Automated Composition of Refactorings

A short demonstration

e

) UNIVERSITY
OF OSLO



Refactoring
Martin Fowler, in his book on refactoring [Fow99], defines a refactoring:

Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]

If we leave the motivation behind refactoring out of the definition, it could be
rephrased like this:

Definition
A refactoring is a transformation done to a program without altering its
external behavior.

April 4, 2014

UNIVERSITY

OF OSLO




Composite Refactorings

There are primitive refactorings. These refactorings cannot be expressed in
terms of other refactorings. And there are composite refactorings:

Definition
A composite refactoring is a refactoring that can be expressed in terms of two
or more other refactorings.

April 4, 2014 3

UNIVERSITY

OF OSLO




The Extract and Move Method refactoring

This thesis is concentrating on creating a composite refactoring of the Extract
Method and Move Method refactorings. The composition of the two is called
the Extract and Move Method refactoring.

April 4, 2014 4

UNIVERSITY

OF OSLO




The Extract Method refactoring

The Extract Method refactoring is used to extract a fragment of code from its
context and into a new method. A call to the new method is inlined where the
fragment was before. It is used to break code into logical units, with names
that explain their purpose

class C { class C {
void method() { void method() {
// 1: Some code // 1: Some code
// 2: Fragment extractedMethod () ;
// 3: More code // 3: More code
} }
}

void extractedMethod() {
// 2: Fragment
}
}

April 4, 2014 5

UNIVERSITY

OF OSLO




The Move Method refactoring

The Move Method refactoring is used to move a method from one class to
another. This is useful if the method is using more features of another class
than of the class which it is currently defined.

class C { class C {
void method() { void method() {
X x = new XO); X x = new XO);
iBelongInX(x) ; x.iBelongInX();
} }
void iBelongInX(X x) { }
x.foo(); x.bar();
¥ class X {
} void iBelongInX() {
foo(); bar();
class X { }
void fooO){/*...*/} void foo(O){/*...*/%}
void barO{/*...*/} void barO{/*...*/}
} } 6

April 4, 2014

UNIVERSITY

OF OSLO




The Composition

// Before
class C {
void method() {
X x = new X(O;
x.foo(); x.bar(Q);
}
¥

class X {

void fooO){/*...*/}
void barO){/*...*/}

April 4, 2014

UNIVERSITY
OF OSLO

«4O0>» «F>» «=>»



The Composition

// Intermediate step
class C {
void method() {
X x = new X();
extractedMethod (x) ;
¥
void extractedMethod(X x) {
x.foo(); x.bar();
}
¥

class X {
void fooO{/*...*/}
void barO){/*...*/%}
}

April 4, 2014 8

UNIVERSITY

OF OSLO




The Composition

// Before
class C {
void method() {
X x = new X(O;
x.foo(); x.bar();
}
3

class X {
void fooO){/*...*/}
void barO){/*...*/}
}

April 4, 2014

// After
class C {

}

void method() {
X x = new X(O);
x.extractedMethod () ;
}

class X {

}

void extractedMethod()
foo(); bar();

I

void fooO){/*...*/}

void bar(O){/*...*/}

{

UNIVERSITY

«4O0>» «F>» «=>»



Automation

» Search based
» Heuristics

» Project wide search and perform

April 4, 2014 10

UNIVERSITY

OF OSLO




Demonstration

» The LastStatementOfSelectionEndsInReturnOrThrow—
Checker.visit (IfStatement node) method

» Extract and Move on selection
» Extract and Move, search based, on method

» The no.uio.ifi.refaktor project
> Extract and Move, search based, over whole project

April 4, 2014 11

UNIVERSITY

OF OSLO




What is left

April 4, 2014

Yy vV vV vV vV VY

Write technical section

Write up argument for correctness
Define the final case study

Run unit tests before and after change
Make more examples

Metrics?

12

UNIVERSITY

OF OSLO




Bibliography

[Fow99] Martin Fowler. Refactoring: improving the design of existing code.
Reading, MA: Addison-Wesley, 1999. 1SBN: 0201485672.

April 4, 2014 13

UNIVERSITY
7 OF OSLO

«4O0>» «F>» «=>»



