
Refactoring
An essay

Erlend Kristiansen
2014





What is Refactoring?

This question is best answered by first defining the concept of a refactoring,
what it is to refactor, and then discuss what aspects of programming make
people want to refactor their code.

1 Defining refactoring

Martin Fowler, in his classic book on refactoring [Fow99], defines a
refactoring like this:

Refactoring (noun): a change made to the internal structure1 of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]

This definition assigns additional meaning to the word refactoring, beyond
the composition of the prefix re-, usually meaning something like “again”
or “anew”, and the word factoring, that can mean to isolate the factors
of something. Here a factor would be close to the mathematical definition
of something that divides a quantity, without leaving a remainder. Fowler
is mixing the motivation behind refactoring into his definition. Instead it
could be more refined, formed to only consider themechanical and behavioral
aspects of refactoring. That is to factor the program again, putting it
together in a different way than before, while preserving the behavior of
the program. An alternative definition could then be:

Definition. A refactoring is a transformation done to a program without
altering its external behavior.

From this we can conclude that a refactoring primarily changes how the
code of a program is perceived by the programmer, and not the behavior
experienced by any user of the program. Although the logical meaning is
preserved, such changes could potentially alter the program’s behavior when
it comes to performance gain or -penalties. So any logic depending on the
performance of a program could make the program behave differently after
a refactoring.

In the extreme case one could argue that software obfuscation is
refactoring. It is often used to protect proprietary software. It restrains
uninvited viewers, so they have a hard time analyzing code that they are

1The structure observable by the programmer.

1



not supposed to know how works. This could be a problem when using a
language that is possible to decompile, such as Java.

Obfuscation could be done composing many, more or less randomly
chosen, refactorings. Then the question arises whether it can be called
a composite refactoring or not (see section 9 on page 10)? The answer
is not obvious. First, there is no way to describe the mechanics of
software obfuscation, because there are infinitely many ways to do that.
Second, obfuscation can be thought of as one operation: Either the code is
obfuscated, or it is not. Third, it makes no sense to call software obfuscation
a refactoring, since it holds different meaning to different people.

This last point is important, since one of the motivations behind defining
different refactorings, is to establish a vocabulary for software professionals to
use when reasoning about and discussing programs, similar to the motivation
behind design patterns [Gam+95].

2 The etymology of ’refactoring’
It is a little difficult to pinpoint the exact origin of the word “refactoring”,
as it seems to have evolved as part of a colloquial terminology, more than a
scientific term. There is no authoritative source for a formal definition of it.

According to Martin Fowler [Fow03], there may also be more than one
origin of the word. The most well-known source, when it comes to the origin
of refactoring, is the Smalltalk1 community and their infamous Refactoring
Browser2 described in the article A Refactoring Tool for Smalltalk [RBJ97],
published in 1997. Allegedly [Fow03], the metaphor of factoring programs
was also present in the Forth1 community, and the word “refactoring” is
mentioned in a book by Leo Brodie, called Thinking Forth [Bro04], first
published in 19843. The exact word is only printed one place [Bro04, p. 232],
but the term factoring is prominent in the book, that also contains a whole
chapter dedicated to (re)factoring, and how to keep the (Forth) code clean
and maintainable.

. . . good factoring technique is perhaps the most important skill
for a Forth programmer. [Bro04, p. 172]

Brodie also express what factoring means to him:

Factoring means organizing code into useful fragments. To make
a fragment useful, you often must separate reusable parts from
non-reusable parts. The reusable parts become new definitions.
The non-reusable parts become arguments or parameters to the
definitions. [Bro04, p. 172]

1Programming language
2http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html
3Thinking Forth was first published in 1984 by the Forth Interest Group. Then it was

reprinted in 1994 with minor typographical corrections, before it was transcribed into an
electronic edition typeset in LATEX and published under a Creative Commons licence in
2004. The edition cited here is the 2004 edition, but the content should essentially be as
in 1984.

2

http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html


Fowler claims that the usage of the word refactoring did not pass between
the Forth and Smalltalk communities, but that it emerged independently in
each of the communities.

3 Motivation – Why people refactor

There are many reasons why people want to refactor their programs. They
can for instance do it to remove duplication, break up long methods or to
introduce design patterns into their software systems. The shared trait for
all these are that peoples’ intentions are to make their programs better, in
some sense. But what aspects of their programs are becoming improved?

As just mentioned, people often refactor to get rid of duplication. They
are moving identical or similar code into methods, and are pushing methods
up or down in their class hierarchies. They are making template methods
for overlapping algorithms/functionality, and so on. It is all about gathering
what belongs together and putting it all in one place. The resulting code
is then easier to maintain. When removing the implicit coupling1 between
code snippets, the location of a bug is limited to only one place, and new
functionality need only to be added to this one place, instead of a number
of places people might not even remember.

A problem you often encounter when programming, is that a program
contains a lot of long and hard-to-grasp methods. It can then help to break
the methods into smaller ones, using the Extract Method refactoring [Fow99].
Then you may discover something about a program that you were not aware
of before; revealing bugs you did not know about or could not find due to
the complex structure of your program. Making the methods smaller and
giving good names to the new ones clarifies the algorithms and enhances
the understandability of the program (see section 4 on the next page). This
makes refactoring an excellent method for exploring unknown program code,
or code that you had forgotten that you wrote.

Most primitive refactorings are simple, and usually involves moving code
around [Ker05]. The motivation behind them may first be revealed when
they are combined into larger — higher level — refactorings, called composite
refactorings (see section 9 on page 10). Often the goal of such a series of
refactorings is a design pattern. Thus the design can evolve throughout the
lifetime of a program, as opposed to designing up-front. It is all about being
structured and taking small steps to improve a program’s design.

Many software design pattern are aimed at lowering the coupling between
different classes and different layers of logic. One of the most famous
is perhaps the Model-View-Controller [Gam+95] pattern. It is aimed at
lowering the coupling between the user interface, the business logic and the
data representation of a program. This also has the added benefit that
the business logic could much easier be the target of automated tests, thus

1When duplicating code, the duplicate pieces of code might not be coupled, apart from
representing the same functionality. So if this functionality is going to change, it might
need to change in more than one place, thus creating an implicit coupling between multiple
pieces of code.

3



increasing the productivity in the software development process.
Another effect of refactoring is that with the increased separation of

concerns coming out of many refactorings, the performance can be improved.
When profiling programs, the problematic parts are narrowed down to
smaller parts of the code, which are easier to tune, and optimization can be
performed only where needed and in a more effective way [Fow99].

Last, but not least, and this should probably be the best reason to
refactor, is to refactor to facilitate a program change. If one has managed
to keep one’s code clean and tidy, and the code is not bloated with design
patterns that are not ever going to be needed, then some refactoring might
be needed to introduce a design pattern that is appropriate for the change
that is going to happen.

Refactoring program code — with a goal in mind — can give
the code itself more value. That is in the form of robustness to
bugs, understandability and maintainability. Having robust code is an
obvious advantage, but understandability and maintainability are both very
important aspects of software development. By incorporating refactoring in
the development process, bugs are found faster, new functionality is added
more easily and code is easier to understand by the next person exposed to
it, which might as well be the person who wrote it. The consequence of this,
is that refactoring can increase the average productivity of the development
process, and thus also add to the monetary value of a business in the long
run. The perspective on productivity and money should also be able to open
the eyes of the many nearsighted managers that seldom see beyond the next
milestone.

4 The magical number seven
The article The magical number seven, plus or minus two: some limits on
our capacity for processing information [Mil56] by George A. Miller, was
published in the journal Psychological Review in 1956. It presents evidence
that support that the capacity of the number of objects a human being can
hold in its working memory is roughly seven, plus or minus two objects.
This number varies a bit depending on the nature and complexity of the
objects, but is according to Miller “. . . never changing so much as to be
unrecognizable.”

Miller’s article culminates in the section called Recoding, a term he
borrows from communication theory. The central result in this section is
that by recoding information, the capacity of the amount of information
that a human can process at a time is increased. By recoding, Miller means
to group objects together in chunks, and give each chunk a new name that
it can be remembered by.

. . . recoding is an extremely powerful weapon for increasing the
amount of information that we can deal with. [Mil56, p. 95]

By organizing objects into patterns of ever growing depth, one can
memorize and process a much larger amount of data than if it were to

4



be represented as its basic pieces. This grouping and renaming is analogous
to how many refactorings work, by grouping pieces of code and give them
a new name. Examples are the fundamental Extract Method and Extract
Class refactorings [Fow99].

An example from the article addresses the problem of memorizing a
sequence of binary digits. The example presented here is a slightly modified
version of the one presented in the original article [Mil56], but it preserves the
essence of it. Let us say we have the following sequence of 16 binary digits:
“1010001001110011”. Most of us will have a hard time memorizing this
sequence by only reading it once or twice. Imagine if we instead translate it
to this sequence: “A273”. If you have a background from computer science,
it will be obvious that the latter sequence is the first sequence recoded to be
represented by digits in base 16. Most people should be able to memorize
this last sequence by only looking at it once.

Another result from the Miller article is that when the amount of
information a human must interpret increases, it is crucial that the
translation from one code to another must be almost automatic for the
subject to be able to remember the translation, before he is presented with
new information to recode. Thus learning and understanding how to best
organize certain kinds of data is essential to efficiently handle that kind of
data in the future. This is much like when humans learn to read. First they
must learn how to recognize letters. Then they can learn distinct words, and
later read sequences of words that form whole sentences. Eventually, most of
them will be able to read whole books and briefly retell the important parts
of its content. This suggest that the use of design patterns is a good idea
when reasoning about computer programs. With extensive use of design
patterns when creating complex program structures, one does not always
have to read whole classes of code to comprehend how they function, it may
be sufficient to only see the name of a class to almost fully understand its
responsibilities.

Our language is tremendously useful for repackaging material
into a few chunks rich in information. [Mil56, p. 95]

Without further evidence, these results at least indicate that refactoring
source code into smaller units with higher cohesion and, when needed,
introducing appropriate design patterns, should aid in the cause of creating
computer programs that are easier to maintain and have code that is easier
(and better) understood.

5 Notable contributions to the refactoring litera-
ture

1992 William F. Opdyke submits his doctoral dissertation called Refac-
toring Object-Oriented Frameworks [Opd92]. This work defines a set
of refactorings, that are behavior preserving given that their precon-
ditions are met. The dissertation is focused on the automation of
refactorings.

5



1999 Martin Fowler et al.: Refactoring: Improving the Design of Existing
Code [Fow99]. This is maybe the most influential text on refactoring.
It bares similarities with Opdykes thesis [Opd92] in the way that it
provides a catalog of refactorings. But Fowler’s book is more about
the craft of refactoring, as he focuses on establishing a vocabulary
for refactoring, together with the mechanics of different refactorings
and when to perform them. His methodology is also founded on the
principles of test-driven development.

2005 Joshua Kerievsky: Refactoring to Patterns [Ker05]. This book is
heavily influenced by Fowler’s Refactoring [Fow99] and the “Gang of
Four” Design Patterns [Gam+95]. It is building on the refactoring
catalogue from Fowler’s book, but is trying to bridge the gap between
refactoring and design patterns by providing a series of higher-level
composite refactorings, that makes code evolve toward or away from
certain design patterns. The book is trying to build up the reader’s
intuition around why one would want to use a particular design
pattern, and not just how. The book is encouraging evolutionary
design (see section 7 on the next page).

6 Tool support (for Java)

This section will briefly compare the refactoring support of the three IDEs
Eclipse1, IntelliJ IDEA2 and NetBeans3. These are the most popular Java
IDEs [11].

All three IDEs provide support for the most useful refactorings, like the
different extract, move and rename refactorings. In fact, Java-targeted IDEs
are known for their good refactoring support, so this did not appear as a
big surprise.

The IDEs seem to have excellent support for the Extract Method refac-
toring, so at least they have all passed the first “refactoring rubicon” [Fow01;
VJ12].

Regarding theMove Method refactoring, the Eclipse and IntelliJ IDEs do
the job in very similar manners. In most situations they both do a satisfying
job by producing the expected outcome. But they do nothing to check that
the result does not break the semantics of the program (see section 11 on
page 11). The NetBeans IDE implements this refactoring in a somewhat
unsophisticated way. For starters, the refactoring’s default destination for
the move, is the same class as the method already resides in, although it
refuses to perform the refactoring if chosen. But the worst part is, that if
moving the method f of the class C to the class X, it will break the code.
The result is shown in listing 1 on the next page.

NetBeans will try to create code that call the methods m and n of X by
accessing them through c.x, where c is a parameter of type C that is added

1http://www.eclipse.org/
2The IDE under comparison is the Community Edition, http://www.jetbrains.com/idea/
3https://netbeans.org/

6

http://www.eclipse.org/
http://www.jetbrains.com/idea/
https://netbeans.org/


public class C {
private X x;
...
public void f() {

x.m();
x.n();

}
}

public class X {
...
public void f(C c) {

c.x.m();
c.x.n();

}
}

Listing 1: Moving method f from C to X.

the method f when it is moved. (This is seldom the desired outcome of this
refactoring, but ironically, this “feature” keeps NetBeans from breaking the
code in the example from section 11 on page 11.) If c.x for some reason is
inaccessible to X, as in this case, the refactoring breaks the code, and it will
not compile. NetBeans presents a preview of the refactoring outcome, but
the preview does not catch it if the IDE is about break the program.

The IDEs under investigation seem to have fairly good support for
primitive refactorings, but what about more complex ones, such as Extract
Class [Fow99]? IntelliJ handles this in a fairly good manner, although, in
the case of private methods, it leaves unused methods behind. These are
methods that delegate to a field with the type of the new class, but are
not used anywhere. Eclipse has added its own quirk to the Extract Class
refactoring, and only allows for fields to be moved to a new class, not
methods. This makes it effectively only extracting a data structure, and
calling it Extract Class is a little misleading. One would often be better off
with textual extract and paste than using the Extract Class refactoring in
Eclipse. When it comes to NetBeans, it does not even show an attempt on
providing this refactoring.

7 The relation to design patterns

Refactoring and design patterns have at least one thing in common, they
are both promoted by advocates of clean code [MC09] as fundamental tools
on the road to more maintainable and extendable source code.

Design patterns help you determine how to reorganize a design,
and they can reduce the amount of refactoring you need to do
later. [Gam+95, p. 353]

Although sometimes associated with over-engineering [Ker05; Fow99],
design patterns are in general assumed to be good for maintainability of
source code. That may be because many of them are designed to support
the open/closed principle of object-oriented programming. The principle was
first formulated by Bertrand Meyer, the creator of the Eiffel programming
language, like this: “Modules should be both open and closed.” [Mey88] It
has been popularized, with this as a common version:

7



Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification.1

Maintainability is often thought of as the ability to be able to introduce
new functionality without having to change too much of the old code. When
refactoring, the motivation is often to facilitate adding new functionality. It
is about factoring the old code in a way that makes the new functionality
being able to benefit from the functionality already residing in a software
system, without having to copy old code into new. Then, next time someone
shall add new functionality, it is less likely that the old code has to change.
Assuming that a design pattern is the best way to get rid of duplication
and assist in implementing new functionality, it is reasonable to conclude
that a design pattern often is the target of a series of refactorings. Having
a repertoire of design patterns can also help in knowing when and how to
refactor a program to make it reflect certain desired characteristics.

There is a natural relation between patterns and refactorings.
Patterns are where you want to be; refactorings are ways to get
there from somewhere else. [Fow99, p. 107]

This quote is wise in many contexts, but it is not always appropriate
to say “Patterns are where you want to be. . . ”. Sometimes, patterns are
where you want to be, but only because it will benefit your design. It is not
true that one should always try to incorporate as many design patterns as
possible into a program. It is not like they have intrinsic value. They only
add value to a system when they support its design. Otherwise, the use
of design patterns may only lead to a program that is more complex than
necessary.

The overuse of patterns tends to result from being patterns
happy. We are patterns happy when we become so enamored
of patterns that we simply must use them in our code. [Ker05,
p. 24]

This can easily happen when relying largely on up-front design. Then
it is natural, in the very beginning, to try to build in all the flexibility that
one believes will be necessary throughout the lifetime of a software system.
According to Joshua Kerievsky “That sounds reasonable — if you happen
to be psychic.” [Ker05, p. 1] He is advocating what he believes is a better
approach: To let software continually evolve. To start with a simple design
that meets today’s needs, and tackle future needs by refactoring to satisfy
them. He believes that this is a more economic approach than investing time
and money into a design that inevitably is going to change. By relying on
continuously refactoring a system, its design can be made simpler without
sacrificing flexibility. To be able to fully rely on this approach, it is of
utter importance to have a reliable suit of tests to lean on (see section 12 on

1See http://c2.com/cgi/wiki?OpenClosedPrinciple or https://en.wikipedia.org/wiki/
Open/closed_principle

8

http://c2.com/cgi/wiki?OpenClosedPrinciple
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Open/closed_principle


page 12). This makes the design process more natural and less characterized
by difficult decisions that has to be made before proceeding in the process,
and that is going to define a project for all of its unforeseeable future.

8 The impact on software quality

8.1 What is software quality?

The term software quality has many meanings. It all depends on the context
we put it in. If we look at it with the eyes of a software developer, it usually
means that the software is easily maintainable and testable, or in other
words, that it is well designed. This often correlates with the management
scale, where keeping the schedule and customer satisfaction is at the center.
From the customers point of view, in addition to good usability, performance
and lack of bugs is always appreciated, measurements that are also shared
by the software developer. (In addition, such things as good documentation
could be measured, but this is out of the scope of this document.)

8.2 The impact on performance

Refactoring certainly will make software go more slowly1, but
it also makes the software more amenable to performance
tuning. [Fow99, p. 69]

There is a common belief that refactoring compromises performance, due
to increased degree of indirection and that polymorphism is slower than
conditionals.

In a survey, Demeyer [Dem02] disproves this view in the case of
polymorphism. He did an experiment on, what he calls, “Transform Self
Type Checks” where you introduce a new polymorphic method and a new
class hierarchy to get rid of a class’ type checking of a “type attribute“.
He uses this kind of transformation to represent other ways of replacing
conditionals with polymorphism as well. The experiment is performed on
the C++ programming language and with three different compilers and
platforms. Demeyer concludes that, with compiler optimization turned on,
polymorphism beats middle to large sized if-statements and does as well
as case-statements. (In accordance with his hypothesis, due to similarities
between the way C++ handles polymorphism and case-statements.)

The interesting thing about performance is that if you analyze
most programs, you find that they waste most of their time in a
small fraction of the code. [Fow99, p. 70]

So, although an increased amount of method calls could potentially slow
down programs, one should avoid premature optimization and sacrificing
good design, leaving the performance tuning until after profiling the software
and having isolated the actual problem areas.

1With todays compiler optimization techniques and performance tuning of e.g. the
Java virtual machine, the penalties of object creation and method calls are debatable.

9



9 Composite refactorings
Generally, when thinking about refactoring, at the mechanical level, there
are essentially two kinds of refactorings. There are the primitive refactorings,
and the composite refactorings.

Definition. A primitive refactoring is a refactoring that cannot be
expressed in terms of other refactorings.

Examples are the Pull Up Field and Pull Up Method refactorings [Fow99],
that move members up in their class hierarchies.

Definition. A composite refactoring is a refactoring that can be expressed
in terms of two or more other refactorings.

An example of a composite refactoring is the Extract Superclass refactor-
ing [Fow99]. In its simplest form, it is composed of the previously described
primitive refactorings, in addition to the Pull Up Constructor Body refac-
toring [Fow99]. It works by creating an abstract superclass that the target
class(es) inherits from, then by applying Pull Up Field, Pull Up Method and
Pull Up Constructor Body on the members that are to be members of the
new superclass. If there are multiple classes in play, their interfaces may
need to be united with the help of some rename refactorings, before extract-
ing the superclass. For an overview of the Extract Superclass refactoring,
see fig. 1 on this page.

Department

getTotalAnnualCost
getName
getHeadCount

Employee

getAnnualCost
getName
getId

Department

getAnnualCost
getHeadCount

Employee

getAnnualCost
getId

Party

getAnnualCost
getName

Figure 1: The Extract Superclass refactoring, with united interfaces.

10 Manual vs. automated refactorings
Refactoring is something every programmer does, even if she does not known
the term refactoring. Every refinement of source code that does not alter the
program’s behavior is a refactoring. For small refactorings, such as Extract
Method, executing it manually is a manageable task, but is still prone to

10



errors. Getting it right the first time is not easy, considering the method
signature and all the other aspects of the refactoring that has to be in place.

Consider the renaming of classes, methods and fields. For complex
programs these refactorings are almost impossible to get right. Attacking
them with textual search and replace, or even regular expressions, will fall
short on these tasks. Then it is crucial to have proper tool support that
can perform them automatically. Tools that can parse source code and thus
have semantic knowledge about which occurrences of which names belong
to what construct in the program. For even trying to perform one of these
complex task manually, one would have to be very confident on the existing
test suite (see section 12 on the next page).

11 Correctness of refactorings

For automated refactorings to be truly useful, they must show a high degree
of behavior preservation. This last sentence might seem obvious, but there
are examples of refactorings in existing tools that break programs. In an
ideal world, every automated refactoring would be “complete”, in the sense
that it would never break a program. In an ideal world, every program
would also be free from bugs. In modern IDEs the implemented automated
refactorings are working for most cases, that is enough for making them
useful.

I will now present an example of a corner case where a program breaks
when a refactoring is applied. The example shows an Extract Method
refactoring followed by a Move Method refactoring that breaks a program in
both the Eclipse and IntelliJ IDEs1. The target and the destination for the
composed refactoring is shown in listing 2 on the current page. Note that
the method m(C c) of class X assigns to the field x of the argument c that
has type C.

1 // Refactoring target
2 public class C {
3 public X x = new X();
4

5 public void f() {
6 x.m(this);
7 // Not the same x
8 x.n();
9 }

10 }

// Method destination
public class X {

public void m(C c) {
c.x = new X();
// If m is called from
// c, then c.x no longer
// equals ’this’

}
public void n() {}

}

Listing 2: The target and the destination for the composition of the Extract
Method and Move Method refactorings.

1The NetBeans IDE handles this particular situation without altering the program’s
behavior, mainly because its Move Method refactoring implementation is a bit flawed in
other ways (see section 6 on page 6).

11



The refactoring sequence works by extracting line 6 through 8 from the
original class C into a method f with the statements from those lines as its
method body (but with the comment left out, since it will no longer hold
any meaning). The method is then moved to the class X. The result is shown
in listing 3 on this page.

Before the refactoring, the methods m and n of class X are called on
different object instances (see line 6 and 8 of the original class C in listing 2).
After the refactoring, they are called on the same object, and the statement
on line 3 of class X (in listing 3) no longer has the desired effect in our
example. The method f of class C is now calling the method f of class X (see
line 5 of class C in listing 3), and the program now behaves different than
before.

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.f(this);
6 }
7 }

1 public class X {
2 public void m(C c) {
3 c.x = new X();
4 }
5 public void n() {}
6 // Extracted and
7 // moved method
8 public void f(C c) {
9 m(c);

10 n();
11 }
12 }

Listing 3: The result of the composed refactoring.

The bug introduced in the previous example is of such a nature1 that it
is very difficult to spot if the refactored code is not covered by tests. It does
not generate compilation errors, and will thus only result in a runtime error
or corrupted data, which might be hard to detect.

12 Refactoring and the importance of testing

If you want to refactor, the essential precondition is having solid
tests. [Fow99]

When refactoring, there are roughly three classes of errors that can be
made. The first class of errors are the ones that make the code unable to
compile. These compile-time errors are of the nicer kind. They flash up at
the moment they are made (at least when using an IDE), and are usually
easy to fix. The second class are the runtime errors. Although they take
a bit longer to surface, they usually manifest after some time in an illegal
argument exception, null pointer exception or similar during the program
execution. These kind of errors are a bit harder to handle, but at least they

1Caused by aliasing. See https://en.wikipedia.org/wiki/Aliasing_(computing)

12

https://en.wikipedia.org/wiki/Aliasing_(computing)


will show, eventually. Then there are the behavior-changing errors. These
errors are of the worst kind. They do not show up during compilation and
they do not turn on a blinking red light during runtime either. The program
can seem to work perfectly fine with them in play, but the business logic
can be damaged in ways that will only show up over time.

For discovering runtime errors and behavior changes when refactoring, it
is essential to have good test coverage. Testing in this context means writing
automated tests. Manual testing may have its uses, but when refactoring, it
is automated unit testing that dominate. For discovering behavior changes
it is especially important to have tests that cover potential problems, since
these kind of errors does not reveal themselves.

Unit testing is not a way to prove that a program is correct, but it is a
way to make you confident that it probably works as desired. In the context
of test driven development (commonly known as TDD), the tests are even a
way to define how the program is supposed to work. It is then, by definition,
working if the tests are passing.

If the test coverage for a code base is perfect, then it should, theoretically,
be risk-free to perform refactorings on it. This is why automated tests and
refactoring are such a great match.

12.1 Testing the code from correctness section

The worst thing that can happen when refactoring is to introduce changes
to the behavior of a program, as in the example on section 11 on page 11.
This example may be trivial, but the essence is clear. The only problem
with the example is that it is not clear how to create automated tests for it,
without changing it in intrusive ways.

Unit tests, as they are known from the different xUnit frameworks
around, are only suitable to test the result of isolated operations. They
can not easily (if at all) observe the history of a program.

This problem is still open.

13 The project

The aim of this master project will be to investigate the relationship between
a composite refactoring composed of the Extract Method and Move Method
refactorings, and its impact on one or more software metrics.

The composition of the Extract Method and Move Method refactorings
springs naturally out of the need to move procedures closer to the data
they manipulate. This composed refactoring is not well described in the
literature, but it is implemented in at least one tool called CodeRush1, that
is an extension for MS Visual Studio2. In CodeRush it is called Extract
Method to Type3, but I choose to call it Extract and Move Method, since I
feel it better communicates which primitive refactorings it is composed of.

1https://help.devexpress.com/#CodeRush/CustomDocument3519
2http://www.visualstudio.com/
3https://help.devexpress.com/#CodeRush/CustomDocument6710

13

https://help.devexpress.com/#CodeRush/CustomDocument3519
http://www.visualstudio.com/
https://help.devexpress.com/#CodeRush/CustomDocument6710


For the metrics, I will at least measure the Coupling between object
classes (CBO) metric that is described by Chidamber and Kemerer in their
article A Metrics Suite for Object Oriented Design [CK94].

The project will then consist in implementing the Extract and Move
Method refactoring, as well as executing it over a larger code base. Then the
effect of the change must be measured by calculating the chosen software
metrics both before and after the execution. To be able to execute the
refactoring automatically I have to make it analyze code to determine the
best selections to extract into new methods.

14



Glossary

1. design pattern A design pattern is a named abstraction, that is meant
to solve a general design problem. It describes the key aspects of
a common problem and identifies its participators and how they
collaborate. 2

2. Extract Class The Extract Class refactoring works by creating a class,
for then to move members from another class to that class and access
them from the old class via a reference to the new class. 7

3. Extract Method The Extract Method refactoring is used to extract a
fragment of code from its context and into a new method. A call to
the new method is inlined where the fragment was before. It is used to
break code into logical units, with names that explain their purpose.
3

4. Move Method The Move Method refactoring is used to move a method
from one class to another. This is useful if the method is using more
features of another class than of the class which it is currently defined.
Then all calls to this method must be updated, or the method must
be copied, with the old method delegating to the new method. 6

5. profiling is to run a computer program through a profiler/with a profiler
attached. A profiler is a program for analyzing performance within an
application. It is used to analyze memory consumption, processing
time and frequency of procedure calls and such. 9

6. software obfuscation makes source code harder to read and analyze,
while preserving its semantics. 1

7. xUnit framework An xUnit framework is a framework for writing unit
tests for a computer program. It follows the patterns known from the
JUnit framework for Java [Fow]. 13

15



16



Bibliography

[11] JAVA EE Productivity Report 2011. Survey. 2011. url: http:
//zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_
Productivity_Report_2011_finalv2.pdf.

[Bro04] Leo Brodie. Thinking Forth. 3rd ed. 2004. url: http://thinking-
forth.sourceforge.net/.

[CK94] S.R. Chidamber and C.F. Kemerer. “A Metrics Suite for
Object Oriented Design.” In: IEEE Transactions on Software
Engineering 20.6 (June 1994), pp. 476–493. issn: 0098-5589.
doi: 10.1109/32.295895.

[Dem02] Serge Demeyer. “Maintainability Versus Performance: What’s
the Effect of Introducing Polymorphism?” In: ICSE’2003
(2002).

[Fow] Martin Fowler. Xunit. url: http://www.martinfowler.com/bliki/
Xunit.html (visited on 03/27/2014).

[Fow01] Martin Fowler. Crossing Refactoring’s Rubicon. 2001. url: http:
//martinfowler.com/articles/refactoringRubicon.html (visited on
02/09/2014).

[Fow03] Martin Fowler. EtymologyOfRefactoring. Sept. 10, 2003. url:
http : / /martinfowler . com / bliki / EtymologyOfRefactoring . html
(visited on 03/20/2014).

[Fow99] Martin Fowler. Refactoring: improving the design of existing
code. Reading, MA: Addison-Wesley, 1999. isbn: 0201485672.

[Gam+95] Erich Gamma et al. Design patterns: elements of reusable
object-oriented software. Reading, MA: Addison-Wesley, 1995.
isbn: 0201633612.

[Ker05] Joshua Kerievsky. Refactoring to patterns. Boston: Addison-
Wesley, 2005. isbn: 0321213351.

[MC09] Robert C Martin and James O Coplien. Clean code: a handbook
of agile software craftsmanship. Upper Saddle River, NJ [etc.]:
Prentice Hall, 2009. isbn: 9780132350884 0132350882.

[Mey88] Bertrand Meyer.Object-oriented software construction. Prentice-
Hall, 1988. isbn: 0136290493 9780136290490 0136290310
9780136290315.

17

http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/
http://dx.doi.org/10.1109/32.295895
http://www.martinfowler.com/bliki/Xunit.html
http://www.martinfowler.com/bliki/Xunit.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/bliki/EtymologyOfRefactoring.html


[Mil56] George A. Miller. “The magical number seven, plus or minus
two: some limits on our capacity for processing information.”
In: Psychological Review 63.2 (1956), pp. 81–97. issn: 1939-
1471(Electronic);0033-295X(Print). doi: 10.1037/h0043158.

[Opd92] William F. Opdyke. “Refactoring Object-oriented Frameworks.”
UMI Order No. GAX93-05645. Champaign, IL, USA: Univer-
sity of Illinois at Urbana-Champaign, 1992.

[RBJ97] Don Roberts, John Brant, and Ralph Johnson. “A Refactoring
Tool for Smalltalk.” In: Theor. Pract. Object Syst. 3.4 (Oct.
1997), 253–263. issn: 1074-3227.

[VJ12] Mohsen Vakilian and Ralph Johnson. Composite Refactorings:
The Next Refactoring Rubicons. University of Illinois at
Urbana-Champaign, 2012. url: https://www.ideals.illinois.edu/
bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2.

18

http://dx.doi.org/10.1037/h0043158
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2

	Defining refactoring
	The etymology of 'refactoring'
	Motivation – Why people refactor
	The magical number seven
	Notable contributions to the refactoring literature
	Tool support (for Java)
	The relation to design patterns
	The impact on software quality
	What is software quality?
	The impact on performance

	Composite refactorings
	Manual vs. automated refactorings
	Correctness of refactorings
	Refactoring and the importance of testing
	Testing the code from correctness section

	The project

