/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ ////////////////////////////////////////////////////////////////////// // // // (V-zero) detector version 2 as designed by the Lyon group // // All comments should be sent to Brigitte CHEYNIS : // // b.cheynis@ipnl.in2p3.fr // // Geometry of the 19th of april 2002 // // (circular instead of trapezoidal shapes as in previous versions // // // ////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AliVZEROv2.h" #include "AliRun.h" #include "AliMagF.h" #include "AliMC.h" #include "AliVZEROhit.h" #include "AliVZEROdigit.h" #include #include #include #include #include "TObjectTable.h" #include "AliConst.h" #include "TLorentzVector.h" ClassImp(AliVZEROv2) //-------------------------------------------------------------------- AliVZEROv2:: AliVZEROv2():AliVZERO() { } //-------------------------------------------------------------------- AliVZEROv2::AliVZEROv2(const char *name, const char *title): AliVZERO(name,title) { // Standard constructor for V-zeroR Detector (right part) version 0 Int_t i; printf("\n"); for(i=0;i<30;i++) printf("*"); printf(" Create VZERO object "); for(i=0;i<30;i++) printf("*"); printf("\n"); } //------------------------------------------------------------------------- void AliVZEROv2::CreateGeometry() { // Creates the GEANT geometry of the V-zero Detector version 2 Int_t i; printf("\n"); for(i=0;i<30;i++) printf("*"); printf(" Create VZERO Geometry "); for(i=0;i<30;i++) printf("*"); printf("\n"); Int_t *idtmed = fIdtmed->GetArray()-2999; Int_t n_detec_R = 1; Int_t n_detec_L = 1; Int_t n_cells_R = 1; Int_t n_cells_L = 1; Int_t idrotm[999]; Float_t height1, height2, height3, height4, height5; Float_t height; Float_t theta; Float_t half_thick_qua; Float_t zdet; Float_t r0, r5; Float_t pi = TMath::Pi(); height1 = 2.0; // height of cell 1, in cm height2 = 3.2; // height of cell 2, in cm height3 = 4.9; // height of cell 3, in cm height4 = 7.5; // height of cell 4, in cm height5 = 12.0; // height of cell 5, in cm theta = pi/6.0/2.0; // half angular opening = 15 degrees half_thick_qua = fThickness1/2.0; // half thickness of elementary cell (inner ring) zdet = 86.9 +fThickness/2.0; // distance to vertex (along Z axis) r0 = 4.0; // closest distance to center of the beam pipe height = height1 + height2 + height3 + height4 + height5; r5 = r0 + height; // Creation of mother volume V0LE - left part - : // Entrance face at -350.0 cm ... Float_t partube[3]; partube[0] = 4.3; partube[1] = 45.0; partube[2] = fThickness1/2.0; gMC->Gsvolu("V0LE","TUBE",idtmed[3005],partube,3); // Creation of five rings - left part - : // Entrance face at -350.0 cm ... // Mother volume V0L0 in which will be set 5 scintillator cells Float_t partubs[5]; Float_t r0_left = 4.3; Float_t height1_left = 2.6; Float_t height2_left = 4.1; Float_t height3_left = 6.4; Float_t height4_left = 10.2; Float_t height5_left = 16.9; Float_t height_left = height1_left + height2_left + height3_left + height4_left + height5_left; Float_t r5_left = r0_left + height_left; partubs[0] = r0_left; partubs[1] = r5_left; partubs[2] = fThickness1/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; gMC->Gsvolu("V0L0","TUBS",idtmed[3010],partubs,5); // air volume Float_t r1_left = r0_left + height1_left; partubs[0] = r0_left; partubs[1] = r1_left; gMC->Gsvolu("V0L1","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L1",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); Float_t r2_left = r1_left + height2_left; partubs[0] = r1_left; partubs[1] = r2_left; gMC->Gsvolu("V0L2","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L2",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); Float_t r3_left = r2_left + height3_left; partubs[0] = r2_left; partubs[1] = r3_left; gMC->Gsvolu("V0L3","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L3",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); Float_t r4_left = r3_left + height4_left; partubs[0] = r3_left; partubs[1] = r4_left; gMC->Gsvolu("V0L4","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L4",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); partubs[0] = r4_left; partubs[1] = r5_left; partubs[3] = 90.0-15.0; partubs[4] = 120.0-30.0; gMC->Gsvolu("V0L5","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L5",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); partubs[3] = 120.0-30.0; partubs[4] = 120.0-15.0; gMC->Gsvolu("V0L6","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L6",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); // Creation of mother volume V0RI - right part - : partube[0] = r0 - 0.2; partube[1] = r5 + 1.0; partube[2] = fThickness/2.0; gMC->Gsvolu("V0RI","TUBE",idtmed[3010],partube,3); // Creation of carbon lids (1 mm thick) to keep V0RI box shut... partube[0] = r0; partube[1] = r5; partube[2] = +0.1/2.0; gMC->Gsvolu("V0CA","TUBE",idtmed[3001],partube,3); gMC->Gspos("V0CA",1,"V0RI",0.0,0.0, fThickness/2.0-partube[2],0,"ONLY"); gMC->Gspos("V0CA",2,"V0RI",0.0,0.0,-fThickness/2.0+partube[2],0,"ONLY"); // Creation of aluminum rings to maintain the V0RI pieces ... partube[0] = r0 - 0.2; partube[1] = r0; partube[2] = +fThickness/2.0; gMC->Gsvolu("V0IR","TUBE",idtmed[3003],partube,3); gMC->Gspos("V0IR",1,"V0RI",0.0,0.0,0.0,0,"ONLY"); partube[0] = r5; partube[1] = r5 + 1.0; partube[2] = +fThickness/2.0; gMC->Gsvolu("V0ER","TUBE",idtmed[3003],partube,3); gMC->Gspos("V0ER",1,"V0RI",0.0,0.0,0.0,0,"ONLY"); // Mother volume V0R0 in which will be set 5 scintillator cells partubs[0] = r0; partubs[1] = r5; partubs[2] = fThickness/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; gMC->Gsvolu("V0R0","TUBS",idtmed[3010],partubs,5); // air volume // Elementary cell of ring 1 : // (the cells will be shifted by 3 mm to output fibers) Float_t offset_fibers = 0.3; Float_t offset = -fThickness/2.0 + 0.1; Float_t r1 = r0 + height1; partubs[0] = r0; partubs[1] = r1; partubs[2] = fThickness1/2.0; gMC->Gsvolu("V0R1","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R1",1,"V0R0", 0.0, 0.0 , 0.0, 0,"ONLY"); // Elementary cell of ring 2 : Float_t r2 = r1 + height2; partubs[0] = r1; partubs[1] = r2; gMC->Gsvolu("V0R2","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R2",1,"V0R0", 0.0, 0.0 , offset_fibers, 0,"ONLY"); // Elementary cell of ring 3 : Float_t r3 = r2 + height3; partubs[0] = r2; partubs[1] = r3; gMC->Gsvolu("V0R3","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R3",1,"V0R0", 0.0, 0.0 , 2.0 * offset_fibers, 0,"ONLY"); // Elementary cell of ring 4 : Float_t r4 = r3 + height4 ; partubs[0] = r3; partubs[1] = r4; gMC->Gsvolu("V0R4","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R4",1,"V0R0", 0.0, 0.0 , 3.0 * offset_fibers, 0,"ONLY"); // Elementary cells of ring 5 : partubs[0] = r4; partubs[1] = r5; partubs[3] = 90.0-15.0; partubs[4] = 120.0-30.0; gMC->Gsvolu("V0R5","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R5",1,"V0R0", 0.0, 0.0 , 4.0 * offset_fibers, 0,"ONLY"); partubs[3] = 120.0-30.0; partubs[4] = 120.0-15.0; gMC->Gsvolu("V0R6","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R6",1,"V0R0", 0.0, 0.0 , 4.0 * offset_fibers, 0,"ONLY"); Float_t phi_deg = 180./6.; // Right part : for(Float_t phi = 15.0; phi < 360.0; phi = phi + phi_deg) { AliMatrix(idrotm[902], 90.0, phi, 90.0, 90.0 +phi, 0.0 , 0.0); gMC->Gspos("V0R0",n_detec_R,"V0RI",0.0, 0.0,offset + half_thick_qua,idrotm[902],"ONLY"); n_detec_R++; } gMC->Gspos("V0RI",1,"alic",0.0,0.0,zdet,0,"ONLY"); n_cells_R = (n_detec_R - 1) * 5; printf(" \n\n\n"); printf(" Number of cells on Right side = %d\n", n_cells_R); // Left part : for(Float_t phi = 15.0; phi < 360.0; phi = phi + phi_deg) { AliMatrix(idrotm[902], 90.0, phi, 90.0, 90.0 +phi, 0.0 , 0.0); gMC->Gspos("V0L0",n_detec_L,"V0LE",0.0, 0.0,0.0,idrotm[902],"ONLY"); n_detec_L++; } gMC->Gspos("V0LE",1,"alic",0.0,0.0,-350.0-fThickness1/2.0,0,"ONLY"); n_cells_L = (n_detec_L - 1) * 5; printf(" \n\n\n"); printf(" Number of cells on Left side = %d\n\n", n_cells_L); } //_____________________________________________________________________________ void AliVZEROv2::BuildGeometry() { // Builds simple ROOT TNode geometry for event display Int_t i; printf("\n"); for(i=0;i<30;i++) printf("*"); printf(" VZERO BuildGeometry "); for(i=0;i<30;i++) printf("*"); printf("\n"); TNode *Top; TNode *V0Rnode, *V0Rnode0, *V0Rnode6 , *V0Rnode7, *V0Rnode8, *V0Rnode9; TNode *V0Rnode1, *V0Rnode2, *V0Rnode3, *V0Rnode4, *V0Rnode5; TNode *V0Lnode, *V0Lnode0; TNode *V0Lnode1, *V0Lnode2, *V0Lnode3, *V0Lnode4, *V0Lnode5, *V0Lnode6; const int kColorVZERO = kGreen; Top = gAlice->GetGeometry()->GetNode("alice"); Float_t height1, height2, height3, height4, height5; Float_t height; Float_t theta; Float_t half_thick_qua; Float_t zdet; Float_t r0, r5; Float_t pi = TMath::Pi(); height1 = 2.0; // height of cell 1, in cm height2 = 3.2; // height of cell 2, in cm height3 = 4.9; // height of cell 3, in cm height4 = 7.5; // height of cell 4, in cm height5 = 12.0; // height of cell 5, in cm theta = pi/6.0/2.0; half_thick_qua = fThickness1/2.0; zdet = 86.9 +fThickness/2.0; r0 = 4.0; height = height1 + height2 + height3 + height4 + height5; r5 = r0 + height; Int_t ndiv = 1; Float_t partube[3]; partube[0] = r0 - 0.2; partube[1] = r5 + 1.0; partube[2] = fThickness/2.0; TTUBE *V0RI = new TTUBE("V0RI", "V0RI", "void", partube[0], partube[1], partube[2]); Top->cd(); V0Rnode = new TNode("V0RI","V0RI",V0RI,0.0,0.0,+zdet,0); V0Rnode->SetLineColor(kBlue); fNodes->Add(V0Rnode); V0Rnode->SetVisibility(2); // Rondelles de carbone (epaisseur 1 mm) de maintien des cellules ... partube[0] = r0; partube[1] = r5; partube[2] = +0.1/2.0; TTUBE *V0CA = new TTUBE("V0CA", "V0CA", "void",partube[0], partube[1], partube[2]); V0Rnode->cd(); V0Rnode6 = new TNode("V0CA", "V0CA",V0CA,0.0,0.0, fThickness/2.0-partube[2],0); V0Rnode6->SetLineColor(kYellow); fNodes->Add(V0Rnode6); V0Rnode->cd(); V0Rnode7 = new TNode("V0CA", "V0CA",V0CA,0.0,0.0,-fThickness/2.0+partube[2],0); V0Rnode7->SetLineColor(kYellow); fNodes->Add(V0Rnode7); partube[0] = r0 - 0.2; partube[1] = r0; partube[2] = +fThickness/2.0; TTUBE *V0IR = new TTUBE("V0IR","V0IR","void", partube[0], partube[1], partube[2]); V0Rnode->cd(); V0Rnode8 = new TNode("V0IR", "V0IR",V0IR,0.0,0.0,0.0,0); V0Rnode8->SetLineColor(kYellow); fNodes->Add(V0Rnode8); partube[0] = r5; partube[1] = r5 + 1.0; partube[2] = +fThickness/2.0; TTUBE *V0ER = new TTUBE("V0ER","V0ER","void", partube[0], partube[1], partube[2]); V0Rnode->cd(); V0Rnode9 = new TNode("V0ER", "V0ER",V0ER,0.0,0.0,0.0,0); V0Rnode9->SetLineColor(kYellow); fNodes->Add(V0Rnode9); Float_t partubs[5]; partubs[0] = r0; partubs[1] = r5; partubs[2] = fThickness/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; TTUBS *V0R0 = new TTUBS("V0R0", "V0R0", "void",partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0R0->SetNumberOfDivisions(ndiv); V0R0->SetLineColor(7); Float_t r1 = r0 + height1; Float_t offset = - fThickness/2.0 + 0.1; Float_t offset_fibers = 0.3; partubs[0] = r0; partubs[1] = r1; partubs[2] = fThickness1/2.0; TTUBS *V0R1 = new TTUBS("V0R1", "V0R1", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0R1->SetNumberOfDivisions(ndiv); Float_t r2 = r1 + height2; partubs[0] = r1; partubs[1] = r2; TTUBS *V0R2 = new TTUBS("V0R2", "V0R2", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0R2->SetNumberOfDivisions(ndiv); Float_t r3 = r2 + height3; partubs[0] = r2; partubs[1] = r3; TTUBS *V0R3 = new TTUBS("V0R3", "V0R3", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0R3->SetNumberOfDivisions(ndiv); Float_t r4 = r3 + height4; partubs[0] = r3; partubs[1] = r4; TTUBS *V0R4 = new TTUBS("V0R4", "V0R4", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0R4->SetNumberOfDivisions(ndiv); partubs[0] = r4; partubs[1] = r5; partubs[3] = 90.0-15.0; partubs[4] = 120.0-30.0; TTUBS *V0R5 = new TTUBS("V0R5", "V0R5", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0R5->SetNumberOfDivisions(ndiv); partubs[3] = 120.0-30.0; partubs[4] = 120.0-15.0; TTUBS *V0R6 = new TTUBS("V0R6", "V0R6", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0R6->SetNumberOfDivisions(ndiv); Float_t phi; Float_t phi_deg= 180./6.; Int_t n_detec_R = 1; char NameNode[12]; for (phi = 15.0; phi < 360.0; phi = phi + phi_deg) { TRotMatrix* mat920 = new TRotMatrix("rot920","rot920", 90.0, +phi, 90., 90.+phi, 0.0, 0.0 ); sprintf(NameNode,"SUBDER%d",n_detec_R); V0Rnode->cd(); V0Rnode0 = new TNode(NameNode,NameNode,V0R0,0.0,0.0, offset + half_thick_qua,mat920); V0Rnode0->SetLineColor(kColorVZERO); fNodes->Add(V0Rnode0); n_detec_R++; sprintf(NameNode,"SUBDER%d",n_detec_R); V0Rnode0->cd(); V0Rnode1 = new TNode(NameNode,NameNode,V0R1,0.0,0.0, 0.0,0); V0Rnode1->SetLineColor(kColorVZERO); fNodes->Add(V0Rnode1); n_detec_R++; sprintf(NameNode,"SUBDER%d",n_detec_R); V0Rnode0->cd(); V0Rnode2 = new TNode(NameNode,NameNode,V0R2,0.0,0.0, offset_fibers,0); V0Rnode2->SetLineColor(kColorVZERO); fNodes->Add(V0Rnode2); n_detec_R++; sprintf(NameNode,"SUBDER%d",n_detec_R); V0Rnode0->cd(); V0Rnode3 = new TNode(NameNode,NameNode,V0R3,0.0,0.0, 2.0*offset_fibers,0); V0Rnode3->SetLineColor(kColorVZERO); fNodes->Add(V0Rnode3); n_detec_R++; sprintf(NameNode,"SUBDER%d",n_detec_R); V0Rnode0->cd(); V0Rnode4 = new TNode(NameNode,NameNode,V0R4,0.0,0.0, 3.0*offset_fibers,0); V0Rnode4->SetLineColor(kColorVZERO); fNodes->Add(V0Rnode4); n_detec_R++; sprintf(NameNode,"SUBDER%d",n_detec_R); V0Rnode0->cd(); V0Rnode5 = new TNode(NameNode,NameNode,V0R5,0.0,0.0, 4.0*offset_fibers,0); V0Rnode5->SetLineColor(kColorVZERO); fNodes->Add(V0Rnode5); n_detec_R++; sprintf(NameNode,"SUBDER%d",n_detec_R); V0Rnode0->cd(); V0Rnode6 = new TNode(NameNode,NameNode,V0R6,0.0,0.0, 4.0*offset_fibers,0); V0Rnode6->SetLineColor(kColorVZERO); fNodes->Add(V0Rnode6); n_detec_R++; V0Rnode0->SetVisibility(2); } // Left side of VZERO : Float_t r0_left = 4.3; Float_t height1_left = 2.6; Float_t height2_left = 4.1; Float_t height3_left = 6.4; Float_t height4_left = 10.2; Float_t height5_left = 16.9; Float_t height_left = height1_left + height2_left + height3_left + height4_left + height5_left; Float_t r5_left = r0_left + height_left; partube[0] = r0_left; partube[1] = r5_left; partube[2] = fThickness1/2.0; TTUBE *V0LE = new TTUBE("V0LE", "V0LE", "void", partube[0], partube[1], partube[2]); Top->cd(); V0Lnode = new TNode("V0LE","V0LE",V0LE,0.0,0.0,-350.0-fThickness1/2.0,0); V0Lnode->SetLineColor(kBlue); fNodes->Add(V0Lnode); V0Lnode->SetVisibility(2); partubs[0] = r0_left; partubs[1] = r5_left; partubs[2] = fThickness1/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; TTUBS *V0L0 = new TTUBS("V0L0", "V0L0", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0L0->SetNumberOfDivisions(ndiv); V0L0->SetLineColor(7); Float_t offset_left; offset_left = - fThickness1/2.0; Float_t r1_left = r0_left + height1_left; partubs[0] = r0_left; partubs[1] = r1_left; TTUBS *V0L1 = new TTUBS("V0L1", "V0L1", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0L1->SetNumberOfDivisions(ndiv); Float_t r2_left = r1_left + height2_left; partubs[0] = r1_left; partubs[1] = r2_left; TTUBS *V0L2 = new TTUBS("V0L2", "V0L2", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0L2->SetNumberOfDivisions(ndiv); Float_t r3_left = r2_left + height3_left; partubs[0] = r2_left; partubs[1] = r3_left; TTUBS *V0L3 = new TTUBS("V0L3", "V0L3", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0L3->SetNumberOfDivisions(ndiv); Float_t r4_left = r3_left + height4_left; partubs[0] = r3_left; partubs[1] = r4_left; TTUBS *V0L4 = new TTUBS("V0L4", "V0L4", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0L4->SetNumberOfDivisions(ndiv); partubs[0] = r4_left; partubs[1] = r5_left; partubs[3] = 90.0-15.0; partubs[4] = 120.0-30.0; TTUBS *V0L5 = new TTUBS("V0L5", "V0L5", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0L5->SetNumberOfDivisions(ndiv); partubs[3] = 120.0-30.0; partubs[4] = 120.0-15.0; TTUBS *V0L6 = new TTUBS("V0L6", "V0L6", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); V0L6->SetNumberOfDivisions(ndiv); Int_t n_detec_L = 1; for (phi = 15.0; phi < 360.0; phi = phi + phi_deg) { TRotMatrix* mat920 = new TRotMatrix("rot920","rot920", 90.0, +phi, 90., 90.+phi, 0.0, 0.0 ); sprintf(NameNode,"SUBDEL%d",n_detec_L); V0Lnode->cd(); V0Lnode0 = new TNode(NameNode,NameNode,V0L0,0.0,0.0, offset_left + half_thick_qua,mat920); V0Lnode0->SetLineColor(kColorVZERO); fNodes->Add(V0Lnode0); n_detec_L++; sprintf(NameNode,"SUBDEL%d",n_detec_L); V0Lnode0->cd(); V0Lnode1 = new TNode(NameNode,NameNode,V0L1,0.0,0.0, 0.0,0); V0Lnode1->SetLineColor(kColorVZERO); fNodes->Add(V0Lnode1); n_detec_L++; sprintf(NameNode,"SUBDEL%d",n_detec_L); V0Lnode0->cd(); V0Lnode2 = new TNode(NameNode,NameNode,V0L2,0.0,0.0, 0.0,0); V0Lnode2->SetLineColor(kColorVZERO); fNodes->Add(V0Lnode2); n_detec_L++; sprintf(NameNode,"SUBDEL%d",n_detec_L); V0Lnode0->cd(); V0Lnode3 = new TNode(NameNode,NameNode,V0L3,0.0,0.0, 0.0,0); V0Lnode3->SetLineColor(kColorVZERO); fNodes->Add(V0Lnode3); n_detec_L++; sprintf(NameNode,"SUBDEL%d",n_detec_L); V0Lnode0->cd(); V0Lnode4 = new TNode(NameNode,NameNode,V0L4,0.0,0.0, 0.0,0); V0Lnode4->SetLineColor(kColorVZERO); fNodes->Add(V0Lnode4); n_detec_L++; sprintf(NameNode,"SUBDEL%d",n_detec_L); V0Lnode0->cd(); V0Lnode5 = new TNode(NameNode,NameNode,V0L5,0.0,0.0, 0.0,0); V0Lnode5->SetLineColor(kColorVZERO); fNodes->Add(V0Lnode5); n_detec_L++; sprintf(NameNode,"SUBDEL%d",n_detec_L); V0Lnode0->cd(); V0Lnode6 = new TNode(NameNode,NameNode,V0L6,0.0,0.0, 0.0,0); V0Lnode6->SetLineColor(kColorVZERO); fNodes->Add(V0Lnode6); n_detec_L++; V0Lnode0->SetVisibility(2); } } //------------------------------------------------------------------------ void AliVZEROv2::CreateMaterials() { Int_t i; printf("\n"); for(i=0;i<30;i++) printf("*"); printf(" VZERO create materials "); for(i=0;i<30;i++) printf("*"); printf("\n"); /* Float_t ppckov[14] = { 5.5e-9, 5.7e-9, 5.9e-9, 6.1e-9, 6.3e-9, 6.5e-9, 6.7e-9, 6.9e-9, 7.1e-9, 7.3e-9, 7.5e-9, 7.7e-9, 7.9e-9, 8.1e-9 }; Float_t ppckov_alu[14] = { 5.5e-9, 5.7e-9, 5.9e-9, 6.1e-9, 6.3e-9, 6.5e-9, 6.7e-9, 6.9e-9, 7.1e-9, 7.3e-9, 7.5e-9, 7.7e-9, 7.9e-9, 8.1e-9 }; Float_t rindex_quarz[14] = { 1.52398, 1.53090, 1.53835, 1.54641, 1.55513, 1.56458, 1.57488, 1.58611, 1.59842, 1.61197, 1.62696, 1.64362, 1.662295, 1.68337 }; Float_t absco_quarz[14] = { 105.8, 45.656, 35.665, 28.598, 25.007, 21.04, 17.525, 14.177, 9.282, 4.0925, 1.149, 0.3627, 0.1497, 0.05 }; Float_t effic_all[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rindex_alu[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t absco_alu[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t effic_alu[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; */ Int_t *idtmed = fIdtmed->GetArray()-2999; // TGeant3 *geant3 = (TGeant3*) gMC; // Parameters related to Quarz (SiO2) : Float_t aqua[2], zqua[2], densqua, wmatqua[2]; Int_t nlmatqua; aqua[0] = 28.09; aqua[1] = 16.; zqua[0] = 14.; zqua[1] = 8.; densqua = 2.64; nlmatqua = -2; wmatqua[0] = 1.; wmatqua[1] = 2.; // Parameters related to aluminum sheets : Float_t aal = 26.98; Float_t zal = 13.00; Float_t densal= 2.7; Float_t radlal= 8.9; // Parameters related to scintillator CH : Float_t ascin[2] = {1.00794,12.011}; Float_t zscin[2] = {1.,6.}; Float_t wscin[2] = {1.,1.}; Float_t denscin = 1.032; // Definition of materials : AliMaterial( 1, "AIR A$", 14.61, 7.3, .001205, 30420., 67500, 0, 0); AliMaterial(11, "AIR I$", 14.61, 7.3, .001205, 30420., 67500, 0, 0); AliMaterial( 2, "CARBON$" , 12.01, 6.0, 2.265, 18.8, 49.9, 0, 0); AliMixture( 3, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua); AliMaterial( 4, "ALUMINIUM1$", 26.98, 13., 2.7, 8.9, 37.2, 0, 0); AliMaterial( 5, "ALUMINIUM2$", aal, zal, densal, radlal, 0, 0, 0); AliMixture( 6, "Scintillator$",ascin,zscin,denscin,-2,wscin); Int_t ISXFLD = gAlice->Field()->Integ(); Float_t SXMGMX = gAlice->Field()->Max(); Float_t tmaxfd, stemax, deemax, epsil, stmin; tmaxfd = 10.; stemax = 0.1; deemax = 0.1; epsil = 0.001; stmin = 0.001; // Active Air : AliMedium(1, "ACTIVE AIR$", 1, 1, ISXFLD, SXMGMX, 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ; // Inactive air : AliMedium(11, "INACTIVE AIR$", 11, 0, ISXFLD, SXMGMX, 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ; AliMedium(2, "CARBON$ ", 2, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin, 0, 0); AliMedium(3, "QUARZ$", 3, 1, ISXFLD, SXMGMX, tmaxfd, fMaxStepQua, fMaxDestepQua, epsil, stmin, 0, 0); AliMedium(4,"ALUMINUM1$",4, 1, ISXFLD, SXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin, 0, 0); AliMedium(5,"ALUMINUM2$",5, 1, ISXFLD, SXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin, 0, 0); AliMedium(6,"SCINTILLATOR$",6, 1, ISXFLD, SXMGMX, 10.0, 0.1, 0.1, 0.003, 0.003, 0, 0); gMC->Gstpar(idtmed[3000], "LOSS", 1.); // [3000] = air ACTIF [3010] = air INACTIF gMC->Gstpar(idtmed[3000], "HADR", 1.); gMC->Gstpar(idtmed[3000], "DCAY", 1.); gMC->Gstpar(idtmed[3000], "DRAY", 1.); gMC->Gstpar(idtmed[3001], "LOSS", 1.); // [3001] = carbon gMC->Gstpar(idtmed[3001], "HADR", 1.); gMC->Gstpar(idtmed[3001], "DCAY", 1.); gMC->Gstpar(idtmed[3001], "DRAY", 1.); gMC->Gstpar(idtmed[3002], "LOSS", 1.); // [3002] = quartz gMC->Gstpar(idtmed[3002], "HADR", 1.); gMC->Gstpar(idtmed[3002], "DCAY", 1.); gMC->Gstpar(idtmed[3002], "DRAY", 1.); gMC->Gstpar(idtmed[3002], "CUTGAM",0.5E-4) ; gMC->Gstpar(idtmed[3002], "CUTELE",1.0E-4) ; gMC->Gstpar(idtmed[3003], "LOSS", 1.); // [3003] = normal aluminum gMC->Gstpar(idtmed[3003], "HADR", 1.); gMC->Gstpar(idtmed[3003], "DCAY", 1.); gMC->Gstpar(idtmed[3003], "DRAY", 1.); gMC->Gstpar(idtmed[3004], "LOSS", 1.); // [3004] = reflecting aluminum gMC->Gstpar(idtmed[3004], "HADR", 1.); gMC->Gstpar(idtmed[3004], "DCAY", 1.); gMC->Gstpar(idtmed[3004], "DRAY", 1.); gMC->Gstpar(idtmed[3004], "CUTGAM",0.5E-4) ; gMC->Gstpar(idtmed[3004], "CUTELE",1.0E-4) ; gMC->Gstpar(idtmed[3005], "LOSS", 1.); // [3005] = scintillator gMC->Gstpar(idtmed[3005], "HADR", 1.); gMC->Gstpar(idtmed[3005], "DCAY", 1.); gMC->Gstpar(idtmed[3005], "DRAY", 1.); gMC->Gstpar(idtmed[3005], "CUTGAM",0.5E-4) ; gMC->Gstpar(idtmed[3005], "CUTELE",1.0E-4) ; // geant3->Gsckov(idtmed[3002], 14, ppckov, absco_quarz, effic_all,rindex_quarz); // geant3->Gsckov(idtmed[3004], 14, ppckov_alu, absco_alu, effic_alu, rindex_alu); // gMC->SetCerenkov(idtmed[3002], 14, ppckov, absco_quarz, effic_all,rindex_quarz); // gMC->SetCerenkov(idtmed[3004], 14, ppckov_alu, absco_alu, effic_alu, rindex_alu); } //--------------------------------------------------------------------- void AliVZEROv2::DrawModule() { // Drawing is done in DrawVZERO.C Int_t i; printf("\n"); for(i=0;i<30;i++) printf("*"); printf(" VZERO DrawModule "); for(i=0;i<30;i++) printf("*"); printf("\n"); } //------------------------------------------------------------------- void AliVZEROv2::Init() { // Initialises version 1 of the VZERO Detector // Just prints an information message printf(" VZERO version %d initialized \n",IsVersion()); // gMC->SetMaxStep(fMaxStepAlu); // gMC->SetMaxStep(fMaxStepQua); AliVZERO::Init(); } //------------------------------------------------------------------- void AliVZEROv2::StepManager() { Int_t copy; static Int_t vol[4]; static Float_t hits[16]; static Float_t eloss, tlength; TLorentzVector pos; TLorentzVector mom; Float_t theta; Float_t phi; Float_t kRaddeg = 180/TMath::Pi(); Float_t RingNumber; Int_t ipart; Float_t destep, step; // We keep only charged tracks : if ( !gMC->TrackCharge() || !gMC->IsTrackAlive() ) return; vol[0] = gMC->CurrentVolOffID(1, vol[1]); vol[2] = gMC->CurrentVolID(copy); vol[3] = copy; if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R1") || gMC->CurrentVolID(copy) == gMC->VolId("V0L1") ) RingNumber = 1.0; else if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R2") || gMC->CurrentVolID(copy) == gMC->VolId("V0L2") ) RingNumber = 2.0; else if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R3") || gMC->CurrentVolID(copy) == gMC->VolId("V0L3") ) RingNumber = 3.0; else if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R4") || gMC->CurrentVolID(copy) == gMC->VolId("V0L4") ) RingNumber = 4.0; else if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R5") || gMC->CurrentVolID(copy) == gMC->VolId("V0L5") || gMC->CurrentVolID(copy) == gMC->VolId("V0L6") || gMC->CurrentVolID(copy) == gMC->VolId("V0R6") ) RingNumber = 5.0; else RingNumber = 0.0; if ( RingNumber > 0.5 ) { destep = gMC->Edep(); step = gMC->TrackStep(); eloss += destep; tlength += step; if ( gMC->IsTrackEntering() ) { gMC->TrackPosition(pos); gMC->TrackMomentum(mom); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t Pt = TMath::Sqrt(tc); Double_t Pmom = TMath::Sqrt(tc+mom[2]*mom[2]); theta = Float_t(TMath::ATan2(Pt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; ipart = gMC->TrackPid(); hits[0] = pos[0]; hits[1] = pos[1]; hits[2] = pos[2]; hits[3] = ipart; hits[4] = gMC->TrackTime(); hits[5] = gMC->TrackCharge(); hits[6] = theta; hits[7] = phi; hits[8] = RingNumber; hits[9] = Pt; hits[10] = Pmom; hits[11] = mom[0]; hits[12] = mom[1]; hits[13] = mom[2]; tlength = 0.0; eloss = 0.0; } if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ hits[14] = eloss; hits[15] = tlength; AddHit(gAlice->CurrentTrack(), vol, hits); tlength = 0.0; eloss = 0.0; } } } //_____________________________________________________________________________ void AliVZEROv2::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // Add a VZERO hit TClonesArray &lhits = *fHits; new(lhits[fNhits++]) AliVZEROhit(fIshunt,track,vol,hits); } //--------------------------------------------------------------------- void AliVZEROv2::AddDigits(Int_t *tracks, Int_t* digits) { TClonesArray &ldigits = *fDigits; new(ldigits[fNdigits++]) AliVZEROdigit(tracks, digits); } //--------------------------------------------------------------------- void AliVZEROv2::MakeBranch(Option_t *option) { // Creates new branches in the current Root Tree char branchname[10]; sprintf(branchname,"%s",GetName()); printf(" fBufferSize = %d \n",fBufferSize); const char *H = strstr(option,"H"); if (fHits && gAlice->TreeH() && H) { gAlice->TreeH()->Branch(branchname,&fHits, fBufferSize); printf("* AliDetector::MakeBranch * Making Branch %s for hits\n",branchname); } const char *D = strstr(option,"D"); // if (fDigits && gAlice->TreeD() && D) { gAlice->TreeD()->Branch(branchname,&fDigits, fBufferSize); printf("* AliDetector::MakeBranch * Making Branch %s for digits\n",branchname); } }