/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // The standard TRD tracker // // Based on Kalman filltering approach // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "AliTRDgeometry.h" #include "AliTRDpadPlane.h" #include "AliTRDgeometry.h" #include "AliTRDcluster.h" #include "AliTRDtrack.h" #include "AliTRDseed.h" #include "AliESD.h" #include "AliTRDcalibDB.h" #include "AliTRDCommonParam.h" #include "TTreeStream.h" #include "TGraph.h" #include "AliTRDtracker.h" #include "TLinearFitter.h" #include "AliRieman.h" #include "AliTrackPointArray.h" #include "AliAlignObj.h" #include "AliTRDReconstructor.h" ClassImp(AliTRDtracker) const Float_t AliTRDtracker::fgkMinClustersInTrack = 0.5; const Float_t AliTRDtracker::fgkLabelFraction = 0.8; const Double_t AliTRDtracker::fgkMaxChi2 = 12.; const Double_t AliTRDtracker::fgkMaxSnp = 0.95; // correspond to tan = 3 const Double_t AliTRDtracker::fgkMaxStep = 2.; // maximal step size in propagation //_____________________________________________________________________________ AliTRDtracker::AliTRDtracker(): AliTracker(), fGeom(0), fNclusters(0), fClusters(0), fNseeds(0), fSeeds(0), fNtracks(0), fTracks(0), fTimeBinsPerPlane(0), fAddTRDseeds(kFALSE), fNoTilt(kFALSE), fDebugStreamer(0) { // // Default constructor // for(Int_t i=0;iIsOpen()) { printf("AliTRDtracker::AliTRDtracker(): geometry file is not open!\n"); printf(" FULL TRD geometry and DEFAULT TRD parameter will be used\n"); } else { in->cd(); fGeom = (AliTRDgeometry*) in->Get("TRDgeometry"); } if(fGeom) { // printf("Found geometry version %d on file \n", fGeom->IsVersion()); } else { printf("AliTRDtracker::AliTRDtracker(): can't find TRD geometry!\n"); fGeom = new AliTRDgeometry(); } fGeom->ReadGeoMatrices(); savedir->cd(); for(Int_t geomS = 0; geomS < kTrackingSectors; geomS++) { Int_t trS = CookSectorIndex(geomS); fTrSec[trS] = new AliTRDtrackingSector(fGeom, geomS); for (Int_t icham=0;ichamIsHole(0,icham,geomS); } } AliTRDpadPlane *padPlane = AliTRDCommonParam::Instance()->GetPadPlane(0,0); Float_t tiltAngle = TMath::Abs(padPlane->GetTiltingAngle()); if(tiltAngle < 0.1) { fNoTilt = kTRUE; } fTimeBinsPerPlane = AliTRDcalibDB::Instance()->GetNumberOfTimeBins(); fDebugStreamer = new TTreeSRedirector("TRDdebug.root"); savedir->cd(); } //_____________________________________________________________________________ AliTRDtracker::~AliTRDtracker() { // // Destructor of AliTRDtracker // if (fClusters) { fClusters->Delete(); delete fClusters; } if (fTracks) { fTracks->Delete(); delete fTracks; } if (fSeeds) { fSeeds->Delete(); delete fSeeds; } delete fGeom; for(Int_t geomS = 0; geomS < kTrackingSectors; geomS++) { delete fTrSec[geomS]; } if (fDebugStreamer) { //fDebugStreamer->Close(); delete fDebugStreamer; } } //_____________________________________________________________________________ Int_t AliTRDtracker::LocalToGlobalID(Int_t lid) { // // Transform internal TRD ID to global detector ID // Int_t isector = fGeom->GetSector(lid); Int_t ichamber= fGeom->GetChamber(lid); Int_t iplan = fGeom->GetPlane(lid); // AliAlignObj::ELayerID iLayer = AliAlignObj::kTRD1; switch (iplan) { case 0: iLayer = AliAlignObj::kTRD1; break; case 1: iLayer = AliAlignObj::kTRD2; break; case 2: iLayer = AliAlignObj::kTRD3; break; case 3: iLayer = AliAlignObj::kTRD4; break; case 4: iLayer = AliAlignObj::kTRD5; break; case 5: iLayer = AliAlignObj::kTRD6; break; }; Int_t modId = isector*fGeom->Ncham()+ichamber; UShort_t volid = AliAlignObj::LayerToVolUID(iLayer,modId); return volid; } //_____________________________________________________________________________ Int_t AliTRDtracker::GlobalToLocalID(Int_t gid) { // // Transform global detector ID to local detector ID // Int_t modId=0; AliAlignObj::ELayerID layerId = AliAlignObj::VolUIDToLayer(gid, modId); Int_t isector = modId/fGeom->Ncham(); Int_t ichamber = modId%fGeom->Ncham(); Int_t iLayer = -1; switch (layerId) { case AliAlignObj::kTRD1: iLayer = 0; break; case AliAlignObj::kTRD2: iLayer = 1; break; case AliAlignObj::kTRD3: iLayer = 2; break; case AliAlignObj::kTRD4: iLayer = 3; break; case AliAlignObj::kTRD5: iLayer = 4; break; case AliAlignObj::kTRD6: iLayer = 5; break; default: iLayer =-1; } if (iLayer<0) return -1; Int_t lid = fGeom->GetDetector(iLayer,ichamber,isector); return lid; } //_____________________________________________________________________________ Bool_t AliTRDtracker::Transform(AliTRDcluster * cluster) { // // Transform something ... whatever ... // const Double_t kX0shift = 2.52; // magic constants for geo manager transformation const Double_t kX0shift5 = 3.05; // // // // apply alignment and calibration to transform cluster // // Int_t detector = cluster->GetDetector(); Int_t plane = fGeom->GetPlane(cluster->GetDetector()); Int_t chamber = fGeom->GetChamber(cluster->GetDetector()); Int_t sector = fGeom->GetSector(cluster->GetDetector()); Double_t dxAmp = (Double_t) fGeom->CamHght(); // Amplification region Double_t driftX = TMath::Max(cluster->GetX()-dxAmp*0.5,0.); // drift distance // // ExB correction // Double_t vdrift = AliTRDcalibDB::Instance()->GetVdrift(cluster->GetDetector(),0,0); Double_t exB = AliTRDcalibDB::Instance()->GetOmegaTau(vdrift); // AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance(); AliTRDpadPlane * padPlane = commonParam->GetPadPlane(plane,chamber); Double_t zshiftIdeal = 0.5*(padPlane->GetRow0()+padPlane->GetRowEnd()); Double_t localPos[3], localPosTracker[3]; localPos[0] = -cluster->GetX(); localPos[1] = cluster->GetY() - driftX*exB; localPos[2] = cluster->GetZ() -zshiftIdeal; // cluster->SetY(cluster->GetY() - driftX*exB); Double_t xplane = (Double_t) AliTRDgeometry::GetTime0(plane); cluster->SetX(xplane- cluster->GetX()); // TGeoHMatrix * matrix = fGeom->GetCorrectionMatrix(cluster->GetDetector()); if (!matrix){ // no matrix found - if somebody used geometry with holes AliError("Invalid Geometry - Default Geometry used\n"); return kTRUE; } matrix->LocalToMaster(localPos, localPosTracker); // // // if (AliTRDReconstructor::StreamLevel()>1){ (*fDebugStreamer)<<"Transform"<< "Cl.="<SetX(localPosTracker[0]+kX0shift5); else cluster->SetX(localPosTracker[0]+kX0shift); cluster->SetY(localPosTracker[1]); cluster->SetZ(localPosTracker[2]); return kTRUE; } //_____________________________________________________________________________ // Bool_t AliTRDtracker::Transform(AliTRDcluster * cluster) //{ // // // // // const Double_t kDriftCorrection = 1.01; // drift coeficient correction // const Double_t kTime0Cor = 0.32; // time0 correction // // // const Double_t kX0shift = 2.52; // const Double_t kX0shift5 = 3.05; // // // // apply alignment and calibration to transform cluster // // // // // Int_t detector = cluster->GetDetector(); // Int_t plane = fGeom->GetPlane(cluster->GetDetector()); // Int_t chamber = fGeom->GetChamber(cluster->GetDetector()); // Int_t sector = fGeom->GetSector(cluster->GetDetector()); // Double_t dxAmp = (Double_t) fGeom->CamHght(); // Amplification region // Double_t driftX = TMath::Max(cluster->GetX()-dxAmp*0.5,0.); // drift distance // // // // ExB correction // // // Double_t vdrift = AliTRDcalibDB::Instance()->GetVdrift(cluster->GetDetector(),0,0); // Double_t exB = AliTRDcalibDB::Instance()->GetOmegaTau(vdrift); // // // AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance(); // AliTRDpadPlane * padPlane = commonParam->GetPadPlane(plane,chamber); // Double_t zshiftIdeal = 0.5*(padPlane->GetRow0()+padPlane->GetRowEnd()); // Double_t localPos[3], globalPos[3], localPosTracker[3], localPosTracker2[3]; // localPos[2] = -cluster->GetX(); // localPos[0] = cluster->GetY() - driftX*exB; // localPos[1] = cluster->GetZ() -zshiftIdeal; // TGeoHMatrix * matrix = fGeom->GetGeoMatrix(cluster->GetDetector()); // matrix->LocalToMaster(localPos, globalPos); // Double_t sectorAngle = 20.*(sector%18)+10; // TGeoHMatrix rotSector; // rotSector.RotateZ(sectorAngle); // rotSector.LocalToMaster(globalPos, localPosTracker); // // // // // TGeoHMatrix matrix2(*matrix); // matrix2.MultiplyLeft(&rotSector); // matrix2.LocalToMaster(localPos,localPosTracker2); // // // // // // // cluster->SetY(cluster->GetY() - driftX*exB); // Double_t xplane = (Double_t) AliTRDgeometry::GetTime0(plane); // cluster->SetX(xplane- kDriftCorrection*(cluster->GetX()-kTime0Cor)); // (*fDebugStreamer)<<"Transform"<< // "Cl.="<SetX(localPosTracker[0]+kX0shift5); // else // cluster->SetX(localPosTracker[0]+kX0shift); // cluster->SetY(localPosTracker[1]); // cluster->SetZ(localPosTracker[2]); // return kTRUE; // } //_____________________________________________________________________________ Bool_t AliTRDtracker::AdjustSector(AliTRDtrack *track) { // // Rotates the track when necessary // Double_t alpha = AliTRDgeometry::GetAlpha(); Double_t y = track->GetY(); Double_t ymax = track->GetX()*TMath::Tan(0.5*alpha); //Int_t ns = AliTRDgeometry::kNsect; //Int_t s=Int_t(track->GetAlpha()/alpha)%ns; if (y > ymax) { //s = (s+1) % ns; if (!track->Rotate(alpha)) return kFALSE; } else if (y <-ymax) { //s = (s-1+ns) % ns; if (!track->Rotate(-alpha)) return kFALSE; } return kTRUE; } //_____________________________________________________________________________ AliTRDcluster *AliTRDtracker::GetCluster(AliTRDtrack *track, Int_t plane , Int_t timebin, UInt_t &index) { // // Try to find cluster in the backup list // AliTRDcluster * cl =0; Int_t *indexes = track->GetBackupIndexes(); for (UInt_t i=0;iUncheckedAt(indexes[i]); if (!cli) break; if (cli->GetLocalTimeBin()!=timebin) continue; Int_t iplane = fGeom->GetPlane(cli->GetDetector()); if (iplane==plane) { cl = cli; index = indexes[i]; break; } } return cl; } //_____________________________________________________________________________ Int_t AliTRDtracker::GetLastPlane(AliTRDtrack * track) { // // Return last updated plane // Int_t lastplane=0; Int_t *indexes = track->GetBackupIndexes(); for (UInt_t i=0;iUncheckedAt(indexes[i]); if (!cli) break; Int_t iplane = fGeom->GetPlane(cli->GetDetector()); if (iplane>lastplane) { lastplane = iplane; } } return lastplane; } //_____________________________________________________________________________ Int_t AliTRDtracker::Clusters2Tracks(AliESD* event) { // // Finds tracks within the TRD. The ESD event is expected to contain seeds // at the outer part of the TRD. The seeds // are found within the TRD if fAddTRDseeds is TRUE. // The tracks are propagated to the innermost time bin // of the TRD and the ESD event is updated // Int_t timeBins = fTrSec[0]->GetNumberOfTimeBins(); Float_t foundMin = fgkMinClustersInTrack * timeBins; Int_t nseed = 0; Int_t found = 0; // Int_t innerTB = fTrSec[0]->GetInnerTimeBin(); Int_t n = event->GetNumberOfTracks(); for (Int_t i=0; iGetTrack(i); ULong_t status=seed->GetStatus(); if ( (status & AliESDtrack::kTRDout ) == 0 ) continue; if ( (status & AliESDtrack::kTRDin) != 0 ) continue; nseed++; AliTRDtrack* seed2 = new AliTRDtrack(*seed); //seed2->ResetCovariance(); AliTRDtrack *pt = new AliTRDtrack(*seed2,seed2->GetAlpha()); //AliTRDtrack *pt = new AliTRDtrack(*seed2); // !!! AliTRDtrack &t=*pt; FollowProlongation(t); if (t.GetNumberOfClusters() >= foundMin) { UseClusters(&t); CookLabel(pt, 1-fgkLabelFraction); // t.CookdEdx(); } found++; // cout<UpdateTrackParams(pt, AliESDtrack::kTRDin); } delete seed2; delete pt; } cout<<"Number of loaded seeds: "<GetNumberOfTracks(); // //Sort tracks Float_t *quality =new Float_t[n]; Int_t *index =new Int_t[n]; for (Int_t i=0; iGetTrack(i); Double_t covariance[15]; seed->GetExternalCovariance(covariance); quality[i] = covariance[0]+covariance[2]; } TMath::Sort(n,quality,index,kFALSE); // for (Int_t i=0; iGetTrack(i); AliESDtrack* seed=event->GetTrack(index[i]); ULong_t status=seed->GetStatus(); if ( (status & AliESDtrack::kTPCout ) == 0 ) continue; if ( (status & AliESDtrack::kTRDout) != 0 ) continue; Int_t lbl = seed->GetLabel(); AliTRDtrack *track = new AliTRDtrack(*seed); track->SetSeedLabel(lbl); seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup); //make backup fNseeds++; Float_t p4 = track->GetC(); // Int_t expectedClr = FollowBackProlongation(*track); if (TMath::Abs(track->GetC()-p4)/TMath::Abs(p4)<0.2 || TMath::Abs(track->GetPt())>0.8 ) { // //make backup for back propagation // Int_t foundClr = track->GetNumberOfClusters(); if (foundClr >= foundMin) { track->CookdEdx(); CookdEdxTimBin(*track); CookLabel(track, 1-fgkLabelFraction); if (track->GetBackupTrack()) UseClusters(track->GetBackupTrack()); if(track->GetChi2()/track->GetNumberOfClusters()<4) { // sign only gold tracks if (seed->GetKinkIndex(0)==0&&TMath::Abs(track->GetPt())<1.5 ) UseClusters(track); } Bool_t isGold = kFALSE; if (track->GetChi2()/track->GetNumberOfClusters()<5) { //full gold track // seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup); if (track->GetBackupTrack()) seed->UpdateTrackParams(track->GetBackupTrack(), AliESDtrack::kTRDbackup); isGold = kTRUE; } if (!isGold && track->GetNCross()==0&&track->GetChi2()/track->GetNumberOfClusters()<7){ //almost gold track // seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup); if (track->GetBackupTrack()) seed->UpdateTrackParams(track->GetBackupTrack(), AliESDtrack::kTRDbackup); isGold = kTRUE; } if (!isGold && track->GetBackupTrack()){ if (track->GetBackupTrack()->GetNumberOfClusters()>foundMin&& (track->GetBackupTrack()->GetChi2()/(track->GetBackupTrack()->GetNumberOfClusters()+1))<7){ seed->UpdateTrackParams(track->GetBackupTrack(), AliESDtrack::kTRDbackup); isGold = kTRUE; } } if (track->StatusForTOF()>0 &&track->fNCross==0 && Float_t(track->fN)/Float_t(track->fNExpected)>0.4){ //seed->UpdateTrackParams(track->GetBackupTrack(), AliESDtrack::kTRDbackup); } } } // Debug part of tracking TTreeSRedirector& cstream = *fDebugStreamer; Int_t eventNr = event->GetEventNumber(); if (AliTRDReconstructor::StreamLevel()>0){ if (track->GetBackupTrack()){ cstream<<"Tracks"<< "EventNr="<GetStop()==kFALSE){ Double_t xtof=371.; Double_t c2=track->GetSnp() + track->GetC()*(xtof - track->GetX()); if (TMath::Abs(c2)>=0.99) { delete track; continue; } Double_t xTOF0 = 370. ; PropagateToX(*track,xTOF0,fgkMaxStep); // //energy losses taken to the account - check one more time c2=track->GetSnp() + track->GetC()*(xtof - track->GetX()); if (TMath::Abs(c2)>=0.99) { delete track; continue; } // Double_t ymax=xtof*TMath::Tan(0.5*AliTRDgeometry::GetAlpha()); Double_t y; track->GetYAt(xtof,GetBz(),y); if (y > ymax) { if (!track->Rotate(AliTRDgeometry::GetAlpha())) { delete track; continue; } } else if (y <-ymax) { if (!track->Rotate(-AliTRDgeometry::GetAlpha())) { delete track; continue; } } if (track->PropagateTo(xtof)) { seed->UpdateTrackParams(track, AliESDtrack::kTRDout); for (Int_t i=0;iSetTRDsignals(track->GetPIDsignals(i,j),i,j); } seed->SetTRDTimBin(track->GetPIDTimBin(i),i); } // seed->SetTRDtrack(new AliTRDtrack(*track)); if (track->GetNumberOfClusters()>foundMin) found++; } }else{ if (track->GetNumberOfClusters()>15&&track->GetNumberOfClusters()>0.5*expectedClr){ seed->UpdateTrackParams(track, AliESDtrack::kTRDout); //seed->SetStatus(AliESDtrack::kTRDStop); for (Int_t i=0;iSetTRDsignals(track->GetPIDsignals(i,j),i,j); } seed->SetTRDTimBin(track->GetPIDTimBin(i),i); } //seed->SetTRDtrack(new AliTRDtrack(*track)); found++; } } seed->SetTRDQuality(track->StatusForTOF()); seed->SetTRDBudget(track->fBudget[0]); delete track; // //End of propagation to the TOF //if (foundClr>foundMin) // seed->UpdateTrackParams(track, AliESDtrack::kTRDout); } cerr<<"Number of seeds: "<Clear(); fNseeds=0; delete [] index; delete [] quality; return 0; } //_____________________________________________________________________________ Int_t AliTRDtracker::RefitInward(AliESD* event) { // // Refits tracks within the TRD. The ESD event is expected to contain seeds // at the outer part of the TRD. // The tracks are propagated to the innermost time bin // of the TRD and the ESD event is updated // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch) // Int_t timeBins = fTrSec[0]->GetNumberOfTimeBins(); Float_t foundMin = fgkMinClustersInTrack * timeBins; Int_t nseed = 0; Int_t found = 0; // Int_t innerTB = fTrSec[0]->GetInnerTimeBin(); AliTRDtrack seed2; Int_t n = event->GetNumberOfTracks(); for (Int_t i=0; iGetTrack(i); new(&seed2) AliTRDtrack(*seed); if (seed2.GetX()<270){ seed->UpdateTrackParams(&seed2, AliESDtrack::kTRDbackup); // backup TPC track - only update continue; } ULong_t status=seed->GetStatus(); if ( (status & AliESDtrack::kTRDout ) == 0 ) { continue; } if ( (status & AliESDtrack::kTRDin) != 0 ) { continue; } nseed++; seed2.ResetCovariance(50.); // if (1/seed2.Get1Pt()>1.5&& seed2.GetX()>260.) { // Double_t oldx = seed2.GetX(); // seed2.PropagateTo(500.); // seed2.ResetCovariance(1.); // seed2.PropagateTo(oldx); // } // else{ // seed2.ResetCovariance(5.); // } AliTRDtrack *pt = new AliTRDtrack(seed2,seed2.GetAlpha()); //AliTRDtrack *pt = new AliTRDtrack(seed2); // !!! Int_t * indexes2 = seed2.GetIndexes(); for (Int_t i=0;iSetPIDsignals(seed2.GetPIDsignals(i,j),i,j); } pt->SetPIDTimBin(seed2.GetPIDTimBin(i),i); } Int_t * indexes3 = pt->GetBackupIndexes(); for (Int_t i=0;i<200;i++) { if (indexes2[i]==0) break; indexes3[i] = indexes2[i]; } //AliTRDtrack *pt = seed2; AliTRDtrack &t=*pt; FollowProlongation(t); if (t.GetNumberOfClusters() >= foundMin) { // UseClusters(&t); //CookLabel(pt, 1-fgkLabelFraction); t.CookdEdx(); CookdEdxTimBin(t); } found++; // cout<UpdateTrackParams(pt, AliESDtrack::kTRDrefit); for (Int_t i=0;iSetTRDsignals(pt->GetPIDsignals(i,j),i,j); } seed->SetTRDTimBin(pt->GetPIDTimBin(i),i); } }else{ //if not prolongation to TPC - propagate without update AliTRDtrack* seed2 = new AliTRDtrack(*seed); seed2->ResetCovariance(5.); AliTRDtrack *pt2 = new AliTRDtrack(*seed2,seed2->GetAlpha()); //AliTRDtrack *pt2 = new AliTRDtrack(*seed2); // !!! delete seed2; if (PropagateToX(*pt2,xTPC,fgkMaxStep)) { //pt2->CookdEdx(0.,1.); pt2->CookdEdx( ); // Modification by PS CookdEdxTimBin(*pt2); seed->UpdateTrackParams(pt2, AliESDtrack::kTRDrefit); for (Int_t i=0;iSetTRDsignals(pt2->GetPIDsignals(i,j),i,j); } seed->SetTRDTimBin(pt2->GetPIDTimBin(i),i); } } delete pt2; } delete pt; } cout<<"Number of loaded seeds: "<=0; iplane--){ // Int_t row0 = GetGlobalTimeBin(0, iplane,GetTimeBinsPerPlane()-1); Int_t rowlast = GetGlobalTimeBin(0, iplane,0); // // propagate track close to the plane if neccessary // Double_t currentx = fTrSec[0]->GetLayer(rowlast)->GetX(); if (currentx < -fgkMaxStep +t.GetX()){ //propagate closer to chamber - safety space fgkMaxStep if (!PropagateToX(t, currentx+fgkMaxStep, fgkMaxStep)) break; } if (!AdjustSector(&t)) break; // // get material budget // Double_t xyz0[3],xyz1[3],param[7],x,y,z; t.GetXYZ(xyz0); //starting global position // end global position x = fTrSec[0]->GetLayer(row0)->GetX(); if (!t.GetProlongation(x,y,z)) break; xyz1[0] = x*TMath::Cos(t.GetAlpha())-y*TMath::Sin(t.GetAlpha()); xyz1[1] = +x*TMath::Sin(t.GetAlpha())+y*TMath::Cos(t.GetAlpha()); xyz1[2] = z; AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param); rho = param[0]; radLength = param[1]; // get mean propagation parameters // // propagate nad update // sector = t.GetSector(); // for (Int_t itime=GetTimeBinsPerPlane()-1;itime>=0;itime--) { for (Int_t itime=0 ;itime345) t.fNExpectedLast++; AliTRDpropagationLayer& timeBin=*(fTrSec[sector]->GetLayer(ilayer)); AliTRDcluster *cl=0; UInt_t index=0; Double_t maxChi2=fgkMaxChi2; x = timeBin.GetX(); if (timeBin) { AliTRDcluster * cl0 = timeBin[0]; if (!cl0) continue; // no clusters in given time bin Int_t plane = fGeom->GetPlane(cl0->GetDetector()); if (plane>lastplane) continue; Int_t timebin = cl0->GetLocalTimeBin(); AliTRDcluster * cl2= GetCluster(&t,plane, timebin,index); // if (cl2) { cl =cl2; //Double_t h01 = GetTiltFactor(cl); //maxChi2=t.GetPredictedChi2(cl,h01); // //if (t.GetLabel()==277) // printf("%e %e %x\n",t.GetX(),maxChi2,(UInt_t)cl); // } if (cl) { // if (cl->GetNPads()<5) Double_t dxsample = timeBin.GetdX(); t.SetSampledEdx(TMath::Abs(cl->GetQ()/dxsample)); Double_t h01 = GetTiltFactor(cl); Int_t det = cl->GetDetector(); Int_t plane = fGeom->GetPlane(det); if (t.GetX()>345){ t.fNLast++; t.fChi2Last+=maxChi2; } Double_t xcluster = cl->GetX(); t.PropagateTo(xcluster,radLength,rho); if (!AdjustSector(&t)) break; maxChi2=t.GetPredictedChi2(cl,h01); if (t.GetLabel()==277) printf("%e %e %e %e\n",t.GetAlpha(),t.GetX(),t.GetY(),t.GetZ()); if(!t.UpdateMI(cl,maxChi2,index,h01,plane)) { } } } } } return expectedNumberOfClusters; } //_____________________________________________________________________________ Int_t AliTRDtracker::FollowBackProlongation(AliTRDtrack& t) { // // Starting from current radial position of track this function // extrapolates the track up to outer timebin and in the sensitive // layers confirms prolongation if a close cluster is found. // Returns the number of clusters expected to be found in sensitive layers // Use GEO manager for material Description // Int_t sector; Int_t clusters[1000]; for (Int_t i=0;i<1000;i++) clusters[i]=-1; Double_t radLength = 0.0; Double_t rho = 0.0; Int_t expectedNumberOfClusters = 0; Float_t ratio0=0; AliTRDtracklet tracklet; // // for (Int_t iplane = 0; iplaneGetLayer(row0)->GetX(); if (currentx fgkMaxStep +t.GetX()){ if (!PropagateToX(t, currentx-fgkMaxStep, fgkMaxStep)) break; } if (!AdjustSector(&t)) break; if (TMath::Abs(t.GetSnp())>fgkMaxSnp) break; // // get material budget inside of chamber // Double_t xyz0[3],xyz1[3],param[7],x,y,z; t.GetXYZ(xyz0); //starting global position // end global position x = fTrSec[0]->GetLayer(rowlast)->GetX(); if (!t.GetProlongation(x,y,z)) break; xyz1[0] = x*TMath::Cos(t.GetAlpha())-y*TMath::Sin(t.GetAlpha()); xyz1[1] = +x*TMath::Sin(t.GetAlpha())+y*TMath::Cos(t.GetAlpha()); xyz1[2] = z; AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param); rho = param[0]; radLength = param[1]; // get mean propagation parameters // // Find clusters // sector = t.GetSector(); Float_t ncl = FindClusters(sector,row0,rowlast,&t,clusters,tracklet); if (tracklet.GetN()=0;itime--) { Int_t ilayer = GetGlobalTimeBin(0, iplane,itime); expectedNumberOfClusters++; t.fNExpected++; if (t.GetX()>345) t.fNExpectedLast++; AliTRDpropagationLayer& timeBin=*(fTrSec[sector]->GetLayer(ilayer)); AliTRDcluster *cl=0; UInt_t index=0; Double_t maxChi2=fgkMaxChi2; x = timeBin.GetX(); // if (timeBin) { if (clusters[ilayer]>0) { index = clusters[ilayer]; cl = (AliTRDcluster*)GetCluster(index); //Double_t h01 = GetTiltFactor(cl); //maxChi2=t.GetPredictedChi2(cl,h01); // //if (t.GetLabel()==277) // printf("%e %e %x\n",t.GetX(),maxChi2,(UInt_t)cl); // } if (cl) { // if (cl->GetNPads()<5) Double_t dxsample = timeBin.GetdX(); t.SetSampledEdx(TMath::Abs(cl->GetQ()/dxsample)); Double_t h01 = GetTiltFactor(cl); Int_t det = cl->GetDetector(); Int_t plane = fGeom->GetPlane(det); if (t.GetX()>345){ t.fNLast++; t.fChi2Last+=maxChi2; } Double_t xcluster = cl->GetX(); t.PropagateTo(xcluster,radLength,rho); maxChi2=t.GetPredictedChi2(cl,h01); if (t.GetLabel()==277) printf("%e %e %e %e\n",t.GetAlpha(),t.GetX(),t.GetY(),t.GetZ()); if(!t.UpdateMI(cl,maxChi2,index,h01,plane)) { if(!t.Update(cl,maxChi2,index,h01)) { } } // // reset material budget if 2 consecutive gold if (plane>0) if (t.fTracklets[plane].GetN()+t.fTracklets[plane-1].GetN()>20){ t.fBudget[2] = 0; } } } } ratio0 = ncl/Float_t(fTimeBinsPerPlane); Float_t ratio1 = Float_t(t.fN+1)/Float_t(t.fNExpected+1.); if (tracklet.GetChi2()<18.&&ratio0>0.8 && ratio1>0.6 && ratio0+ratio1>1.5 && t.GetNCross()==0 && TMath::Abs(t.GetSnp())<0.85&&t.fN>20){ t.MakeBackupTrack(); // make backup of the track until is gold } } return expectedNumberOfClusters; } //_____________________________________________________________________________ Int_t AliTRDtracker::PropagateToX(AliTRDtrack& t, Double_t xToGo, Double_t maxStep) { // // Starting from current radial position of track this function // extrapolates the track up to radial position . // Returns 1 if track reaches the plane, and 0 otherwise // const Double_t kEpsilon = 0.00001; // Double_t tanmax = TMath::Tan(0.5*AliTRDgeometry::GetAlpha()); Double_t xpos = t.GetX(); Double_t dir = (xpos kEpsilon){ Double_t step = dir*TMath::Min(TMath::Abs(xToGo-xpos), maxStep); // Double_t xyz0[3],xyz1[3],param[7],x,y,z; t.GetXYZ(xyz0); //starting global position x = xpos+step; // if (!t.GetProlongation(x,y,z)) return 0; // no prolongation // xyz1[0] = x*TMath::Cos(t.GetAlpha())-y*TMath::Sin(t.GetAlpha()); xyz1[1] = +x*TMath::Sin(t.GetAlpha())+y*TMath::Cos(t.GetAlpha()); xyz1[2] = z; // AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param); if (!t.PropagateTo(x,param[1],param[0])) return 0; AdjustSector(&t); xpos = t.GetX(); } return 1; } //_____________________________________________________________________________ Int_t AliTRDtracker::LoadClusters(TTree *cTree) { // // Fills clusters into TRD tracking_sectors // Note that the numbering scheme for the TRD tracking_sectors // differs from that of TRD sectors // cout<<"\n Read Sectors clusters"<GetEntriesFast(); fNclusters=ncl; cout<<"\n LoadSectors: sorting "<UncheckedAt(ncl); Int_t detector=c->GetDetector(); Int_t localTimeBin=c->GetLocalTimeBin(); Int_t sector=fGeom->GetSector(detector); Int_t plane=fGeom->GetPlane(detector); Int_t trackingSector = CookSectorIndex(sector); if (c->GetLabel(0)>0){ Int_t chamber = fGeom->GetChamber(detector); fHoles[chamber][trackingSector]=kFALSE; } Int_t gtb = fTrSec[trackingSector]->CookTimeBinIndex(plane,localTimeBin); if(gtb < 0) continue; Int_t layer = fTrSec[trackingSector]->GetLayerNumber(gtb); index=ncl; // // apply pos correction Transform(c); fTrSec[trackingSector]->GetLayer(layer)->InsertCluster(c,index); } return 0; } //_____________________________________________________________________________ void AliTRDtracker::UnloadClusters() { // // Clears the arrays of clusters and tracks. Resets sectors and timebins // Int_t i, nentr; nentr = fClusters->GetEntriesFast(); for (i = 0; i < nentr; i++) delete fClusters->RemoveAt(i); fNclusters = 0; nentr = fSeeds->GetEntriesFast(); for (i = 0; i < nentr; i++) delete fSeeds->RemoveAt(i); nentr = fTracks->GetEntriesFast(); for (i = 0; i < nentr; i++) delete fTracks->RemoveAt(i); Int_t nsec = AliTRDgeometry::kNsect; for (i = 0; i < nsec; i++) { for(Int_t pl = 0; pl < fTrSec[i]->GetNumberOfLayers(); pl++) { fTrSec[i]->GetLayer(pl)->Clear(); } } } //_____________________________________________________________________________ void AliTRDtracker::MakeSeedsMI(Int_t /*inner*/, Int_t /*outer*/, AliESD * esd) { // // Creates seeds using clusters between position inner plane and outer plane // const Double_t kMaxTheta = 1; const Double_t kMaxPhi = 2.0; // const Double_t kRoad0y = 6; // road for middle cluster const Double_t kRoad0z = 8.5; // road for middle cluster // const Double_t kRoad1y = 2; // road in y for seeded cluster const Double_t kRoad1z = 20; // road in z for seeded cluster // const Double_t kRoad2y = 3; // road in y for extrapolated cluster const Double_t kRoad2z = 20; // road in z for extrapolated cluster const Int_t kMaxSeed = 3000; Int_t maxSec=AliTRDgeometry::kNsect; // // linear fitters in planes TLinearFitter fitterTC(2,"hyp2"); // fitting with tilting pads - kz fixed - kz= Z/x, + vertex const TLinearFitter fitterT2(4,"hyp4"); // fitting with tilting pads - kz not fixed fitterTC.StoreData(kTRUE); fitterT2.StoreData(kTRUE); AliRieman rieman(1000); // rieman fitter AliRieman rieman2(1000); // rieman fitter // // find the maximal and minimal layer for the planes // Int_t layers[6][2]; AliTRDpropagationLayer* reflayers[6]; for (Int_t i=0;i<6;i++){layers[i][0]=10000; layers[i][1]=0;} for (Int_t ns=0;nsGetNumberOfLayers();ilayer++){ AliTRDpropagationLayer& layer=*(fTrSec[ns]->GetLayer(ilayer)); if (layer==0) continue; Int_t det = layer[0]->GetDetector(); Int_t plane = fGeom->GetPlane(det); if (ilayerlayers[plane][1]) layers[plane][1] = ilayer; } } // AliTRDpadPlane *padPlane = AliTRDCommonParam::Instance()->GetPadPlane(0,0); Double_t h01 = TMath::Tan(-TMath::Pi() / 180.0 * padPlane->GetTiltingAngle()); Double_t hL[6]; // tilting angle Double_t xcl[6]; // x - position of reference cluster Double_t ycl[6]; // y - position of reference cluster Double_t zcl[6]; // z - position of reference cluster AliTRDcluster *cl[6]={0,0,0,0,0,0}; // seeding clusters Float_t padlength[6]={10,10,10,10,10,10}; //current pad-length Double_t chi2R =0, chi2Z=0; Double_t chi2RF =0, chi2ZF=0; // Int_t nclusters; // total number of clusters for (Int_t i=0;i<6;i++) {hL[i]=h01; if (i%2==1) hL[i]*=-1.;} // // // registered seed AliTRDseed *pseed = new AliTRDseed[kMaxSeed*6]; AliTRDseed *seed[kMaxSeed]; for (Int_t iseed=0;iseed=0;sLayer--){ //for (Int_t dseed=5;dseed<15; dseed+=3){ //loop over central seeding time bins iter+=1.; Int_t dseed = 5+Int_t(iter)*3; // Initialize seeding layers for (Int_t ilayer=0;ilayer<6;ilayer++){ reflayers[ilayer] = fTrSec[ns]->GetLayer(layers[ilayer][1]-dseed); xcl[ilayer] = reflayers[ilayer]->GetX(); } // Double_t xref = (xcl[sLayer+1] + xcl[sLayer+2])*0.5; AliTRDpropagationLayer& layer0=*reflayers[sLayer+0]; AliTRDpropagationLayer& layer1=*reflayers[sLayer+1]; AliTRDpropagationLayer& layer2=*reflayers[sLayer+2]; AliTRDpropagationLayer& layer3=*reflayers[sLayer+3]; // Int_t maxn3 = layer3; for (Int_t icl3=0;icl3GetSigmaZ2()*12.); ycl[sLayer+3] = cl3->GetY(); zcl[sLayer+3] = cl3->GetZ(); Float_t yymin0 = ycl[sLayer+3] - 1- kMaxPhi *(xcl[sLayer+3]-xcl[sLayer+0]); Float_t yymax0 = ycl[sLayer+3] + 1+ kMaxPhi *(xcl[sLayer+3]-xcl[sLayer+0]); Int_t maxn0 = layer0; // for (Int_t icl0=layer0.Find(yymin0);icl0IsUsed()&&cl0->IsUsed()) continue; ycl[sLayer+0] = cl0->GetY(); zcl[sLayer+0] = cl0->GetZ(); if ( ycl[sLayer+0]>yymax0) break; Double_t tanphi = (ycl[sLayer+3]-ycl[sLayer+0])/(xcl[sLayer+3]-xcl[sLayer+0]); if (TMath::Abs(tanphi)>kMaxPhi) continue; Double_t tantheta = (zcl[sLayer+3]-zcl[sLayer+0])/(xcl[sLayer+3]-xcl[sLayer+0]); if (TMath::Abs(tantheta)>kMaxTheta) continue; padlength[sLayer+0] = TMath::Sqrt(cl0->GetSigmaZ2()*12.); // // expected position in 1 layer Double_t y1exp = ycl[sLayer+0]+(tanphi) *(xcl[sLayer+1]-xcl[sLayer+0]); Double_t z1exp = zcl[sLayer+0]+(tantheta)*(xcl[sLayer+1]-xcl[sLayer+0]); Float_t yymin1 = y1exp - kRoad0y-tanphi; Float_t yymax1 = y1exp + kRoad0y+tanphi; Int_t maxn1 = layer1; // // for (Int_t icl1=layer1.Find(yymin1);icl1IsUsed()) nusedCl++; if (cl0->IsUsed()) nusedCl++; if (cl1->IsUsed()) nusedCl++; if (nusedCl>1) continue; ycl[sLayer+1] = cl1->GetY(); zcl[sLayer+1] = cl1->GetZ(); if ( ycl[sLayer+1]>yymax1) break; if (TMath::Abs(ycl[sLayer+1]-y1exp)>kRoad0y+tanphi) continue; if (TMath::Abs(zcl[sLayer+1]-z1exp)>kRoad0z) continue; padlength[sLayer+1] = TMath::Sqrt(cl1->GetSigmaZ2()*12.); // Double_t y2exp = ycl[sLayer+0]+(tanphi) *(xcl[sLayer+2]-xcl[sLayer+0])+(ycl[sLayer+1]-y1exp); Double_t z2exp = zcl[sLayer+0]+(tantheta)*(xcl[sLayer+2]-xcl[sLayer+0]); Int_t index2 = layer2.FindNearestCluster(y2exp,z2exp,kRoad1y, kRoad1z); if (index2<=0) continue; AliTRDcluster *cl2 = (AliTRDcluster*)GetCluster(index2); padlength[sLayer+2] = TMath::Sqrt(cl2->GetSigmaZ2()*12.); ycl[sLayer+2] = cl2->GetY(); zcl[sLayer+2] = cl2->GetZ(); if (TMath::Abs(cl2->GetZ()-z2exp)>kRoad0z) continue; // rieman.Reset(); rieman.AddPoint(xcl[sLayer+0],ycl[sLayer+0],zcl[sLayer+0],1,10); rieman.AddPoint(xcl[sLayer+1],ycl[sLayer+1],zcl[sLayer+1],1,10); rieman.AddPoint(xcl[sLayer+3],ycl[sLayer+3],zcl[sLayer+3],1,10); rieman.AddPoint(xcl[sLayer+2],ycl[sLayer+2],zcl[sLayer+2],1,10); rieman.Update(); // // reset fitter for (Int_t iLayer=0;iLayer<6;iLayer++){ cseed[iLayer].Reset(); } chi2Z =0.; chi2R=0.; for (Int_t iLayer=0;iLayer<4;iLayer++){ cseed[sLayer+iLayer].fZref[0] = rieman.GetZat(xcl[sLayer+iLayer]); chi2Z += (cseed[sLayer+iLayer].fZref[0]- zcl[sLayer+iLayer])* (cseed[sLayer+iLayer].fZref[0]- zcl[sLayer+iLayer]); cseed[sLayer+iLayer].fZref[1] = rieman.GetDZat(xcl[sLayer+iLayer]); cseed[sLayer+iLayer].fYref[0] = rieman.GetYat(xcl[sLayer+iLayer]); chi2R += (cseed[sLayer+iLayer].fYref[0]- ycl[sLayer+iLayer])* (cseed[sLayer+iLayer].fYref[0]- ycl[sLayer+iLayer]); cseed[sLayer+iLayer].fYref[1] = rieman.GetDYat(xcl[sLayer+iLayer]); } if (TMath::Sqrt(chi2R)>1./iter) continue; if (TMath::Sqrt(chi2Z)>7./iter) continue; // // // Float_t minmax[2]={-100,100}; for (Int_t iLayer=0;iLayer<4;iLayer++){ Float_t max = zcl[sLayer+iLayer]+padlength[sLayer+iLayer]*0.5+1 -cseed[sLayer+iLayer].fZref[0]; if (maxminmax[0]) minmax[0]=min; } Bool_t isFake = kFALSE; if (cl0->GetLabel(0)!=cl3->GetLabel(0)) isFake = kTRUE; if (cl1->GetLabel(0)!=cl3->GetLabel(0)) isFake = kTRUE; if (cl2->GetLabel(0)!=cl3->GetLabel(0)) isFake = kTRUE; if (AliTRDReconstructor::StreamLevel()>0){ if ((!isFake) || (icl3%10)==0 ){ //debugging print TTreeSRedirector& cstream = *fDebugStreamer; cstream<<"Seeds0"<< "isFake="<0) roadz = padlength[sLayer+jLayer]; // Float_t quality =10000; for (Int_t iTime=2;iTime<20;iTime++){ AliTRDpropagationLayer& layer = *(fTrSec[ns]->GetLayer(layers[sLayer+jLayer][1]-iTime)); Double_t dxlayer= layer.GetX()-xcl[sLayer+jLayer]; Double_t zexp = cl[sLayer+jLayer]->GetZ() ; if (iter>0){ // try 2 pad-rows in second iteration zexp = tseed.fZref[0]+ tseed.fZref[1]*dxlayer; if (zexp>cl[sLayer+jLayer]->GetZ()) zexp = cl[sLayer+jLayer]->GetZ()+padlength[sLayer+jLayer]*0.5; if (zexpGetZ()) zexp = cl[sLayer+jLayer]->GetZ()-padlength[sLayer+jLayer]*0.5; } // Double_t yexp = tseed.fYref[0]+ tseed.fYref[1]*dxlayer; Int_t index = layer.FindNearestCluster(yexp,zexp,kRoad1y, roadz); if (index<=0) continue; AliTRDcluster *cl = (AliTRDcluster*)GetCluster(index); // tseed.fIndexes[iTime] = index; tseed.fClusters[iTime] = cl; // register cluster tseed.fX[iTime] = dxlayer; // register cluster tseed.fY[iTime] = cl->GetY(); // register cluster tseed.fZ[iTime] = cl->GetZ(); // register cluster } tseed.Update(); //count the number of clusters and distortions into quality Float_t dangle = tseed.fYfit[1]-tseed.fYref[1]; Float_t tquality = (18-tseed.fN2)/2. + TMath::Abs(dangle)/0.1+ TMath::Abs(tseed.fYfit[0]-tseed.fYref[0])/0.2+ 2.*TMath::Abs(tseed.fMeanz-tseed.fZref[0])/padlength[jLayer]; if (iter==0 && tseed.IsOK()) { cseed[sLayer+jLayer] = tseed; quality = tquality; if (tquality<5) break; } if (tseed.IsOK() && tquality25){ isOK = kFALSE; break; } } // if (!isOK) continue; nclusters=0; for (Int_t iLayer=0;iLayer<4;iLayer++){ if (cseed[sLayer+iLayer].IsOK()){ nclusters+=cseed[sLayer+iLayer].fN2; } } // // iteration 0 rieman.Reset(); for (Int_t iLayer=0;iLayer<4;iLayer++){ rieman.AddPoint(xcl[sLayer+iLayer],cseed[sLayer+iLayer].fYfitR[0], cseed[sLayer+iLayer].fZProb,1,10); } rieman.Update(); // // chi2R =0; chi2Z=0; for (Int_t iLayer=0;iLayer<4;iLayer++){ cseed[sLayer+iLayer].fYref[0] = rieman.GetYat(xcl[sLayer+iLayer]); chi2R += (cseed[sLayer+iLayer].fYref[0]-cseed[sLayer+iLayer].fYfitR[0])* (cseed[sLayer+iLayer].fYref[0]-cseed[sLayer+iLayer].fYfitR[0]); cseed[sLayer+iLayer].fYref[1] = rieman.GetDYat(xcl[sLayer+iLayer]); cseed[sLayer+iLayer].fZref[0] = rieman.GetZat(xcl[sLayer+iLayer]); chi2Z += (cseed[sLayer+iLayer].fZref[0]- cseed[sLayer+iLayer].fMeanz)* (cseed[sLayer+iLayer].fZref[0]- cseed[sLayer+iLayer].fMeanz); cseed[sLayer+iLayer].fZref[1] = rieman.GetDZat(xcl[sLayer+iLayer]); } Double_t curv = rieman.GetC(); // // likelihoods // Double_t sumda = TMath::Abs(cseed[sLayer+0].fYfitR[1]- cseed[sLayer+0].fYref[1])+ TMath::Abs(cseed[sLayer+1].fYfitR[1]- cseed[sLayer+1].fYref[1])+ TMath::Abs(cseed[sLayer+2].fYfitR[1]- cseed[sLayer+2].fYref[1])+ TMath::Abs(cseed[sLayer+3].fYfitR[1]- cseed[sLayer+3].fYref[1]); Double_t likea = TMath::Exp(-sumda*10.6); Double_t likechi2 = 0.0000000001; if (chi2R<0.5) likechi2+=TMath::Exp(-TMath::Sqrt(chi2R)*7.73); Double_t likechi2z = TMath::Exp(-chi2Z*0.088)/TMath::Exp(-chi2Z*0.019); Double_t likeN = TMath::Exp(-(72-nclusters)*0.19); Double_t like = likea*likechi2*likechi2z*likeN; // Double_t likePrimY = TMath::Exp(-TMath::Abs(cseed[sLayer+0].fYref[1]-130*curv)*1.9); Double_t likePrimZ = TMath::Exp(-TMath::Abs(cseed[sLayer+0].fZref[1]- cseed[sLayer+0].fZref[0]/xcl[sLayer+0])*5.9); Double_t likePrim = TMath::Max(likePrimY*likePrimZ,0.0005); seedquality[registered] = like; seedlayer[registered] = sLayer; if (TMath::Log(0.000000000000001+like)<-15) continue; AliTRDseed seedb[6]; for (Int_t iLayer=0;iLayer<6;iLayer++){ seedb[iLayer] = cseed[iLayer]; } // //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //<<<<<<<<<<<<<<< FULL TRACK FIT PART <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< // Int_t nlayers = 0; Int_t nusedf = 0; Int_t findable = 0; // // add new layers - avoid long extrapolation // Int_t tLayer[2]={0,0}; if (sLayer==2) {tLayer[0]=1; tLayer[1]=0;} if (sLayer==1) {tLayer[0]=5; tLayer[1]=0;} if (sLayer==0) {tLayer[0]=4; tLayer[1]=5;} // for (Int_t iLayer=0;iLayer<2;iLayer++){ Int_t jLayer = tLayer[iLayer]; // set tracking layer cseed[jLayer].Reset(); cseed[jLayer].fTilt = hL[jLayer]; cseed[jLayer].fPadLength = padlength[jLayer]; cseed[jLayer].fX0 = xcl[jLayer]; // get pad length and rough cluster Int_t indexdummy = reflayers[jLayer]->FindNearestCluster(cseed[jLayer].fYref[0], cseed[jLayer].fZref[0],kRoad2y,kRoad2z); if (indexdummy<=0) continue; AliTRDcluster *cldummy = (AliTRDcluster*)GetCluster(indexdummy); padlength[jLayer] = TMath::Sqrt(cldummy->GetSigmaZ2()*12.); } AliTRDseed::FitRiemanTilt(cseed, kTRUE); // for (Int_t iLayer=0;iLayer<2;iLayer++){ Int_t jLayer = tLayer[iLayer]; // set tracking layer if ( (jLayer==0) && !(cseed[1].IsOK())) continue; // break not allowed if ( (jLayer==5) && !(cseed[4].IsOK())) continue; // break not allowed Float_t zexp = cseed[jLayer].fZref[0]; Double_t zroad = padlength[jLayer]*0.5+1.; // // for (Int_t iter=0;iter<2;iter++){ AliTRDseed tseed = cseed[jLayer]; Float_t quality = 10000; for (Int_t iTime=2;iTime<20;iTime++){ AliTRDpropagationLayer& layer = *(fTrSec[ns]->GetLayer(layers[jLayer][1]-iTime)); Double_t dxlayer = layer.GetX()-xcl[jLayer]; Double_t yexp = tseed.fYref[0]+tseed.fYref[1]*dxlayer; Float_t yroad = kRoad1y; Int_t index = layer.FindNearestCluster(yexp,zexp, yroad, zroad); if (index<=0) continue; AliTRDcluster *cl = (AliTRDcluster*)GetCluster(index); // tseed.fIndexes[iTime] = index; tseed.fClusters[iTime] = cl; // register cluster tseed.fX[iTime] = dxlayer; // register cluster tseed.fY[iTime] = cl->GetY(); // register cluster tseed.fZ[iTime] = cl->GetZ(); // register cluster } tseed.Update(); if (tseed.IsOK()){ Float_t dangle = tseed.fYfit[1]-tseed.fYref[1]; Float_t tquality = (18-tseed.fN2)/2. + TMath::Abs(dangle)/0.1+ TMath::Abs(tseed.fYfit[0]-tseed.fYref[0])/0.2+ 2.*TMath::Abs(tseed.fMeanz-tseed.fZref[0])/padlength[jLayer]; // if (tquality=lastquality || chi2>lastchi2) break; lastquality = sumquality; lastchi2 = chi2; if (iter>0){ for (Int_t jLayer=0;jLayer<6;jLayer++){ cseed[jLayer] = bseed[jLayer]; } } TMath::Sort(6,squality,sortindexes,kFALSE); // // for (Int_t jLayer=5;jLayer>1;jLayer--){ Int_t bLayer = sortindexes[jLayer]; AliTRDseed tseed = bseed[bLayer]; for (Int_t iTime=2;iTime<20;iTime++){ AliTRDpropagationLayer& layer = *(fTrSec[ns]->GetLayer(layers[bLayer][1]-iTime)); Double_t dxlayer= layer.GetX()-xcl[bLayer]; // Double_t zexp = tseed.fZref[0]; Double_t zcor = tseed.fTilt*(tseed.fZProb-tseed.fZref[0]); // Float_t roadz = padlength[bLayer]+1; if (TMath::Abs(tseed.fZProb-zexp)> padlength[bLayer]*0.5) {roadz = padlength[bLayer]*0.5;} if (tseed.fZfit[1]*tseed.fZref[1]<0) {roadz = padlength[bLayer]*0.5;} if (TMath::Abs(tseed.fZProb-zexp)<0.1*padlength[bLayer]) { zexp = tseed.fZProb; roadz = padlength[bLayer]*0.5; } // Double_t yexp = tseed.fYref[0]+ tseed.fYref[1]*dxlayer-zcor; Int_t index = layer.FindNearestCluster(yexp,zexp,kRoad1y, roadz); if (index<=0) continue; AliTRDcluster *cl = (AliTRDcluster*)GetCluster(index); // tseed.fIndexes[iTime] = index; tseed.fClusters[iTime] = cl; // register cluster tseed.fX[iTime] = dxlayer; // register cluster tseed.fY[iTime] = cl->GetY(); // register cluster tseed.fZ[iTime] = cl->GetZ(); // register cluster } tseed.Update(); if (tseed.IsOK()) { Float_t dangle = tseed.fYfit[1]-tseed.fYref[1]; Double_t zcor = tseed.fTilt*(tseed.fZProb-tseed.fZref[0]); // Float_t tquality = (18-tseed.fN2)/2. + TMath::Abs(dangle)/0.1+ TMath::Abs(tseed.fYfit[0]-(tseed.fYref[0]-zcor))/0.2+ 2.*TMath::Abs(tseed.fMeanz-tseed.fZref[0])/padlength[jLayer]; // if (tqualitypadlength[iLayer]*0.5+1) acceptablez = kFALSE; } } if (!acceptablez){ fitterT2.FixParameter(3,zmf); fitterT2.FixParameter(4,dzmf); fitterT2.Eval(); fitterT2.ReleaseParameter(3); fitterT2.ReleaseParameter(4); rpolz0 = fitterT2.GetParameter(3); rpolz1 = fitterT2.GetParameter(4); } // Double_t chi2TR = fitterT2.GetChisquare()/Float_t(npointsT); Double_t chi2TC = fitterTC.GetChisquare()/Float_t(npointsT); // Double_t polz1c = fitterTC.GetParameter(2); Double_t polz0c = polz1c*xref2; // Double_t aC = fitterTC.GetParameter(0); Double_t bC = fitterTC.GetParameter(1); Double_t cC = aC/TMath::Sqrt(bC*bC+1.); // curvature // Double_t aR = fitterT2.GetParameter(0); Double_t bR = fitterT2.GetParameter(1); Double_t dR = fitterT2.GetParameter(2); Double_t cR = 1+bR*bR-dR*aR; Double_t dca = 0.; if (cR>0){ dca = -dR/(TMath::Sqrt(1+bR*bR-dR*aR)+TMath::Sqrt(1+bR*bR)); cR = aR/TMath::Sqrt(cR); } // Double_t chi2ZT2=0, chi2ZTC=0; for (Int_t iLayer=0; iLayer<6;iLayer++){ if (cseed[iLayer].IsOK()){ Double_t zT2 = rpolz0+rpolz1*(xcl[iLayer] - xref2); Double_t zTC = polz0c+polz1c*(xcl[iLayer] - xref2); chi2ZT2 += TMath::Abs(cseed[iLayer].fMeanz-zT2); chi2ZTC += TMath::Abs(cseed[iLayer].fMeanz-zTC); } } chi2ZT2/=TMath::Max((nlayers-3.),1.); chi2ZTC/=TMath::Max((nlayers-3.),1.); // // // AliTRDseed::FitRiemanTilt(cseed, kTRUE); Float_t sumdaf = 0; for (Int_t iLayer=0;iLayer<6;iLayer++){ if (cseed[iLayer].IsOK()) sumdaf += TMath::Abs((cseed[iLayer].fYfit[1]-cseed[iLayer].fYref[1])/cseed[iLayer].fSigmaY2); } sumdaf /= Float_t (nlayers-2.); // // likelihoods for full track // Double_t likezf = TMath::Exp(-chi2ZF*0.14); Double_t likechi2C = TMath::Exp(-chi2TC*0.677); Double_t likechi2TR = TMath::Exp(-chi2TR*0.78); Double_t likeaf = TMath::Exp(-sumdaf*3.23); seedquality2[registered] = likezf*likechi2TR*likeaf; // Bool_t isGold = kFALSE; // // if (nlayers == 6 && TMath::Log(0.000000001+seedquality2[index])<-5.) isGold =kTRUE; // gold // if (nlayers == findable && TMath::Log(0.000000001+seedquality2[index])<-4.) isGold =kTRUE; // gold // if (isGold &&nusedf<10){ // for (Int_t jLayer=0;jLayer<6;jLayer++){ // if ( seed[index][jLayer].IsOK()&&TMath::Abs(seed[index][jLayer].fYfit[1]-seed[index][jLayer].fYfit[1])<0.1) // seed[index][jLayer].UseClusters(); //sign gold // } // } // // // Int_t index0=0; if (!cseed[0].IsOK()){ index0 = 1; if (!cseed[1].IsOK()) index0 = 2; } seedparams[registered][0] = cseed[index0].fX0; seedparams[registered][1] = cseed[index0].fYref[0]; seedparams[registered][2] = cseed[index0].fZref[0]; seedparams[registered][5] = cR; seedparams[registered][3] = cseed[index0].fX0*cR - TMath::Sin(TMath::ATan(cseed[0].fYref[1])); seedparams[registered][4] = cseed[index0].fZref[1]/ TMath::Sqrt(1+cseed[index0].fYref[1]*cseed[index0].fYref[1]); seedparams[registered][6] = ns; // // Int_t labels[12], outlab[24]; Int_t nlab=0; for (Int_t iLayer=0;iLayer<6;iLayer++){ if (!cseed[iLayer].IsOK()) continue; if (cseed[iLayer].fLabels[0]>=0) { labels[nlab] = cseed[iLayer].fLabels[0]; nlab++; } if (cseed[iLayer].fLabels[1]>=0) { labels[nlab] = cseed[iLayer].fLabels[1]; nlab++; } } Freq(nlab,labels,outlab,kFALSE); Int_t label = outlab[0]; Int_t frequency = outlab[1]; for (Int_t iLayer=0;iLayer<6;iLayer++){ cseed[iLayer].fFreq = frequency; cseed[iLayer].fC = cR; cseed[iLayer].fCC = cC; cseed[iLayer].fChi2 = chi2TR; cseed[iLayer].fChi2Z = chi2ZF; } // if (1||(!isFake)){ //debugging print Float_t zvertex = GetZ(); TTreeSRedirector& cstream = *fDebugStreamer; if (AliTRDReconstructor::StreamLevel()>0) cstream<<"Seeds1"<< "isFake="<GetLabel(ilab); if (tindex>=0){ labelsall[nlabelsall] = tindex; nlabelsall++; } } } } } } // if (nused>30) continue; // if (iter==0){ if (nlayers<6) continue; if (TMath::Log(0.000000001+seedquality2[index])<-5.) continue; // gold } // if (iter==1){ if (nlayers=0) { labels[nlab] = seed[index][iLayer].fLabels[0]; nlab++; } if (seed[index][iLayer].fLabels[1]>=0) { labels[nlab] = seed[index][iLayer].fLabels[1]; nlab++; } } } Freq(nlab,labels,outlab,kFALSE); Int_t label = outlab[0]; Int_t frequency = outlab[1]; Freq(nlabelsall,labelsall,outlab,kFALSE); Int_t label1 = outlab[0]; Int_t label2 = outlab[2]; Float_t fakeratio = (naccepted-outlab[1])/Float_t(naccepted); Float_t ratio = Float_t(nused)/Float_t(ncl); if (ratio<0.25){ for (Int_t jLayer=0;jLayer<6;jLayer++){ if ( seed[index][jLayer].IsOK()&&TMath::Abs(seed[index][jLayer].fYfit[1]-seed[index][jLayer].fYfit[1])<0.2 ) seed[index][jLayer].UseClusters(); //sign gold } } // Int_t eventNr = esd->GetEventNumber(); TTreeSRedirector& cstream = *fDebugStreamer; // // register seed // AliTRDtrack * track = RegisterSeed(seed[index],seedparams[index]); AliTRDtrack dummy; if (!track) track=&dummy; else{ AliESDtrack esdtrack; esdtrack.UpdateTrackParams(track, AliESDtrack::kTRDout); esdtrack.SetLabel(label); esd->AddTrack(&esdtrack); TTreeSRedirector& cstream = *fDebugStreamer; if (AliTRDReconstructor::StreamLevel()>0) cstream<<"Tracks"<< "EventNr="<0) cstream<<"Seeds2"<< "Iter="<= 0) or AliTRDrecPoints (option < 0) // from the file. The names of the cluster tree and branches // should match the ones used in AliTRDclusterizer::WriteClusters() // Int_t nsize = Int_t(ClusterTree->GetTotBytes()/(sizeof(AliTRDcluster))); TObjArray *clusterArray = new TObjArray(nsize+1000); TBranch *branch=ClusterTree->GetBranch("TRDcluster"); if (!branch) { Error("ReadClusters","Can't get the branch !"); return 1; } branch->SetAddress(&clusterArray); Int_t nEntries = (Int_t) ClusterTree->GetEntries(); // printf("found %d entries in %s.\n",nEntries,ClusterTree->GetName()); // Loop through all entries in the tree Int_t nbytes = 0; AliTRDcluster *c = 0; // printf("\n"); for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) { // Import the tree nbytes += ClusterTree->GetEvent(iEntry); // Get the number of points in the detector Int_t nCluster = clusterArray->GetEntriesFast(); // printf("\r Read %d clusters from entry %d", nCluster, iEntry); // Loop through all TRD digits for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) { c = (AliTRDcluster*)clusterArray->UncheckedAt(iCluster); AliTRDcluster *co = c; array->AddLast(co); // delete clusterArray->RemoveAt(iCluster); clusterArray->RemoveAt(iCluster); } } // cout<<"Allocated"<GetEntriesFast()<<"\n"; delete clusterArray; return 0; } //_____________________________________________________________________________ Bool_t AliTRDtracker::GetTrackPoint(Int_t index, AliTrackPoint& p) const { // // Get track space point with index i // Origin: C.Cheshkov // AliTRDcluster *cl = (AliTRDcluster*)fClusters->UncheckedAt(index); Int_t idet = cl->GetDetector(); Int_t isector = fGeom->GetSector(idet); Int_t ichamber= fGeom->GetChamber(idet); Int_t iplan = fGeom->GetPlane(idet); Double_t local[3]; local[0]=GetX(isector,iplan,cl->GetLocalTimeBin()); local[1]=cl->GetY(); local[2]=cl->GetZ(); Double_t global[3]; fGeom->RotateBack(idet,local,global); p.SetXYZ(global[0],global[1],global[2]); AliAlignObj::ELayerID iLayer = AliAlignObj::kTRD1; switch (iplan) { case 0: iLayer = AliAlignObj::kTRD1; break; case 1: iLayer = AliAlignObj::kTRD2; break; case 2: iLayer = AliAlignObj::kTRD3; break; case 3: iLayer = AliAlignObj::kTRD4; break; case 4: iLayer = AliAlignObj::kTRD5; break; case 5: iLayer = AliAlignObj::kTRD6; break; }; Int_t modId = isector*fGeom->Ncham()+ichamber; UShort_t volid = AliAlignObj::LayerToVolUID(iLayer,modId); p.SetVolumeID(volid); return kTRUE; } //_____________________________________________________________________________ void AliTRDtracker::CookLabel(AliKalmanTrack* pt, Float_t wrong) const { // // This cooks a label. Mmmmh, smells good... // Int_t label=123456789, index, i, j; Int_t ncl=pt->GetNumberOfClusters(); const Int_t kRange = fTrSec[0]->GetOuterTimeBin()+1; Bool_t labelAdded; // Int_t s[kRange][2]; Int_t **s = new Int_t* [kRange]; for (i=0; iGetClusterIndex(i); AliTRDcluster *c=(AliTRDcluster*)fClusters->UncheckedAt(index); t0=c->GetLabel(0); t1=c->GetLabel(1); t2=c->GetLabel(2); } for (i=0; iGetClusterIndex(i); AliTRDcluster *c=(AliTRDcluster*)fClusters->UncheckedAt(index); for (Int_t k=0; k<3; k++) { label=c->GetLabel(k); labelAdded=kFALSE; j=0; if (label >= 0) { while ( (!labelAdded) && ( j < kRange ) ) { if (s[j][0]==label || s[j][1]==0) { s[j][0]=label; s[j][1]=s[j][1]+1; labelAdded=kTRUE; } j++; } } } } Int_t max=0; label = -123456789; for (i=0; imax) { max=s[i][1]; label=s[i][0]; } } for (i=0; i wrong) label=-label; pt->SetLabel(label); } //_____________________________________________________________________________ void AliTRDtracker::UseClusters(const AliKalmanTrack* t, Int_t from) const { // // Use clusters, but don't abuse them! // const Float_t kmaxchi2 =18; const Float_t kmincl =10; AliTRDtrack * track = (AliTRDtrack*)t; // Int_t ncl=t->GetNumberOfClusters(); for (Int_t i=from; iGetClusterIndex(i); AliTRDcluster *c=(AliTRDcluster*)fClusters->UncheckedAt(index); // Int_t iplane = fGeom->GetPlane(c->GetDetector()); if (track->fTracklets[iplane].GetChi2()>kmaxchi2) continue; if (track->fTracklets[iplane].GetN()IsUsed())) c->Use(); } } //_____________________________________________________________________________ Double_t AliTRDtracker::ExpectedSigmaY2(Double_t , Double_t , Double_t ) const { // // Parametrised "expected" error of the cluster reconstruction in Y // Double_t s = 0.08 * 0.08; return s; } //_____________________________________________________________________________ Double_t AliTRDtracker::ExpectedSigmaZ2(Double_t , Double_t ) const { // // Parametrised "expected" error of the cluster reconstruction in Z // Double_t s = 9 * 9 /12.; return s; } //_____________________________________________________________________________ Double_t AliTRDtracker::GetX(Int_t sector, Int_t plane, Int_t localTB) const { // // Returns radial position which corresponds to time bin // in tracking sector and plane // Int_t index = fTrSec[sector]->CookTimeBinIndex(plane, localTB); Int_t pl = fTrSec[sector]->GetLayerNumber(index); return fTrSec[sector]->GetLayer(pl)->GetX(); } //_____________________________________________________________________________ AliTRDtracker::AliTRDpropagationLayer ::AliTRDpropagationLayer(Double_t x, Double_t dx, Double_t rho , Double_t radLength, Int_t tbIndex, Int_t plane) :fN(0) ,fSec(0) ,fClusters(NULL) ,fIndex(NULL) ,fX(x) ,fdX(dx) ,fRho(rho) ,fX0(radLength) ,fTimeBinIndex(tbIndex) ,fPlane(plane) ,fYmax(0) ,fYmaxSensitive(0) ,fHole(kFALSE) ,fHoleZc(0) ,fHoleZmax(0) ,fHoleYc(0) ,fHoleYmax(0) ,fHoleRho(0) ,fHoleX0(0) { // // AliTRDpropagationLayer constructor // for (Int_t i = 0; i < (Int_t) kZones; i++) { fZc[i] = 0; fZmax[i] = 0; } if (fTimeBinIndex >= 0) { fClusters = new AliTRDcluster*[kMaxClusterPerTimeBin]; fIndex = new UInt_t[kMaxClusterPerTimeBin]; } for (Int_t i = 0; i < 5; i++) { fIsHole[i] = kFALSE; } } //_____________________________________________________________________________ void AliTRDtracker::AliTRDpropagationLayer ::SetHole(Double_t Zmax, Double_t Ymax, Double_t rho , Double_t radLength, Double_t Yc, Double_t Zc) { // // Sets hole in the layer // fHole = kTRUE; fHoleZc = Zc; fHoleZmax = Zmax; fHoleYc = Yc; fHoleYmax = Ymax; fHoleRho = rho; fHoleX0 = radLength; } //_____________________________________________________________________________ AliTRDtracker::AliTRDtrackingSector ::AliTRDtrackingSector(AliTRDgeometry *geo, Int_t gs) :fN(0) ,fGeom(geo) ,fGeomSector(gs) { // // AliTRDtrackingSector Constructor // AliTRDpadPlane *padPlane = 0; AliTRDpropagationLayer *ppl = 0; // Get holes description from geometry Bool_t holes[AliTRDgeometry::kNcham]; for (Int_t icham = 0; icham < AliTRDgeometry::kNcham; icham++) { holes[icham] = fGeom->IsHole(0,icham,gs); } for (UInt_t i = 0; i < kMaxTimeBinIndex; i++) { fTimeBinIndex[i] = -1; } Double_t x; Double_t dx; Double_t rho; Double_t radLength; // Add layers for each of the planes Double_t dxAmp = (Double_t) fGeom->CamHght(); // Amplification region //Double_t dxDrift = (Double_t) fGeom->CdrHght(); // Drift region const Int_t kNchambers = AliTRDgeometry::Ncham(); Int_t tbIndex; Double_t ymax = 0; Double_t ymaxsensitive = 0; Double_t *zc = new Double_t[kNchambers]; Double_t *zmax = new Double_t[kNchambers]; Double_t *zmaxsensitive = new Double_t[kNchambers]; AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance(); if (!commonParam) { AliErrorGeneral("AliTRDtrackingSector::Ctor" ,"Could not get common parameters\n"); return; } for (Int_t plane = 0; plane < AliTRDgeometry::Nplan(); plane++) { ymax = fGeom->GetChamberWidth(plane) / 2.0; padPlane = commonParam->GetPadPlane(plane,0); ymaxsensitive = (padPlane->GetColSize(1) * padPlane->GetNcols() - 4.0) / 2.0; for (Int_t ch = 0; ch < kNchambers; ch++) { zmax[ch] = fGeom->GetChamberLength(plane,ch) / 2.0; Float_t pad = padPlane->GetRowSize(1); Float_t row0 = commonParam->GetRow0(plane,ch,0); Int_t nPads = commonParam->GetRowMax(plane,ch,0); zmaxsensitive[ch] = Float_t(nPads) * pad / 2.0; zc[ch] = -(pad * nPads) / 2.0 + row0; } dx = AliTRDcalibDB::Instance()->GetVdrift(0,0,0) / AliTRDcalibDB::Instance()->GetSamplingFrequency(); rho = 0.00295 * 0.85; //???? radLength = 11.0; Double_t x0 = (Double_t) AliTRDgeometry::GetTime0(plane); //Double_t xbottom = x0 - dxDrift; //Double_t xtop = x0 + dxAmp; Int_t nTimeBins = AliTRDcalibDB::Instance()->GetNumberOfTimeBins(); for (Int_t iTime = 0; iTime < nTimeBins; iTime++) { Double_t xlayer = iTime * dx - dxAmp; //if (xlayer<0) xlayer = dxAmp / 2.0; x = x0 - xlayer; tbIndex = CookTimeBinIndex(plane,iTime); ppl = new AliTRDpropagationLayer(x,dx,rho,radLength,tbIndex,plane); ppl->SetYmax(ymax,ymaxsensitive); ppl->SetZ(zc,zmax,zmaxsensitive); ppl->SetHoles(holes); InsertLayer(ppl); } } MapTimeBinLayers(); delete [] zc; delete [] zmax; delete [] zmaxsensitive; } //_____________________________________________________________________________ AliTRDtracker::AliTRDtrackingSector ::AliTRDtrackingSector(const AliTRDtrackingSector &/*t*/) :fN(0) ,fGeom(0) ,fGeomSector(0) { // // Copy constructor // } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDtrackingSector ::CookTimeBinIndex(Int_t plane, Int_t localTB) const { // // depending on the digitization parameters calculates "global" // time bin index for timebin in plane // // Int_t tbPerPlane = AliTRDcalibDB::Instance()->GetNumberOfTimeBins(); Int_t gtb = (plane+1) * tbPerPlane - localTB -1; if (localTB<0) return -1; if (gtb<0) return -1; return gtb; } //_____________________________________________________________________________ void AliTRDtracker::AliTRDtrackingSector ::MapTimeBinLayers() { // // For all sensitive time bins sets corresponding layer index // in the array fTimeBins // Int_t index; for(Int_t i = 0; i < fN; i++) { index = fLayers[i]->GetTimeBinIndex(); // printf("gtb %d -> pl %d -> x %f \n", index, i, fLayers[i]->GetX()); if(index < 0) continue; if(index >= (Int_t) kMaxTimeBinIndex) { printf("*** AliTRDtracker::MapTimeBinLayers: \n"); printf(" index %d exceeds allowed maximum of %d!\n", index, kMaxTimeBinIndex-1); continue; } fTimeBinIndex[index] = i; } } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDtrackingSector ::GetLayerNumber(Double_t x) const { // // Returns the number of time bin which in radial position is closest to // if(x >= fLayers[fN-1]->GetX()) return fN-1; if(x <= fLayers[0]->GetX()) return 0; Int_t b=0, e=fN-1, m=(b+e)/2; for (; b fLayers[m]->GetX()) b=m+1; else e=m; } if(TMath::Abs(x - fLayers[m]->GetX()) > TMath::Abs(x - fLayers[m+1]->GetX())) return m+1; else return m; } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDtrackingSector ::GetInnerTimeBin() const { // // Returns number of the innermost SENSITIVE propagation layer // return GetLayerNumber(0); } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDtrackingSector ::GetOuterTimeBin() const { // // Returns number of the outermost SENSITIVE time bin // return GetLayerNumber(GetNumberOfTimeBins() - 1); } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDtrackingSector ::GetNumberOfTimeBins() const { // // Returns number of SENSITIVE time bins // Int_t tb, layer; for(tb = kMaxTimeBinIndex-1; tb >=0; tb--) { layer = GetLayerNumber(tb); if(layer>=0) break; } return tb+1; } //_____________________________________________________________________________ void AliTRDtracker::AliTRDtrackingSector ::InsertLayer(AliTRDpropagationLayer* pl) { // // Insert layer in fLayers array. // Layers are sorted according to X coordinate. // if ( fN == ((Int_t) kMaxLayersPerSector)) { printf("AliTRDtrackingSector::InsertLayer(): Too many layers !\n"); return; } if (fN==0) {fLayers[fN++] = pl; return;} Int_t i=Find(pl->GetX()); memmove(fLayers+i+1 ,fLayers+i,(fN-i)*sizeof(AliTRDpropagationLayer*)); fLayers[i]=pl; fN++; } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDtrackingSector ::Find(Double_t x) const { // // Returns index of the propagation layer nearest to X // if (x <= fLayers[0]->GetX()) return 0; if (x > fLayers[fN-1]->GetX()) return fN; Int_t b=0, e=fN-1, m=(b+e)/2; for (; b fLayers[m]->GetX()) b=m+1; else e=m; } return m; } //_____________________________________________________________________________ void AliTRDtracker::AliTRDpropagationLayer ::SetZ(Double_t* center, Double_t *w, Double_t *wsensitive ) { // // set centers and the width of sectors // for (Int_t icham=0;icham< AliTRDgeometry::kNcham;icham++){ fZc[icham] = center[icham]; fZmax[icham] = w[icham]; fZmaxSensitive[icham] = wsensitive[icham]; // printf("chamber\t%d\tzc\t%f\tzmax\t%f\tzsens\t%f\n",icham,fZc[icham],fZmax[icham],fZmaxSensitive[icham]); } } //_____________________________________________________________________________ void AliTRDtracker::AliTRDpropagationLayer::SetHoles(Bool_t *holes) { // // set centers and the width of sectors // fHole = kFALSE; for (Int_t icham=0;icham< AliTRDgeometry::kNcham;icham++){ fIsHole[icham] = holes[icham]; if (holes[icham]) fHole = kTRUE; } } //_____________________________________________________________________________ void AliTRDtracker::AliTRDpropagationLayer ::InsertCluster(AliTRDcluster* c, UInt_t index) { // // Insert cluster in cluster array. // Clusters are sorted according to Y coordinate. // if(fTimeBinIndex < 0) { printf("*** attempt to insert cluster into non-sensitive time bin!\n"); return; } if (fN== (Int_t) kMaxClusterPerTimeBin) { printf("AliTRDpropagationLayer::InsertCluster(): Too many clusters !\n"); return; } if (fN==0) {fIndex[0]=index; fClusters[fN++]=c; return;} Int_t i=Find(c->GetY()); memmove(fClusters+i+1 ,fClusters+i,(fN-i)*sizeof(AliTRDcluster*)); memmove(fIndex +i+1 ,fIndex +i,(fN-i)*sizeof(UInt_t)); fIndex[i]=index; fClusters[i]=c; fN++; } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDpropagationLayer::Find(Float_t y) const { // // Returns index of the cluster nearest in Y // if (fN<=0) return 0; if (y <= fClusters[0]->GetY()) return 0; if (y > fClusters[fN-1]->GetY()) return fN; Int_t b=0, e=fN-1, m=(b+e)/2; for (; b fClusters[m]->GetY()) b=m+1; else e=m; } return m; } //_____________________________________________________________________________ Int_t AliTRDtracker::AliTRDpropagationLayer ::FindNearestCluster(Float_t y, Float_t z, Float_t maxroad , Float_t maxroadz) const { // // Returns index of the cluster nearest to the given y,z // Int_t index = -1; Int_t maxn = fN; Float_t mindist = maxroad; // for (Int_t i=Find(y-maxroad); iGetY(); // if (ycl > y+maxroad) break; if (TMath::Abs(c->GetZ()-z) > maxroadz) continue; if (TMath::Abs(ycl-y)GetDetector(); Int_t plane = fGeom->GetPlane(det); AliTRDpadPlane *padPlane = AliTRDCommonParam::Instance()->GetPadPlane(plane,0); Double_t h01 = TMath::Tan(-TMath::Pi() / 180.0 * padPlane->GetTiltingAngle()); if(fNoTilt) h01 = 0; return h01; } //_____________________________________________________________________________ void AliTRDtracker::CookdEdxTimBin(AliTRDtrack& TRDtrack) { // // *** ADDED TO GET MORE INFORMATION FOR TRD PID ---- PS // This is setting fdEdxPlane and fTimBinPlane // Sums up the charge in each plane for track TRDtrack and also get the // Time bin for Max. Cluster // Prashant Shukla (shukla@physi.uni-heidelberg.de) // Double_t clscharge[AliESDtrack::kNPlane][AliESDtrack::kNSlice]; Double_t maxclscharge[AliESDtrack::kNPlane]; Int_t nCluster[AliESDtrack::kNPlane][AliESDtrack::kNSlice]; Int_t timebin[AliESDtrack::kNPlane]; //Initialization of cluster charge per plane. for (Int_t iPlane = 0; iPlane < AliESDtrack::kNPlane; iPlane++) { for (Int_t iSlice = 0; iSlice < AliESDtrack::kNSlice; iSlice++) { clscharge[iPlane][iSlice] = 0.0; nCluster[iPlane][iSlice] = 0; } } //Initialization of cluster charge per plane. for (Int_t iPlane = 0; iPlane < AliESDtrack::kNPlane; iPlane++) { timebin[iPlane] = -1; maxclscharge[iPlane] = 0.0; } // Loop through all clusters associated to track TRDtrack Int_t nClus = TRDtrack.GetNumberOfClusters(); // from Kalmantrack for (Int_t iClus = 0; iClus < nClus; iClus++) { Double_t charge = TRDtrack.GetClusterdQdl(iClus); Int_t index = TRDtrack.GetClusterIndex(iClus); AliTRDcluster *pTRDcluster = (AliTRDcluster *) GetCluster(index); if (!pTRDcluster) continue; Int_t tb = pTRDcluster->GetLocalTimeBin(); if (!tb) continue; Int_t detector = pTRDcluster->GetDetector(); Int_t iPlane = fGeom->GetPlane(detector); Int_t iSlice = tb*AliESDtrack::kNSlice/AliTRDtrack::kNtimeBins; clscharge[iPlane][iSlice] = clscharge[iPlane][iSlice]+charge; if(charge > maxclscharge[iPlane]) { maxclscharge[iPlane] = charge; timebin[iPlane] = tb; } nCluster[iPlane][iSlice]++; } // end of loop over cluster // Setting the fdEdxPlane and fTimBinPlane variabales Double_t totalCharge = 0; for (Int_t iPlane = 0; iPlane < AliESDtrack::kNPlane; iPlane++) { for (Int_t iSlice = 0; iSlice < AliESDtrack::kNSlice; iSlice++) { if (nCluster[iPlane][iSlice]) clscharge[iPlane][iSlice] /= nCluster[iPlane][iSlice]; TRDtrack.SetPIDsignals(clscharge[iPlane][iSlice], iPlane, iSlice); totalCharge= totalCharge+clscharge[iPlane][iSlice]; } TRDtrack.SetPIDTimBin(timebin[iPlane], iPlane); } // Int_t i; // Int_t nc=TRDtrack.GetNumberOfClusters(); // Float_t dedx=0; // for (i=0; iGetX(); Double_t sigmaz = TMath::Sqrt(TMath::Abs(track->GetSigmaZ2())); Int_t nall=0; Int_t nfound=0; Double_t h01 =0; Int_t plane =-1; Int_t detector =-1; Float_t padlength=0; AliTRDtrack track2(*track); Float_t snpy = track->GetSnp(); Float_t tany = TMath::Sqrt(snpy*snpy/(1.-snpy*snpy)); if (snpy<0) tany*=-1; // Double_t sy2=ExpectedSigmaY2(x0,track->GetTgl(),track->GetPt()); Double_t sz2=ExpectedSigmaZ2(x0,track->GetTgl()); Double_t road = 15.*sqrt(track->GetSigmaY2() + sy2); if (road>6.) road=6.; // for (Int_t it=0;itGetLayer(it+t0)); if (timeBin==0) continue; // no indexes1 Int_t maxn = timeBin; x[it] = timeBin.GetX(); track2.PropagateTo(x[it]); yt[it] = track2.GetY(); zt[it] = track2.GetZ(); Double_t y=yt[it],z=zt[it]; Double_t chi2 =1000000; nall++; // // find 2 nearest cluster at given time bin // // for (Int_t i=timeBin.Find(y-road); iGetDetector(); plane = fGeom->GetPlane(det); padlength = TMath::Sqrt(c->GetSigmaZ2()*12.); } // if (c->GetLocalTimeBin()==0) continue; if (c->GetY() > y+road) break; if((c->GetZ()-z)*(c->GetZ()-z) > 12. * sz2) continue; Double_t dist = TMath::Abs(c->GetZ()-z); if (dist> (0.5*padlength+6.*sigmaz)) continue; // 6 sigma boundary cut Double_t cost = 0; // if (dist> (0.5*padlength-sigmaz)){ // sigma boundary cost function cost = (dist-0.5*padlength)/(2.*sigmaz); if (cost>-1) cost= (cost+1.)*(cost+1.); else cost=0; } // Int_t label = TMath::Abs(track->GetLabel()); // if (c->GetLabel(0)!=label && c->GetLabel(1)!=label&&c->GetLabel(2)!=label) continue; chi2=track2.GetPredictedChi2(c,h01)+cost; // clfound++; if (chi2 > maxChi2[1]) continue; detector = c->GetDetector(); for (Int_t ih=2;ih<9; ih++){ //store the clusters in the road if (cl[ih][it]==0){ cl[ih][it] = c; indexes[ih][it] =timeBin.GetIndex(i); // index - 9 - reserved for outliers break; } } // if (chi2 t1-t0) continue; if (!cl[0][it+dt]) continue; zmean[it]+=cl[0][it+dt]->GetZ(); nmean[it]+=1.; } zmean[it]/=nmean[it]; } // for (Int_t it=0; itGetX(); Double_t ytrack,ztrack; track2.GetProlongation(xcluster, ytrack, ztrack ); dz[ih][it] = cl[ih][it]->GetZ()- ztrack; // calculate distance from track in z dy[ih][it] = cl[ih][it]->GetY()+ dz[ih][it]*h01 -ytrack; // in y } // minimize changes if (!cl[0][it]) continue; if (TMath::Abs(cl[0][it]->GetZ()-zmean[it])> padlength*0.8 &&cl[1][it]) if (TMath::Abs(cl[1][it]->GetZ()-zmean[it])< padlength*0.5){ best[0][it]=1; } } // // iterative choosing of "best path" // // Int_t label = TMath::Abs(track->GetLabel()); Int_t bestiter=0; // for (Int_t iter=0;iter<9;iter++){ // changes[iter]= 0; sumz = 0; sum=0; sumdy=0;sumdy2=0;sumx=0;sumx2=0;sumxy=0;mpads=0; ngood[iter]=0; nbad[iter]=0; // linear fit for (Int_t it=0;itGetZ(); Double_t zafter = cl[best[iter][it]][it]->GetZ(); for (Int_t itd = it-1; itd>=0;itd--) { if (cl[best[iter][itd]][itd]) { zbefore= cl[best[iter][itd]][itd]->GetZ(); break; } } for (Int_t itd = it+1; itdGetZ(); break; } } if (TMath::Abs(cl[best[iter][it]][it]->GetZ()-zbefore)>0.1&&TMath::Abs(cl[best[iter][it]][it]->GetZ()-zafter)>0.1) changes[iter]++; // Double_t dx = x[it]-xmean; // distance to reference x sumz += cl[best[iter][it]][it]->GetZ(); sum++; sumdy += dy[best[iter][it]][it]; sumdy2+= dy[best[iter][it]][it]*dy[best[iter][it]][it]; sumx += dx; sumx2 += dx*dx; sumxy += dx*dy[best[iter][it]][it]; mpads += cl[best[iter][it]][it]->GetNPads(); if (cl[best[iter][it]][it]->GetLabel(0)==label || cl[best[iter][it]][it]->GetLabel(1)==label||cl[best[iter][it]][it]->GetLabel(2)==label){ ngood[iter]++; } else{ nbad[iter]++; } } // // calculates line parameters // Double_t det = sum*sumx2-sumx*sumx; angle[iter] = (sum*sumxy-sumx*sumdy)/det; mean[iter] = (sumx2*sumdy-sumx*sumxy)/det; meanz[iter] = sumz/sum; moffset[iter] = sumdy/sum; mpads /= sum; // mean number of pads // // Double_t sigma2 = 0; // normalized residuals - for line fit Double_t sigma1 = 0; // normalized residuals - constant fit // for (Int_t it=0;itGetSigmaY2(); Double_t weighty = (moffset[iter]/sigmatr2)/sweight; // weighted mean Double_t sigmacl = TMath::Sqrt(sigma1*sigma1+track->GetSigmaY2()); // Double_t mindist=100000; Int_t ihbest=0; for (Int_t ih=0;ih<10;ih++){ if (!cl[ih][it]) break; Double_t dist2 = (dy[ih][it]-weighty)/sigmacl; dist2*=dist2; //chi2 distance if (dist2GetSigmaY2(); Double_t sa2 = sangle[iter] + track->GetSigmaSnp2();//track->fCee; Double_t say = track->GetSigmaSnpY();//track->fCey; // Double_t chi20 = mean[bestiter]*mean[bestiter]/sy2+angle[bestiter]*angle[bestiter]/sa2; // Double_t chi21 = mean[iter]*mean[iter]/sy2+angle[iter]*angle[iter]/sa2; Double_t detchi = sy2*sa2-say*say; Double_t invers[3] = {sa2/detchi, sy2/detchi, -say/detchi}; //inverse value of covariance matrix Double_t chi20 = mean[bestiter]*mean[bestiter]*invers[0]+angle[bestiter]*angle[bestiter]*invers[1]+ 2.*mean[bestiter]*angle[bestiter]*invers[2]; Double_t chi21 = mean[iter]*mean[iter]*invers[0]+angle[iter]*angle[iter]*invers[1]+ 2*mean[iter]*angle[iter]*invers[2]; tchi2s[iter] =chi21; // if (changes[iter]<=changes[bestiter] && chi2125.) sigma2*=tchi2s[bestiter]/25.; //if (tchi2s[bestiter]>25.) sigma2=1000.; // dont'accept Double_t exB = AliTRDcalibDB::Instance()->GetOmegaTau(AliTRDcalibDB::Instance()->GetVdrift(0,0,0)); Double_t expectederr = sigma2*sigma2+0.01*0.01; if (mpads>3.5) expectederr += (mpads-3.5)*0.04; if (changes[bestiter]>1) expectederr+= changes[bestiter]*0.01; expectederr+=(0.03*(tany-exB)*(tany-exB))*15; // if (tchi2s[bestiter]>18.) expectederr*= tchi2s[bestiter]/18.; //expectederr+=10000; for (Int_t it=0;itSetSigmaY2(expectederr); // set cluster error if (!cl[best[bestiter][it]][it]->IsUsed()){ cl[best[bestiter][it]][it]->SetY( cl[best[bestiter][it]][it]->GetY()); // cl[best[bestiter][it]][it]->Use(); } // // time bins with maximal charge if (TMath::Abs(cl[best[bestiter][it]][it]->GetQ())> maxcharge){ maxcharge = TMath::Abs(cl[best[bestiter][it]][it]->GetQ()); maxpos = cl[best[bestiter][it]][it]->GetLocalTimeBin(); } if (TMath::Abs(cl[best[bestiter][it]][it]->GetQ())> maxcharge4){ if (cl[best[bestiter][it]][it]->GetLocalTimeBin()>=4){ maxcharge4 = TMath::Abs(cl[best[bestiter][it]][it]->GetQ()); maxpos4 = cl[best[bestiter][it]][it]->GetLocalTimeBin(); } } if (TMath::Abs(cl[best[bestiter][it]][it]->GetQ())> maxcharge5){ if (cl[best[bestiter][it]][it]->GetLocalTimeBin()>=5){ maxcharge5 = TMath::Abs(cl[best[bestiter][it]][it]->GetQ()); maxpos5 = cl[best[bestiter][it]][it]->GetLocalTimeBin(); } } // // time bins with maximal charge if (TMath::Abs(cl[best[bestiter][it]][it]->GetQ())> maxcharge){ maxcharge = TMath::Abs(cl[best[bestiter][it]][it]->GetQ()); maxpos = cl[best[bestiter][it]][it]->GetLocalTimeBin(); } if (TMath::Abs(cl[best[bestiter][it]][it]->GetQ())> maxcharge4){ if (cl[best[bestiter][it]][it]->GetLocalTimeBin()>=4){ maxcharge4 = TMath::Abs(cl[best[bestiter][it]][it]->GetQ()); maxpos4 = cl[best[bestiter][it]][it]->GetLocalTimeBin(); } } if (TMath::Abs(cl[best[bestiter][it]][it]->GetQ())> maxcharge5){ if (cl[best[bestiter][it]][it]->GetLocalTimeBin()>=5){ maxcharge5 = TMath::Abs(cl[best[bestiter][it]][it]->GetQ()); maxpos5 = cl[best[bestiter][it]][it]->GetLocalTimeBin(); } } clusters[it+t0] = indexes[best[bestiter][it]][it]; //if (cl[best[bestiter][it]][it]->GetLocalTimeBin()>4 && cl[best[bestiter][it]][it]->GetLocalTimeBin()<18) clusters[it+t0] = indexes[best[bestiter][it]][it]; //Test } // // set tracklet parameters // Double_t trackleterr2 = smoffset[bestiter]+0.01*0.01; if (mpads>3.5) trackleterr2 += (mpads-3.5)*0.04; trackleterr2+= changes[bestiter]*0.01; trackleterr2*= TMath::Max(14.-nfound,1.); trackleterr2+= 0.2*(tany-exB)*(tany-exB); // tracklet.Set(xmean, track2.GetY()+moffset[bestiter], meanz[bestiter], track2.GetAlpha(), trackleterr2); //set tracklet parameters tracklet.SetTilt(h01); tracklet.SetP0(mean[bestiter]); tracklet.SetP1(angle[bestiter]); tracklet.SetN(nfound); tracklet.SetNCross(changes[bestiter]); tracklet.SetPlane(plane); tracklet.SetSigma2(expectederr); tracklet.SetChi2(tchi2s[bestiter]); tracklet.SetMaxPos(maxpos,maxpos4,maxpos5); track->fTracklets[plane] = tracklet; track->fNWrong+=nbad[0]; // // Debuging part // TClonesArray array0("AliTRDcluster"); TClonesArray array1("AliTRDcluster"); array0.ExpandCreateFast(t1-t0+1); array1.ExpandCreateFast(t1-t0+1); TTreeSRedirector& cstream = *fDebugStreamer; AliTRDcluster dummy; Double_t dy0[100]; Double_t dyb[100]; for (Int_t it=0;it0) cstream<<"tracklet"<< "track.="<0;itime--){ if (seeds[ilayer].fIndexes[itime]>0){ index = seeds[ilayer].fIndexes[itime]; cl = seeds[ilayer].fClusters[itime]; break; } } } if (index>0) break; } if (cl==0) return 0; AliTRDtrack * track = new AliTRDtrack(cl,index,¶ms[1],c, params[0],params[6]*alpha+shift); track->PropagateTo(params[0]-5.); track->ResetCovariance(1); // Int_t rc=FollowBackProlongation(*track); if (rc<30) { delete track; track =0; }else{ track->CookdEdx(); CookdEdxTimBin(*track); CookLabel(track, 0.9); } return track; }