
Automated Composition of Refactorings

A short demonstration



Refactoring
Martin Fowler, in his book on refactoring [Fow99], defines a refactoring:

Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]

If we leave the motivation behind refactoring out of the definition, it could be
rephrased like this:

Definition
A refactoring is a transformation done to a program without altering its
external behavior.

April 4, 2014 2



Composite Refactorings
There are primitive refactorings. These refactorings cannot be expressed in
terms of other refactorings. And there are composite refactorings:

Definition
A composite refactoring is a refactoring that can be expressed in terms of two
or more other refactorings.

April 4, 2014 3



The Extract and Move Method refactoring
This thesis is concentrating on creating a composite refactoring of the Extract
Method and Move Method refactorings. The composition of the two is called
the Extract and Move Method refactoring.

April 4, 2014 4



The Extract Method refactoring
The Extract Method refactoring is used to extract a fragment of code from its
context and into a new method. A call to the new method is inlined where the
fragment was before. It is used to break code into logical units, with names
that explain their purpose

class C {
void method() {

// 1: Some code
// 2: Fragment
// 3: More code

}
}

class C {
void method() {

// 1: Some code
extractedMethod();
// 3: More code

}

void extractedMethod() {
// 2: Fragment

}
}

April 4, 2014 5



The Move Method refactoring
The Move Method refactoring is used to move a method from one class to
another. This is useful if the method is using more features of another class
than of the class which it is currently defined.

class C {
void method() {

X x = new X();
iBelongInX(x);

}
void iBelongInX(X x) {

x.foo(); x.bar();
}

}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

class C {
void method() {

X x = new X();
x.iBelongInX();

}
}

class X {
void iBelongInX() {

foo(); bar();
}
void foo(){/*...*/ }
void bar(){/*...*/ }

}April 4, 2014 6



The Composition

// Before
class C {

void method() {
X x = new X();
x.foo(); x.bar();

}
}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

April 4, 2014 7



The Composition

// Intermediate step
class C {

void method() {
X x = new X();
extractedMethod(x);

}
void extractedMethod(X x) {

x.foo(); x.bar();
}

}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

April 4, 2014 8



The Composition

// Before
class C {

void method() {
X x = new X();
x.foo(); x.bar();

}
}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

// After
class C {

void method() {
X x = new X();
x.extractedMethod();

}
}

class X {
void extractedMethod() {

foo(); bar();
}
void foo(){/*...*/ }
void bar(){/*...*/ }

}

April 4, 2014 9



Automation

I Search based
I Heuristics
I Project wide search and perform

April 4, 2014 10



Demonstration
I The LastStatementOfSelectionEndsInReturnOrThrow-

Checker.visit(IfStatement node) method

I Extract and Move on selection
I Extract and Move, search based, on method

I The no.uio.ifi.refaktor project
I Extract and Move, search based, over whole project

April 4, 2014 11



What is left

I Write technical section
I Write up argument for correctness
I Define the final case study
I Run unit tests before and after change
I Make more examples
I Metrics?
I . . .

April 4, 2014 12



Bibliography

[Fow99] Martin Fowler. Refactoring: improving the design of existing code.
Reading, MA: Addison-Wesley, 1999. isbn: 0201485672.

April 4, 2014 13


