/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ ////////////////////////////////////////////////////////////////////// // // // (V-zero) detector version 4 as designed by the Lyon group // // All comments should be sent to Brigitte CHEYNIS : // // b.cheynis@ipnl.in2p3.fr // // Geometry of the 24th of february 2004 // // (now 4 rings instead of 3 rings as in previous version) // // V0R (now V0C) sits between Z values -89.4 and -84.9 cm // // V0L (now V0A) sits between Z values +350.0 and +352.0 cm // // New coordinate system has been implemented in october 2003 // // // ////////////////////////////////////////////////////////////////////// // --- Standard libraries --- #include #include #include // --- ROOT libraries --- #include #include #include #include #include #include #include #include #include #include // --- AliRoot header files --- #include "AliRun.h" #include "AliMC.h" #include "AliConst.h" #include "AliMagF.h" #include "AliVZEROLoader.h" #include "AliVZEROdigit.h" #include "AliVZEROhit.h" #include "AliVZEROv4.h" ClassImp(AliVZEROv4) //_____________________________________________________________________________ AliVZEROv4:: AliVZEROv4():AliVZERO() { // Standard default constructor } //_____________________________________________________________________________ AliVZEROv4::AliVZEROv4(const char *name, const char *title): AliVZERO(name,title) { // Standard constructor for V-zero Detector version 2 Int_t i; printf("\n"); for(i=0;i<26;i++) printf("*"); printf(" Create VZERO object "); for(i=0;i<26;i++) printf("*"); printf("\n"); fLightYield = 93.75; // Light yield in BC408 (93.75 eV per photon) fLightAttenuation = 0.05; // Light attenuation in fiber (0.05 per meter) fnMeters = 15.0; // Number of meters of clear fibers to PM fFibToPhot = 0.3; // Attenuation at fiber-photocathode interface } //_____________________________________________________________________________ void AliVZEROv4::CreateGeometry() { // Creates the GEANT geometry of the V-zero Detector version 3 Int_t i; printf("\n"); for(i=0;i<26;i++) printf("*"); printf(" Create VZERO Geometry "); for(i=0;i<26;i++) printf("*"); printf("\n"); Int_t *idtmed = fIdtmed->GetArray()-2999; Int_t ndetR = 1; Int_t ndetL = 1; Int_t ncellsR = 1; Int_t ncellsL = 1; Int_t idrotm[999]; Float_t height1Right, height2Right, height3Right, height4Right; Float_t heightRight; Float_t theta; Float_t halfThickQua; Float_t zdet; Float_t r0Right, r4Right; Float_t pi = TMath::Pi(); height1Right = 3.42; // height of cell 1, in cm height2Right = 6.78; // height of cell 2, in cm height3Right = 7.11; // height of cell 3, in cm height4Right = 10.91; // height of cell 4, in cm theta = pi/6.0/2.0; // half angular opening = 15 degrees halfThickQua= fThickness1/2.0; // half thickness of elementary cell (inner ring) // distance 0.6 cm in zdet accounts for the fact V0R box back lid sits 0.6 away from // absorber nose sitting at 90 cm. Will use -zdet later... // size of V0R box (fThickness) is increased by 1 mm as compared to version v2 fThickness = fThickness + 0.1; zdet = 90.0 - 0.6 - fThickness/2.0; // distance to vertex (along Z axis) r0Right = 4.05; // closest distance to center of the beam pipe heightRight = height1Right + height2Right + height3Right + height4Right; r4Right = r0Right + heightRight; // Creation of mother volume v0LE - left part - : // Entrance face at +350.0 cm (new coordinate system) ... Float_t partube[3]; partube[0] = 4.3; partube[1] = 45.0; partube[2] = fThickness1/2.0; gMC->Gsvolu("V0LE","TUBE",idtmed[3005],partube,3); // Creation of five rings - left part - : // Entrance face at +350.0 cm (new coordinate system) ... // Mother volume v0L0 in which will be set 5 scintillator cells Float_t partubs[5]; Float_t r0Left = 4.3; Float_t height1Left = 3.6; Float_t height2Left = 6.4; Float_t height3Left = 14.9; Float_t height4Left = 14.4; Float_t heightLeft = height1Left + height2Left + height3Left + height4Left; Float_t r4Left = r0Left + heightLeft; partubs[0] = r0Left; partubs[1] = r4Left; partubs[2] = fThickness1/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; gMC->Gsvolu("V0L0","TUBS",idtmed[3010],partubs,5); // air volume Float_t r1Left = r0Left + height1Left; partubs[0] = r0Left; partubs[1] = r1Left; gMC->Gsvolu("V0L1","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L1",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); Float_t r2Left = r1Left + height2Left; partubs[0] = r1Left; partubs[1] = r2Left; gMC->Gsvolu("V0L2","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L2",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); Float_t r3Left = r2Left + height3Left; partubs[0] = r2Left; partubs[1] = r3Left; gMC->Gsvolu("V0L3","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L3",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); partubs[0] = r3Left; partubs[1] = r4Left; gMC->Gsvolu("V0L4","TUBS",idtmed[3005],partubs,5); // quartz volume gMC->Gspos("V0L4",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY"); // Creation of mother volume v0RI - right part - : partube[0] = r0Right - 0.2; partube[1] = r4Right + 1.0; partube[2] = fThickness/2.0; gMC->Gsvolu("V0RI","TUBE",idtmed[3010],partube,3); // Creation of carbon lids (3.5 mm thick) to keep v0RI box shut... Float_t lidThickness = 0.35; partube[0] = r0Right; partube[1] = r4Right; partube[2] = +lidThickness/2.0; gMC->Gsvolu("V0CA","TUBE",idtmed[3001],partube,3); gMC->Gspos("V0CA",1,"V0RI",0.0,0.0, fThickness/2.0-partube[2],0,"ONLY"); gMC->Gspos("V0CA",2,"V0RI",0.0,0.0,-fThickness/2.0+partube[2],0,"ONLY"); // Creation of aluminum rings to maintain the v0RI pieces ... partube[0] = r0Right - 0.2; partube[1] = r0Right; partube[2] = +fThickness/2.0; gMC->Gsvolu("V0IR","TUBE",idtmed[3003],partube,3); gMC->Gspos("V0IR",1,"V0RI",0.0,0.0,0.0,0,"ONLY"); partube[0] = r4Right; partube[1] = r4Right + 1.0; partube[2] = +fThickness/2.0; gMC->Gsvolu("V0ER","TUBE",idtmed[3003],partube,3); gMC->Gspos("V0ER",1,"V0RI",0.0,0.0,0.0,0,"ONLY"); // Mother volume v0R0 in which will be set 4 scintillator cells partubs[0] = r0Right; partubs[1] = r4Right; partubs[2] = fThickness/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; gMC->Gsvolu("V0R0","TUBS",idtmed[3010],partubs,5); // air volume // Elementary cell of ring 1 : // (cells of ring 1 will be shifted by 1.7 cm towards vertex to output fibers) Float_t offsetFibers = 1.7; Float_t offset = fThickness/2.0 - lidThickness - fThickness1/2.0; Float_t r1Right = r0Right + height1Right; partubs[0] = r0Right; partubs[1] = r1Right; partubs[2] = fThickness1/2.0; gMC->Gsvolu("V0R1","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R1",1,"V0R0", 0.0, 0.0 , -offset + offsetFibers, 0,"ONLY"); // Elementary cell of ring 2 : Float_t r2Right = r1Right + height2Right; partubs[0] = r1Right; partubs[1] = r2Right; gMC->Gsvolu("V0R2","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R2",1,"V0R0", 0.0, 0.0 , -offset, 0,"ONLY"); // Elementary cell of ring 3 : Float_t r3Right = r2Right + height3Right; partubs[0] = r2Right; partubs[1] = r3Right; gMC->Gsvolu("V0R3","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R3",1,"V0R0", 0.0, 0.0 , -offset, 0,"ONLY"); // Elementary cell of ring 4 : partubs[0] = r3Right; partubs[1] = r4Right; gMC->Gsvolu("V0R4","TUBS",idtmed[3005],partubs,5); // scintillator volume gMC->Gspos("V0R4",1,"V0R0", 0.0, 0.0 , -offset, 0,"ONLY"); Float_t phiDeg = 180./6.; // Right part : for(Float_t phi = 15.0 ; phi < 360.0; phi = phi + phiDeg) { AliMatrix(idrotm[902], 90.0, phi, 90.0, 90.0 +phi, 0.0 , 0.0); gMC->Gspos("V0R0",ndetR,"V0RI",0.0, 0.0,0.0,idrotm[902],"ONLY"); ndetR++; } gMC->Gspos("V0RI",1,"ALIC",0.0,0.0,-zdet,0,"ONLY"); ncellsR = (ndetR - 1) * 4; printf(" Number of cells on Right side = %d\n", ncellsR); // Left part : for(Float_t phi = 15.0 ; phi < 360.0; phi = phi + phiDeg) { AliMatrix(idrotm[902], 90.0, phi, 90.0, 90.0 +phi, 0.0 , 0.0); gMC->Gspos("V0L0",ndetL,"V0LE",0.0, 0.0,0.0,idrotm[902],"ONLY"); ndetL++; } gMC->Gspos("V0LE",1,"ALIC",0.0,0.0,350.0+fThickness1/2.0,0,"ONLY"); ncellsL = (ndetL - 1) * 4; printf(" Number of cells on Left side = %d\n", ncellsL); for(i=0;i<75;i++) printf("*"); printf("\n"); } //_____________________________________________________________________________ void AliVZEROv4::BuildGeometry() { // Builds simple ROOT TNode geometry for event display Int_t i; printf("\n"); for(i=0;i<30;i++) printf("*"); printf(" VZERO BuildGeometry "); for(i=0;i<30;i++) printf("*"); printf("\n"); TNode *top; TNode *v0Rnode, *v0Rnode0, *v0Rnode6 , *v0Rnode7, *v0Rnode8, *v0Rnode9; TNode *v0Rnode1, *v0Rnode2, *v0Rnode3, *v0Rnode4; TNode *v0Lnode, *v0Lnode0; TNode *v0Lnode1, *v0Lnode2, *v0Lnode3, *v0Lnode4; const int kColorVZERO = kGreen; top = gAlice->GetGeometry()->GetNode("alice"); Float_t height1Right, height2Right, height3Right, height4Right; Float_t heightRight; Float_t theta; Float_t halfThickQua; Float_t zdet; Float_t r0Right, r4Right; Float_t pi = TMath::Pi(); height1Right = 3.42; // height of cell 1, in cm height2Right = 6.78; // height of cell 2, in cm height3Right = 7.11; // height of cell 3, in cm height4Right = 10.91; // height of cell 4, in cm theta = pi/6.0/2.0; halfThickQua = fThickness1/2.0; zdet = 90.0 - 0.6 - fThickness/2.0; r0Right = 4.05; heightRight = height1Right + height2Right + height3Right + height4Right; r4Right = r0Right + heightRight; Int_t ndiv = 1; Float_t partube[3]; partube[0] = r0Right - 0.2; partube[1] = r4Right + 1.0; partube[2] = fThickness/2.0; TTUBE *v0RI = new TTUBE("V0RI", "V0RI", "void", partube[0], partube[1], partube[2]); top->cd(); v0Rnode = new TNode("V0RI","V0RI",v0RI,0.0,0.0,-zdet,0); v0Rnode->SetLineColor(kYellow); fNodes->Add(v0Rnode); v0Rnode->SetVisibility(2); // Rondelles de carbone (epaisseur 3.5 mm) de maintien des cellules ... Float_t lidThickness = 0.35; partube[0] = r0Right; partube[1] = r4Right; partube[2] = +lidThickness/2.0; TTUBE *v0CA = new TTUBE("V0CA", "V0CA", "void",partube[0], partube[1], partube[2]); v0Rnode->cd(); v0Rnode6 = new TNode("V0CA", "V0CA",v0CA,0.0,0.0, fThickness/2.0-partube[2],0); v0Rnode6->SetLineColor(kYellow); fNodes->Add(v0Rnode6); v0Rnode->cd(); v0Rnode7 = new TNode("V0CA", "V0CA",v0CA,0.0,0.0,-fThickness/2.0+partube[2],0); v0Rnode7->SetLineColor(kYellow); fNodes->Add(v0Rnode7); partube[0] = r0Right - 0.2; partube[1] = r0Right; partube[2] = +fThickness/2.0; TTUBE *v0IR = new TTUBE("V0IR","V0IR","void", partube[0], partube[1], partube[2]); v0Rnode->cd(); v0Rnode8 = new TNode("V0IR", "V0IR",v0IR,0.0,0.0,0.0,0); v0Rnode8->SetLineColor(kYellow); fNodes->Add(v0Rnode8); partube[0] = r4Right; partube[1] = r4Right + 1.0; partube[2] = +fThickness/2.0; TTUBE *v0ER = new TTUBE("V0ER","V0ER","void", partube[0], partube[1], partube[2]); v0Rnode->cd(); v0Rnode9 = new TNode("V0ER", "V0ER",v0ER,0.0,0.0,0.0,0); v0Rnode9->SetLineColor(kYellow); fNodes->Add(v0Rnode9); Float_t partubs[5]; partubs[0] = r0Right; partubs[1] = r4Right; partubs[2] = fThickness/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; TTUBS *v0R0 = new TTUBS("V0R0", "V0R0", "void",partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0R0->SetNumberOfDivisions(ndiv); Float_t r1Right = r0Right + height1Right; Float_t offset = fThickness/2.0 - lidThickness - fThickness1/2.0; Float_t offsetFibers = 1.7; partubs[0] = r0Right; partubs[1] = r1Right; partubs[2] = fThickness1/2.0; TTUBS *v0R1 = new TTUBS("V0R1", "V0R1", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0R1->SetNumberOfDivisions(ndiv); Float_t r2Right = r1Right + height2Right; partubs[0] = r1Right; partubs[1] = r2Right; TTUBS *v0R2 = new TTUBS("V0R2", "V0R2", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0R2->SetNumberOfDivisions(ndiv); Float_t r3Right = r2Right + height3Right; partubs[0] = r2Right; partubs[1] = r3Right; TTUBS *v0R3 = new TTUBS("V0R3", "V0R3", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0R3->SetNumberOfDivisions(ndiv); partubs[0] = r3Right; partubs[1] = r4Right; TTUBS *v0R4 = new TTUBS("V0R4", "V0R4", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0R4->SetNumberOfDivisions(ndiv); Float_t phi; Float_t phiDeg= 180./6.; Int_t ndetR = 1; char nameNode[12]; for (phi = 15.0; phi < 360.0; phi = phi + phiDeg) { TRotMatrix* mat920 = new TRotMatrix("rot920","rot920", 90.0, +phi, 90., 90.+phi, 0.0, 0.0 ); sprintf(nameNode,"SUBDER%d",ndetR); v0Rnode->cd(); v0Rnode0 = new TNode(nameNode,nameNode,v0R0,0.0,0.0, 0.0,mat920); v0Rnode0->SetLineColor(kYellow); fNodes->Add(v0Rnode0); ndetR++; sprintf(nameNode,"SUBDER%d",ndetR); v0Rnode0->cd(); v0Rnode1 = new TNode(nameNode,nameNode,v0R1,0.0,0.0, -offset+ offsetFibers ,0); v0Rnode1->SetLineColor(kColorVZERO); fNodes->Add(v0Rnode1); ndetR++; sprintf(nameNode,"SUBDER%d",ndetR); v0Rnode0->cd(); v0Rnode2 = new TNode(nameNode,nameNode,v0R2,0.0,0.0, -offset,0); v0Rnode2->SetLineColor(kColorVZERO); fNodes->Add(v0Rnode2); ndetR++; sprintf(nameNode,"SUBDER%d",ndetR); v0Rnode0->cd(); v0Rnode3 = new TNode(nameNode,nameNode,v0R3,0.0,0.0, -offset,0); v0Rnode3->SetLineColor(kColorVZERO); fNodes->Add(v0Rnode3); ndetR++; sprintf(nameNode,"SUBDER%d",ndetR); v0Rnode0->cd(); v0Rnode4 = new TNode(nameNode,nameNode,v0R4,0.0,0.0, -offset,0); v0Rnode4->SetLineColor(kColorVZERO); fNodes->Add(v0Rnode4); ndetR++; v0Rnode0->SetVisibility(2); } // Left side of VZERO : Float_t r0Left = 4.3; Float_t height1Left = 3.6; Float_t height2Left = 6.4; Float_t height3Left = 14.9; Float_t height4Left = 14.4; Float_t heightLeft = height1Left + height2Left + height3Left + height4Left; Float_t r4Left = r0Left + heightLeft; partube[0] = r0Left; partube[1] = r4Left; partube[2] = fThickness1/2.0; TTUBE *v0LE = new TTUBE("V0LE", "V0LE", "void", partube[0], partube[1], partube[2]); top->cd(); v0Lnode = new TNode("V0LE","V0LE",v0LE,0.0,0.0,350.0+fThickness1/2.0,0); v0Lnode->SetLineColor(kBlue); fNodes->Add(v0Lnode); v0Lnode->SetVisibility(2); partubs[0] = r0Left; partubs[1] = r4Left; partubs[2] = fThickness1/2.0; partubs[3] = 90.0-15.0; partubs[4] = 120.0-15.0; TTUBS *v0L0 = new TTUBS("V0L0", "V0L0", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0L0->SetNumberOfDivisions(ndiv); v0L0->SetLineColor(7); Float_t offsetLeft; offsetLeft = - fThickness1/2.0; Float_t r1Left = r0Left + height1Left; partubs[0] = r0Left; partubs[1] = r1Left; TTUBS *v0L1 = new TTUBS("V0L1", "V0L1", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0L1->SetNumberOfDivisions(ndiv); Float_t r2Left = r1Left + height2Left; partubs[0] = r1Left; partubs[1] = r2Left; TTUBS *v0L2 = new TTUBS("V0L2", "V0L2", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0L2->SetNumberOfDivisions(ndiv); Float_t r3Left = r2Left + height3Left; partubs[0] = r2Left; partubs[1] = r3Left; TTUBS *v0L3 = new TTUBS("V0L3", "V0L3", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0L3->SetNumberOfDivisions(ndiv); partubs[0] = r3Left; partubs[1] = r4Left; TTUBS *v0L4 = new TTUBS("V0L4", "V0L4", "void", partubs[0], partubs[1], partubs[2], partubs[3], partubs[4]); v0L4->SetNumberOfDivisions(ndiv); Int_t ndetL = 1; for (phi = 15.0; phi < 360.0; phi = phi + phiDeg) { TRotMatrix* mat920 = new TRotMatrix("rot920","rot920", 90.0, +phi, 90., 90.+phi, 0.0, 0.0 ); sprintf(nameNode,"SUBDEL%d",ndetL); v0Lnode->cd(); v0Lnode0 = new TNode(nameNode,nameNode,v0L0,0.0,0.0, offsetLeft + halfThickQua,mat920); v0Lnode0->SetLineColor(kColorVZERO); fNodes->Add(v0Lnode0); ndetL++; sprintf(nameNode,"SUBDEL%d",ndetL); v0Lnode0->cd(); v0Lnode1 = new TNode(nameNode,nameNode,v0L1,0.0,0.0, 0.0,0); v0Lnode1->SetLineColor(kColorVZERO); fNodes->Add(v0Lnode1); ndetL++; sprintf(nameNode,"SUBDEL%d",ndetL); v0Lnode0->cd(); v0Lnode2 = new TNode(nameNode,nameNode,v0L2,0.0,0.0, 0.0,0); v0Lnode2->SetLineColor(kColorVZERO); fNodes->Add(v0Lnode2); ndetL++; sprintf(nameNode,"SUBDEL%d",ndetL); v0Lnode0->cd(); v0Lnode3 = new TNode(nameNode,nameNode,v0L3,0.0,0.0, 0.0,0); v0Lnode3->SetLineColor(kColorVZERO); fNodes->Add(v0Lnode3); ndetL++; sprintf(nameNode,"SUBDEL%d",ndetL); v0Lnode0->cd(); v0Lnode4 = new TNode(nameNode,nameNode,v0L4,0.0,0.0, 0.0,0); v0Lnode4->SetLineColor(kColorVZERO); fNodes->Add(v0Lnode4); ndetL++; v0Lnode0->SetVisibility(2); } } //_____________________________________________________________________________ void AliVZEROv4::CreateMaterials() { // Creates materials used for geometry Int_t i; printf("\n"); for(i=0;i<25;i++) printf("*"); printf(" VZERO create materials "); for(i=0;i<26;i++) printf("*"); printf("\n"); /* Float_t ppckov[14] = { 5.5e-9, 5.7e-9, 5.9e-9, 6.1e-9, 6.3e-9, 6.5e-9, 6.7e-9, 6.9e-9, 7.1e-9, 7.3e-9, 7.5e-9, 7.7e-9, 7.9e-9, 8.1e-9 }; Float_t ppckov_alu[14] = { 5.5e-9, 5.7e-9, 5.9e-9, 6.1e-9, 6.3e-9, 6.5e-9, 6.7e-9, 6.9e-9, 7.1e-9, 7.3e-9, 7.5e-9, 7.7e-9, 7.9e-9, 8.1e-9 }; Float_t rindex_quarz[14] = { 1.52398, 1.53090, 1.53835, 1.54641, 1.55513, 1.56458, 1.57488, 1.58611, 1.59842, 1.61197, 1.62696, 1.64362, 1.662295, 1.68337 }; Float_t absco_quarz[14] = { 105.8, 45.656, 35.665, 28.598, 25.007, 21.04, 17.525, 14.177, 9.282, 4.0925, 1.149, 0.3627, 0.1497, 0.05 }; Float_t effic_all[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rindex_alu[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t absco_alu[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t effic_alu[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; */ Int_t *idtmed = fIdtmed->GetArray()-2999; // Parameters related to Quarz (SiO2) : Float_t aqua[2], zqua[2], densqua, wmatqua[2]; Int_t nlmatqua; aqua[0] = 28.09; aqua[1] = 16.; zqua[0] = 14.; zqua[1] = 8.; densqua = 2.64; nlmatqua = -2; wmatqua[0] = 1.; wmatqua[1] = 2.; // Parameters related to aluminum sheets : Float_t aal = 26.98; Float_t zal = 13.00; Float_t densal= 2.7; Float_t radlal= 8.9; // Parameters related to scintillator CH : Float_t ascin[2] = {1.00794,12.011}; Float_t zscin[2] = {1.,6.}; Float_t wscin[2] = {1.,1.}; Float_t denscin = 1.032; // AIR Float_t aAir[4]={12.,14.,16.,36.}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; // Definition of materials : // AIR AliMixture( 1, "AIR A$", aAir,zAir,dAir,4,wAir); AliMixture(11, "AIR I$", aAir,zAir,dAir,4,wAir); AliMaterial( 2, "CARBON$" , 12.01, 6.0, 2.265, 18.8, 49.9, 0, 0); AliMixture( 3, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua); AliMaterial( 4, "ALUMINIUM1$", 26.98, 13., 2.7, 8.9, 37.2, 0, 0); AliMaterial( 5, "ALUMINIUM2$", aal, zal, densal, radlal, 0, 0, 0); AliMixture( 6, "Scintillator$",ascin,zscin,denscin,-2,wscin); Int_t iSXFLD = gAlice->Field()->Integ(); Float_t sXMGMX = gAlice->Field()->Max(); Float_t tmaxfd, stemax, deemax, epsil, stmin; tmaxfd = 10.; stemax = 0.1; deemax = 0.1; epsil = 0.001; stmin = 0.001; // Active Air : AliMedium(1, "ACTIVE AIR$", 1, 1, iSXFLD, sXMGMX, 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ; // Inactive air : AliMedium(11, "INACTIVE AIR$", 11, 0, iSXFLD, sXMGMX, 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ; AliMedium(2, "CARBON$ ", 2, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin, 0, 0); AliMedium(3, "QUARZ$", 3, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepQua, fMaxDestepQua, epsil, stmin, 0, 0); AliMedium(4,"ALUMINUM1$",4, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin, 0, 0); AliMedium(5,"ALUMINUM2$",5, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin, 0, 0); AliMedium(6,"SCINTILLATOR$",6, 1, iSXFLD, sXMGMX, 10.0, 0.1, 0.1, 0.003, 0.003, 0, 0); gMC->Gstpar(idtmed[3000], "LOSS", 1.); // [3000] = air ACTIF [3010] = air INACTIF gMC->Gstpar(idtmed[3000], "HADR", 1.); gMC->Gstpar(idtmed[3000], "DCAY", 1.); gMC->Gstpar(idtmed[3000], "DRAY", 1.); gMC->Gstpar(idtmed[3001], "LOSS", 1.); // [3001] = carbon gMC->Gstpar(idtmed[3001], "HADR", 1.); gMC->Gstpar(idtmed[3001], "DCAY", 1.); gMC->Gstpar(idtmed[3001], "DRAY", 1.); gMC->Gstpar(idtmed[3002], "LOSS", 1.); // [3002] = quartz gMC->Gstpar(idtmed[3002], "HADR", 1.); gMC->Gstpar(idtmed[3002], "DCAY", 1.); gMC->Gstpar(idtmed[3002], "DRAY", 1.); gMC->Gstpar(idtmed[3002], "CUTGAM",0.5E-4) ; gMC->Gstpar(idtmed[3002], "CUTELE",1.0E-4) ; gMC->Gstpar(idtmed[3003], "LOSS", 1.); // [3003] = normal aluminum gMC->Gstpar(idtmed[3003], "HADR", 1.); gMC->Gstpar(idtmed[3003], "DCAY", 1.); gMC->Gstpar(idtmed[3003], "DRAY", 1.); gMC->Gstpar(idtmed[3004], "LOSS", 1.); // [3004] = reflecting aluminum gMC->Gstpar(idtmed[3004], "HADR", 1.); gMC->Gstpar(idtmed[3004], "DCAY", 1.); gMC->Gstpar(idtmed[3004], "DRAY", 1.); gMC->Gstpar(idtmed[3004], "CUTGAM",0.5E-4) ; gMC->Gstpar(idtmed[3004], "CUTELE",1.0E-4) ; gMC->Gstpar(idtmed[3005], "LOSS", 1.); // [3005] = scintillator gMC->Gstpar(idtmed[3005], "HADR", 1.); gMC->Gstpar(idtmed[3005], "DCAY", 1.); gMC->Gstpar(idtmed[3005], "DRAY", 1.); gMC->Gstpar(idtmed[3005], "CUTGAM",0.5E-4) ; gMC->Gstpar(idtmed[3005], "CUTELE",1.0E-4) ; // geant3->Gsckov(idtmed[3002], 14, ppckov, absco_quarz, effic_all,rindex_quarz); // geant3->Gsckov(idtmed[3004], 14, ppckov_alu, absco_alu, effic_alu, rindex_alu); // gMC->SetCerenkov(idtmed[3002], 14, ppckov, absco_quarz, effic_all,rindex_quarz); // gMC->SetCerenkov(idtmed[3004], 14, ppckov_alu, absco_alu, effic_alu, rindex_alu); } //_____________________________________________________________________________ void AliVZEROv4::DrawModule() const { // Drawing is done in DrawVZERO.C Int_t i; printf("\n"); for(i=0;i<30;i++) printf("*"); printf(" VZERO DrawModule "); for(i=0;i<30;i++) printf("*"); printf("\n"); } //_____________________________________________________________________________ void AliVZEROv4::Init() { // Initialises version 2 of the VZERO Detector // Just prints an information message printf(" VZERO version %d initialized \n",IsVersion()); // gMC->SetMaxStep(fMaxStepAlu); // gMC->SetMaxStep(fMaxStepQua); AliVZERO::Init(); } //_____________________________________________________________________________ void AliVZEROv4::StepManager() { // Step Manager, called at each step Int_t copy; static Int_t vol[4]; static Float_t hits[21]; static Float_t eloss, tlength; static Int_t nPhotonsInStep; static Int_t nPhotons; static Int_t numStep; Float_t ringNumber; Float_t destep, step; numStep += 1; // We keep only charged tracks : if ( !gMC->TrackCharge() || !gMC->IsTrackAlive() ) return; vol[0] = gMC->CurrentVolOffID(1, vol[1]); vol[2] = gMC->CurrentVolID(copy); vol[3] = copy; static Int_t idV0R1 = gMC->VolId("V0R1"); static Int_t idV0L1 = gMC->VolId("V0L1"); static Int_t idV0R2 = gMC->VolId("V0R2"); static Int_t idV0L2 = gMC->VolId("V0L2"); static Int_t idV0R3 = gMC->VolId("V0R3"); static Int_t idV0L3 = gMC->VolId("V0L3"); static Int_t idV0R4 = gMC->VolId("V0R4"); static Int_t idV0L4 = gMC->VolId("V0L4"); if ( gMC->CurrentVolID(copy) == idV0R1 || gMC->CurrentVolID(copy) == idV0L1 ) ringNumber = 1.0; else if ( gMC->CurrentVolID(copy) == idV0R2 || gMC->CurrentVolID(copy) == idV0L2 ) ringNumber = 2.0; else if ( gMC->CurrentVolID(copy) == idV0R3 || gMC->CurrentVolID(copy) == idV0L3 ) ringNumber = 3.0; else if ( gMC->CurrentVolID(copy) == idV0R4 || gMC->CurrentVolID(copy) == idV0L4 ) ringNumber = 4.0; else ringNumber = 0.0; if ( ringNumber > 0.5 ) { destep = gMC->Edep(); step = gMC->TrackStep(); nPhotonsInStep = Int_t(destep / (fLightYield *1e-9) ); nPhotonsInStep = gRandom->Poisson(nPhotonsInStep); eloss += destep; tlength += step; if ( gMC->IsTrackEntering() ) { nPhotons = nPhotonsInStep; gMC->TrackPosition(fTrackPosition); gMC->TrackMomentum(fTrackMomentum); Float_t pt = TMath::Sqrt( fTrackMomentum.Px() * fTrackMomentum.Px() + fTrackMomentum.Py() * fTrackMomentum.Py() ); hits[0] = fTrackPosition.X(); hits[1] = fTrackPosition.Y(); hits[2] = fTrackPosition.Z(); hits[3] = Float_t (gMC->TrackPid()); hits[4] = gMC->TrackTime(); hits[5] = gMC->TrackCharge(); hits[6] = fTrackMomentum.Theta()*TMath::RadToDeg(); hits[7] = fTrackMomentum.Phi()*TMath::RadToDeg(); hits[8] = ringNumber; hits[9] = pt; hits[10] = fTrackMomentum.P(); hits[11] = fTrackMomentum.Px(); hits[12] = fTrackMomentum.Py(); hits[13] = fTrackMomentum.Pz(); TParticle *par = gAlice->GetMCApp()->Particle(gAlice->GetMCApp()->GetCurrentTrackNumber()); hits[14] = par->Vx(); hits[15] = par->Vy(); hits[16] = par->Vz(); tlength = 0.0; eloss = 0.0; } nPhotons = nPhotons + nPhotonsInStep; if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ nPhotons = nPhotons - Int_t((Float_t(nPhotons) * fLightAttenuation * fnMeters)); nPhotons = nPhotons - Int_t( Float_t(nPhotons) * fFibToPhot); hits[17] = eloss; hits[18] = tlength; hits[19] = nPhotons; hits[20] = GetCellId (vol, hits); AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); tlength = 0.0; eloss = 0.0; nPhotons = 0; nPhotonsInStep = 0; numStep = 0; } } } //_____________________________________________________________________________ void AliVZEROv4::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // Adds a VZERO hit TClonesArray &lhits = *fHits; new(lhits[fNhits++]) AliVZEROhit(fIshunt,track,vol,hits); } //_____________________________________________________________________________ void AliVZEROv4::AddDigits(Int_t *tracks, Int_t* digits) { // Adds a VZERO digit TClonesArray &ldigits = *fDigits; new(ldigits[fNdigits++]) AliVZEROdigit(tracks, digits); } //_____________________________________________________________________________ void AliVZEROv4::MakeBranch(Option_t *option) { // Creates new branches in the current Root Tree char branchname[10]; sprintf(branchname,"%s",GetName()); printf(" fBufferSize = %d \n",fBufferSize); const char *cH = strstr(option,"H"); if (fHits && TreeH() && cH) { TreeH()->Branch(branchname,&fHits, fBufferSize); printf("* AliDetector::MakeBranch * Making Branch %s for hits\n",branchname); } const char *cD = strstr(option,"D"); if (fDigits && fLoader->TreeD() && cD) { fLoader->TreeD()->Branch(branchname,&fDigits, fBufferSize); printf("* AliDetector::MakeBranch * Making Branch %s for digits\n",branchname); } } //_____________________________________________________________________________ Int_t AliVZEROv4::GetCellId(Int_t *vol, Float_t *hits) { // Returns Id of scintillator cell // Right side from 0 to 47 // Left side from 48 to 95 Int_t index = vol[1]; fCellId = 0; if (index < 10) index = index + 12; if (hits[2] < 0.0) { index = (index - 10) + ( ( Int_t(hits[8]) - 1 ) * 12); fCellId = index; } else if (hits[2] > 0.0) { index = (index + 38) + ( ( Int_t(hits[8]) - 1 ) * 12); fCellId = index;} return fCellId; }