime); // Add the noise signalAmp = TMath::Max((Double_t) gRandom->Gaus(signalAmp,fNoise),0.0); // Convert to mV signalAmp *= convert; // Convert to ADC counts. Set the overflow-bit fADCoutRange if the // signal is larger than fADCinRange Int_t adc = 0; if (signalAmp >= fADCinRange) { adc = ((Int_t) fADCoutRange); } else { adc = ((Int_t) (signalAmp * (fADCoutRange / fADCinRange))); } // Store the amplitude of the digit if above threshold if (adc > fADCthreshold) { if (fVerbose > 2) { printf(" iRow = %d, iCol = %d, iTime = %d\n" ,iRow,iCol,iTime); printf(" signal = %f, adc = %d\n",signalAmp,adc); } nDigits++; digits->SetDataUnchecked(iRow,iCol,iTime,adc); } } } } } } // Compress the arrays digits->Compress(1,0); for (iDict = 0; iDict < kNDict; iDict++) { dictionary[iDict]->Compress(1,0); } totalSizeDigits += digits->GetSize(); totalSizeDict0 += dictionary[0]->GetSize(); totalSizeDict1 += dictionary[1]->GetSize(); totalSizeDict2 += dictionary[2]->GetSize(); Float_t nPixel = nRowMax * nColMax * nTimeMax; if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Found %d digits in detector %d (%3.0f).\n" ,nDigits,iDet ,100.0 * ((Float_t) nDigits) / nPixel); } if (fCompress) signals->Compress(1,0); } if (fVerbose > 0) { printf("AliTRDdigitizer::MakeDigits -- "); printf("Total number of analyzed hits = %d\n",countHits); printf("AliTRDdigitizer::MakeDigits -- "); printf("Total digits data size = %d, %d, %d, %d\n",totalSizeDigits ,totalSizeDict0 ,totalSizeDict1 ,totalSizeDict2); } return kTRUE; } //_____________________________________________________________________________ void AliTRDdigitizer::AddSDigitsManager(AliTRDdigitsManager *man) { // // Add a digits manager for s-digits to the input list. // fSDigitsManagerList->Add(man); } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::ConvertSDigits() { // // Converts s-digits to normal digits // // Number of track dictionary arrays const Int_t kNDict = AliTRDdigitsManager::kNDict; // Converts number of electrons to fC const Double_t kEl2fC = 1.602E-19 * 1.0E15; Int_t iDict = 0; if (fVerbose > 0) { this->Dump(); } Double_t sDigitsScale = 1.0 / GetSDigitsScale(); Double_t noise = GetNoise(); Double_t padCoupling = GetPadCoupling(); Double_t timeCoupling = GetTimeCoupling(); Double_t chipGain = GetChipGain(); Double_t convert = kEl2fC * padCoupling * timeCoupling * chipGain;; Double_t adcInRange = GetADCinRange(); Double_t adcOutRange = GetADCoutRange(); Int_t adcThreshold = GetADCthreshold(); AliTRDdataArrayI *digitsIn; AliTRDdataArrayI *digitsOut; AliTRDdataArrayI *dictionaryIn[kNDict]; AliTRDdataArrayI *dictionaryOut[kNDict]; // Loop through the detectors for (Int_t iDet = 0; iDet < AliTRDgeometry::Ndet(); iDet++) { if (fVerbose > 0) { printf("AliTRDdigitizer::ConvertSDigits -- "); printf("Convert detector %d to digits.\n",iDet); } Int_t plane = fGeo->GetPlane(iDet); Int_t sector = fGeo->GetSector(iDet); Int_t chamber = fGeo->GetChamber(iDet); Int_t nRowMax = fGeo->GetRowMax(plane,chamber,sector); Int_t nColMax = fGeo->GetColMax(plane); Int_t nTimeTotal = fGeo->GetTimeTotal(); digitsIn = fSDigitsManager->GetDigits(iDet); digitsIn->Expand(); digitsOut = fDigitsManager->GetDigits(iDet); digitsOut->Allocate(nRowMax,nColMax,nTimeTotal); for (iDict = 0; iDict < kNDict; iDict++) { dictionaryIn[iDict] = fSDigitsManager->GetDictionary(iDet,iDict); dictionaryIn[iDict]->Expand(); dictionaryOut[iDict] = fDigitsManager->GetDictionary(iDet,iDict); dictionaryOut[iDict]->Allocate(nRowMax,nColMax,nTimeTotal); } for (Int_t iRow = 0; iRow < nRowMax; iRow++ ) { for (Int_t iCol = 0; iCol < nColMax; iCol++ ) { for (Int_t iTime = 0; iTime < nTimeTotal; iTime++) { Double_t signal = (Double_t) digitsIn->GetDataUnchecked(iRow,iCol,iTime); signal *= sDigitsScale; // Add the noise signal = TMath::Max((Double_t) gRandom->Gaus(signal,noise),0.0); // Convert to mV signal *= convert; // Convert to ADC counts. Set the overflow-bit adcOutRange if the // signal is larger than adcInRange Int_t adc = 0; if (signal >= adcInRange) { adc = ((Int_t) adcOutRange); } else { adc = ((Int_t) (signal * (adcOutRange / adcInRange))); } // Store the amplitude of the digit if above threshold if (adc > adcThreshold) { digitsOut->SetDataUnchecked(iRow,iCol,iTime,adc); } // Copy the dictionary for (iDict = 0; iDict < kNDict; iDict++) { Int_t track = dictionaryIn[iDict]->GetDataUnchecked(iRow,iCol,iTime); dictionaryOut[iDict]->SetDataUnchecked(iRow,iCol,iTime,track); } } } } if (fCompress) { digitsIn->Compress(1,0); digitsOut->Compress(1,0); for (iDict = 0; iDict < kNDict; iDict++) { dictionaryIn[iDict]->Compress(1,0); dictionaryOut[iDict]->Compress(1,0); } } } return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::MergeSDigits() { // // Merges the input s-digits: // - The amplitude of the different inputs are summed up. // - Of the track IDs from the input dictionaries only one is // kept for each input. This works for maximal 3 different merged inputs. // // Number of track dictionary arrays const Int_t kNDict = AliTRDdigitsManager::kNDict; Int_t iDict = 0; AliTRDdataArrayI *digitsA; AliTRDdataArrayI *digitsB; AliTRDdataArrayI *dictionaryA[kNDict]; AliTRDdataArrayI *dictionaryB[kNDict]; // Get the first s-digits fSDigitsManager = (AliTRDdigitsManager *) fSDigitsManagerList->First(); if (!fSDigitsManager) return kFALSE; // Loop through the other sets of s-digits AliTRDdigitsManager *mergeSDigitsManager; mergeSDigitsManager = (AliTRDdigitsManager *) fSDigitsManagerList->After(fSDigitsManager); if (fVerbose > 0) { if (mergeSDigitsManager) { printf("AliTRDdigitizer::MergeSDigits -- "); printf("Merge serveral input files.\n"); } else { printf("AliTRDdigitizer::MergeSDigits -- "); printf("Only one input file.\n"); } } Int_t iMerge = 0; while (mergeSDigitsManager) { iMerge++; // Loop through the detectors for (Int_t iDet = 0; iDet < AliTRDgeometry::Ndet(); iDet++) { Int_t plane = fGeo->GetPlane(iDet); Int_t sector = fGeo->GetSector(iDet); Int_t chamber = fGeo->GetChamber(iDet); Int_t nRowMax = fGeo->GetRowMax(plane,chamber,sector); Int_t nColMax = fGeo->GetColMax(plane); Int_t nTimeTotal = fGeo->GetTimeTotal(); // Loop through the pixels of one detector and add the signals digitsA = fSDigitsManager->GetDigits(iDet); digitsB = mergeSDigitsManager->GetDigits(iDet); digitsA->Expand(); digitsB->Expand(); for (iDict = 0; iDict < kNDict; iDict++) { dictionaryA[iDict] = fSDigitsManager->GetDictionary(iDet,iDict); dictionaryB[iDict] = mergeSDigitsManager->GetDictionary(iDet,iDict); dictionaryA[iDict]->Expand(); dictionaryB[iDict]->Expand(); } if (fVerbose > 0) { printf("AliTRDdigitizer::MergeSDigits -- "); printf("Merge detector %d of input no.%d.\n",iDet,iMerge); } for (Int_t iRow = 0; iRow < nRowMax; iRow++ ) { for (Int_t iCol = 0; iCol < nColMax; iCol++ ) { for (Int_t iTime = 0; iTime < nTimeTotal; iTime++) { // Add the amplitudes of the summable digits Int_t ampA = digitsA->GetDataUnchecked(iRow,iCol,iTime); Int_t ampB = digitsB->GetDataUnchecked(iRow,iCol,iTime); ampA += ampB; digitsA->SetDataUnchecked(iRow,iCol,iTime,ampA); // Take only one track from each input Int_t track = dictionaryB[0]->GetDataUnchecked(iRow,iCol,iTime); if (iMerge < kNDict) { dictionaryA[iMerge]->SetDataUnchecked(iRow,iCol,iTime,track); } } } } if (fCompress) { digitsA->Compress(1,0); digitsB->Compress(1,0); for (iDict = 0; iDict < kNDict; iDict++) { dictionaryA[iDict]->Compress(1,0); dictionaryB[iDict]->Compress(1,0); } } } // The next set of s-digits mergeSDigitsManager = (AliTRDdigitsManager *) fSDigitsManagerList->After(mergeSDigitsManager); } return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::SDigits2Digits() { // // Merges the input s-digits and converts them to normal digits // if (!MergeSDigits()) return kFALSE; return ConvertSDigits(); } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::CheckDetector(Int_t plane, Int_t chamber, Int_t sector) { // // Checks whether a detector is enabled // if ((fTRD->GetSensChamber() >= 0) && (fTRD->GetSensChamber() != chamber)) return kFALSE; if ((fTRD->GetSensPlane() >= 0) && (fTRD->GetSensPlane() != plane)) return kFALSE; if ( fTRD->GetSensSector() >= 0) { Int_t sens1 = fTRD->GetSensSector(); Int_t sens2 = sens1 + fTRD->GetSensSectorRange(); sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect())) * AliTRDgeometry::Nsect(); if (sens1 < sens2) { if ((sector < sens1) || (sector >= sens2)) return kFALSE; } else { if ((sector < sens1) && (sector >= sens2)) return kFALSE; } } return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDdigitizer::WriteDigits() { // // Writes out the TRD-digits and the dictionaries // // Store the digits and the dictionary in the tree return fDigitsManager->WriteDigits(); } //_____________________________________________________________________________ Float_t AliTRDdigitizer::GetDiffusionL(Float_t vd, Float_t b) { // // Returns the longitudinal diffusion coefficient for a given drift // velocity and a B-field for Xe/CO2 (15%). // The values are according to a GARFIELD simulation. // const Int_t kNb = 5; Float_t p0[kNb] = { 0.007440, 0.007493, 0.007513, 0.007672, 0.007831 }; Float_t p1[kNb] = { 0.019252, 0.018912, 0.018636, 0.018012, 0.017343 }; Float_t p2[kNb] = { -0.005042, -0.004926, -0.004867, -0.004650, -0.004424 }; Float_t p3[kNb] = { 0.000195, 0.000189, 0.000195, 0.000182, 0.000169 }; Int_t ib = ((Int_t) (10 * (b - 0.15))); ib = TMath::Max( 0,ib); ib = TMath::Min(kNb,ib); Float_t diff = p0[ib] + p1[ib] * vd + p2[ib] * vd*vd + p3[ib] * vd*vd*vd; return diff; } //_____________________________________________________________________________ Float_t AliTRDdigitizer::GetDiffusionT(Float_t vd, Float_t b) { // // Returns the transverse diffusion coefficient for a given drift // velocity and a B-field for Xe/CO2 (15%). // The values are according to a GARFIELD simulation. // const Int_t kNb = 5; Float_t p0[kNb] = { 0.009550, 0.009599, 0.009674, 0.009757, 0.009850 }; Float_t p1[kNb] = { 0.006667, 0.006539, 0.006359, 0.006153, 0.005925 }; Float_t p2[kNb] = { -0.000853, -0.000798, -0.000721, -0.000635, -0.000541 }; Float_t p3[kNb] = { 0.000131, 0.000122, 0.000111, 0.000098, 0.000085 }; Int_t ib = ((Int_t) (10 * (b - 0.15))); ib = TMath::Max( 0,ib); ib = TMath::Min(kNb,ib); Float_t diff = p0[ib] + p1[ib] * vd + p2[ib] * vd*vd + p3[ib] * vd*vd*vd; return diff; } //_____________________________________________________________________________ Float_t AliTRDdigitizer::GetOmegaTau(Float_t vd, Float_t b) { // // Returns omega*tau (tan(Lorentz-angle)) for a given drift velocity // and a B-field for Xe/CO2 (15%). // The values are according to a GARFIELD simulation. // const Int_t kNb = 5; Float_t p0[kNb] = { 0.004810, 0.007412, 0.010252, 0.013409, 0.016888 }; Float_t p1[kNb] = { 0.054875, 0.081534, 0.107333, 0.131983, 0.155455 }; Float_t p2[kNb] = { -0.008682, -0.012896, -0.016987, -0.020880, -0.024623 }; Float_t p3[kNb] = { 0.000155, 0.000238, 0.000330, 0.000428, 0.000541 }; Int_t ib = ((Int_t) (10 * (b - 0.15))); ib = TMath::Max( 0,ib); ib = TMath::Min(kNb,ib); Float_t alphaL = p0[ib] + p1[ib] * vd + p2[ib] * vd*vd + p3[ib] * vd*vd*vd; return TMath::Tan(alphaL); }