Automated Composition of Refactorings

A short demonstration
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Refactoring
Martin Fowler, in his book on refactoring [Fow99], defines a refactoring:

Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]

If we leave the motivation behind refactoring out of the definition, it could be
rephrased like this:

Definition
A refactoring is a transformation done to a program without altering its
external behavior.
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Composite Refactorings

There are primitive refactorings. These refactorings cannot be expressed in
terms of other refactorings. And there are composite refactorings:

Definition
A composite refactoring is a refactoring that can be expressed in terms of two
or more other refactorings.
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The Extract and Move Method refactoring

This thesis is concentrating on creating a composite refactoring of the Extract
Method and Move Method refactorings. The composition of the two is called
the Extract and Move Method refactoring.

April 4, 2014 4

UNIVERSITY

OF OSLO




The Extract Method refactoring

The Extract Method refactoring is used to extract a fragment of code from its
context and into a new method. A call to the new method is inlined where the
fragment was before. It is used to break code into logical units, with names
that explain their purpose

class C { class C {
void method() { void method() {
// 1: Some code // 1: Some code
// 2: Fragment extractedMethod () ;
// 3: More code // 3: More code
} }
}

void extractedMethod() {
// 2: Fragment
}
}
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The Move Method refactoring

The Move Method refactoring is used to move a method from one class to
another. This is useful if the method is using more features of another class
than of the class which it is currently defined.

class C { class C {
void method() { void method() {
X x = new XO); X x = new XO);
iBelongInX(x) ; x.iBelongInX();
} }
void iBelongInX(X x) { }
x.foo(); x.bar();
¥ class X {
} void iBelongInX() {
foo(); bar();
class X { }
void fooO){/*...*/} void foo(O){/*...*/%}
void barO{/*...*/} void barO{/*...*/}
} } 6
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The Composition

// Before
class C {
void method() {
X x = new X(O;
x.foo(); x.bar(Q);
}
¥

class X {

void fooO){/*...*/}
void barO){/*...*/}
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The Composition

// Intermediate step
class C {
void method() {
X x = new X();
extractedMethod (x) ;
¥
void extractedMethod(X x) {
x.foo(); x.bar();
}
¥

class X {
void fooO{/*...*/}
void barO){/*...*/%}
}
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The Composition

// Before
class C {
void method() {
X x = new X(O;
x.foo(); x.bar();
}
3

class X {
void fooO){/*...*/}
void barO){/*...*/}
}
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// After
class C {

}

void method() {
X x = new X(O);
x.extractedMethod () ;
}

class X {

}

void extractedMethod()
foo(); bar();

I

void fooO){/*...*/}

void bar(O){/*...*/}
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Automation

» Search based
» Heuristics

» Project wide search and perform
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Demonstration

» The LastStatementOfSelectionEndsInReturnOrThrow—
Checker.visit (IfStatement node) method

» Extract and Move on selection
» Extract and Move, search based, on method

» The no.uio.ifi.refaktor project
> Extract and Move, search based, over whole project
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What is left
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Write technical section

Write up argument for correctness
Define the final case study

Run unit tests before and after change
Make more examples

Metrics?

12

UNIVERSITY

OF OSLO




Bibliography

[Fow99] Martin Fowler. Refactoring: improving the design of existing code.
Reading, MA: Addison-Wesley, 1999. 1SBN: 0201485672.

April 4, 2014 13

UNIVERSITY
7 OF OSLO

«4O0>» «F>» «=>»



