Refactoring

An essay

Erlend Kristiansen
master thesis spring 2013

Abstract

Empty document.

ii

Contents

I Introduction 3

1 Refactoring in general

1.1

1.2

1.3

1.4
1.5
1.6

1.1.2 Motivation

5
5
1.1.1 Defining refactoring 5
6
Classification of refactorings 7

1.2.1 Structural refactorings 7
122 Functional refactorings 11
The impact on software quality 11
1.3.1 Whatis meant by quality? 11
1.3.2 The impact on performance 12
Correctness of refactorings 12
Composite refactorings 12
Softwaremetrics Lo L 12

iii

iv

List of Figures

vi

List of Tables

vii

viii

Preface

ix

Todo list

sequential? L L o

original?
better?: functionality o L.

N O O O1 U1 U1

Butis theresultbetter? 1

Part 1

Introduction

Chapter 1

Refactoring in general

1.1 What is refactoring?

This question is best answered dividing the answer into two parts. First
defining the concept of a refactoring, then discuss what the dicipline of
refactoring is all about. And to make it clear already from the beginning:
The dicussions in this report must be seen in the context of object oriented
programming languages. It may be obvious, but much of the material will
not make much sense otherwise, although some of the techniques may be
applicable to sequential languages, then possibly in other forms.

1.1.1 Defining refactoring

Martin Fowler, in his masterpiece on refactoring [2], defines a refactoring
like this:

Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify
without changing its observable behaviour. [2]

This definition gives additional meaning to the word refactoring, beyond
its original meaning. Fowler is mixing the motivation behind refactoring
into his definition. Instead it could be made clean, only considering the
mechanical and behavioural aspects of refactoring. That is to factor the
program again, putting it together in a different way than before, while
preserving the behaviour of the program. An alternative definition could
then be:

Definition. A refactoring is a transformation done to a program without altering
its external behaviour.

So a refactoring primarily changes how the code of a program is
percepted by the programmer, and not the behaviour experienced by
any user of the program. Although the logical meaning is preserved,
such changes could potentially alter the program’s behaviour when it
comes to performance gain or penalties. So any logic depending on the
performance of a program could make the program behave differently after
a refactoring.

[sequential?

what does he
mean by internal?

|

[original?

better?:
functionality

(Proof?

In the extreme case one could argue that such a thing as software
obfuscation is to refactor. If we where to define it as a refactoring, it could
be defined as a composite refactoring (see 1.5), consisting of, for instance,
a series of rename refactorings. (But it could of course be much more
complex, and the mechanics of it would not exactly be carved in stone.)
To perform some serious obfuscation one would also take advantage of
techniques not found among established refactorings, such as removing
whitespace. This might not even generate a different syntax tree for
languages not sensitive to whitespace, placing it in the gray area of what
transformations is to be considered refactorings.

Finally, to refactor is (quoting Martin Fowler)

...to restructure software by applying a series of refactorings
without changing its observable behaviour. [2]

1.1.2 Motivation

To get a grasp of what refactoring is all about, we can answer this question:
Why do people refactor? Possible answers could include: “To remove
duplication” or “to break up long methods”. Practitioners of the art of
Design Patterns [3] could say that they do it to introduce a long-needed
pattern to their program’s design. So it’s safe to say that peoples’ intentions
are to make their programs better in some sense. But what aspects of the
programs are becoming improved?

As already mentioned, people often refactor to get rid of duplication.
Moving identical or similar code into methods, and maybe pushing those
up or down in their hierarchies. Making template methods for overlapping
algorithms and so on. It’s all about gathering what belongs together
and putting it all in one place. And the result? The code is easier to
maintain. When removing the implicit coupling between the code snippets,
the location of a bug is limited to only one place, and new functionality
need only to be added this one place, instead of a number of places people
might not even remember.

The same people find out that their program contains a lot of long and
hard-to-grasp methods. Then what do they do? They begin dividing their
methods into smaller ones, using the Extract Method refactoring [2]. Then
they may discover something about their program that they weren’t aware
of before; revealing bugs they didn’t know about or couldn’t find due to
the complex structure of their program. Making the methods smaller and
giving good names to the new ones clarifies the algorithms and enhances
the understandability of the program. This makes simple refactoring an
excellent method for exploring unknown program code, or code that you
had forgotten that you wrote!

The word simple came up in the last section. In fact, most basic
refactorings are simple. The true power of them are revealed first when
they are combined into larger — higher level — refactorings, called
composite refactorings (see 1.5). Often the goal of such a serie of refactorings
is a design pattern. Thus the design can be evolved throughout the lifetime

6

of a program, opposed to designing up-front. It’s all about being structured
and taking small steps to improve the design.

Many refactorings are aimed at lowering the coupling between different
classes and different layers of logic. Say for instance that the coupling
between the user interface and the business logic of a program is lowered.
Then the business logic of the program could much easier be the target of
automated tests, increasing the productivity in the software development
process. It would also be much easier to distribute the different parts of the
program if they were decoupled.

Another effect of refactoring is that with the increased separation of
concerns coming out of many refactorings, the performance is improved.
When profiling programs, the problem parts are narrowed down to smaller
parts of the code, which are easier to tune, and optimization can be
performed only where needed and in a more effective way.

Refactoring program code — with a goal in mind — can give the
code itself more value. That is in the form of robustness to bugs,
understandability and maintainability. ~With the first as an obvious
advantage, but with the following two being also very important in
software development. By incorporating refactoring in the development
process, bugs are found faster, new functionality is added more easily
and code is easier to understand by the next person exposed to it, which
might as well be the person who wrote it. So, refactoring can also add
to the monetary value of a business, by increased productivity of the
develompment process in the long run. Where this last point also should
open the eyes of some nearsighted managers who seldom see beyond the
next milestone.

1.2 Classification of refactorings

1.2.1 Structural refactorings
Basic refactorings

Extract Method

When: You have a code fragment that can be grouped together.

How: Turn the fragment into a method whose name explains the purpose
of the method.

Inline Method

When: A method’s body is just as clear as its name.

How: Put the method’s body into the body of its callers and remove the
method.

Inline Temp

When: You have a temp that is assigned to once with a simple expression,
and the temp is getting in the way of other refactorings.

How: Replace all references to that temp with the expression

Mowve Method

When: A method is, or will be, using or used by more features of another
class than the class on which it is defined.

How: Create a new method with a similar body in the class it uses most. Ei-
ther turn the old method into a simple delegation, or remove it altogether.

Mowve Field

When: A field is, or will be, used by another class more than the class on
which it is defined

How: Create a new field in the target class, and change all its users.

Replace Magic Number with Symbolic Constant

When: You have a literal number with a particular meaning.

How: Create a constant, name it after the meaning, and replace the number
with it.

Encapsulate Field
When: There is a public field.
How: Make it private and provide accessors.

Replace Type Code with Class
When: A class has a numeric type code that does not affect its behaviour.
How: Replace the number with a new class.

Replace Type Code with Subclasses

When: You have an immutable type code that affects the behaviour of a
class.

How: Replace the type code with subclasses.

Replace Type Code with State/Strategy

When: You have a type code that affects the behaviour of a class, but you
cannot use subclassing.

How: Replace the type code with a state object.

Consolidate Duplicate Conditional Fragments

When: The same fragment of code is in all branches of a condtional expres-
sion.

How: Move it outside of the expression.

Remove Control Flag

When: You have a variable that is acting as a control flag fro a series of
boolean expressions.

How: Use a break or return instead.

Replace Nested Conditional with Guard Clauses

When: A method has conditional behaviour that does not make clear the
normal path of execution.

How: Use guard clauses for all special cases.

Introduce Null Object
When: You have repeated chacks for a null value.
How: Replace the null value with a null object.

Introduce Assertion

When: A section of code assumes something about the state of the program.
How: Make the assumption explicit with an assertion.

Rename Method
When: The name of a method does not reveal its purpose.
How: Change the name of the method

Add Parameter
When: A method needs more information from its caller.
How: Add a parameter for an object that can pass on this information.

Remove Parameter
When: A parameter is no longer used by the method body.
How: Remove it.

Preserve Whole Object

When: You are getting several values from an object and passing these val-
ues as parameters in a method call.

How: Send the whole object instead.

Remowve Setting Method
When: A field should be set at creation time and never altered.
How: Remove any setting method for that field.

Hide Method
When: A method is not used by any other class.
How: Make the method private.

Replace Constructor with Factory Method

When: You vant to do more than simple construction when you create an
object

How: Replace the consgtructor with a factory method.

Pull Up Field
When: Two subclasses have the same field.
How: MOve the field to the superclass.

Pull Up Method
When: You have methods with identical results on subclasses.
How: Move them to the superclass.

Push Down Method
When: Behaviour on a superclass is relevant only for some of its subclasses.
How: Move it to those subclasses.

Push Down Field
When: A field is used only by some subclasses.
How: Move the field to those subclasses

Extract Interface

When: Several clients use the same subset of a class’s interface, or two
classes have part of their interfac | es in common.

How: Extract the subset into an interface.

Replace Inheritance with Delegation

When: A subclass uses only part of a superclasses interface or does not want
to inherit data.

How: Create a field for the superclass, adjust methods to delegate to the
superclass, and remove the subclassing.

Replace Delegation with Inheritance

When: You're using delegation and are often writing many simple delega-
tions for the entire interface

How: Make the delegating class a subclass of the delegate.

Composite refactorings

Extract Class

When: You have one class doing work that should be done by two

How: Create a new class and move the relevant fields and methods from
the old class into the new class.

Inline Class
When: A class isn’t doing very much.
How: Move all its features into another class and delete it.

Hide Delegate
When: A client is calling a delegate class of an object.
How: Create Methods on the server to hide the delegate.

Remove Middle Man
When: A class is doing to much simple delegation.
How: Get the client to call the delegate directly.

Replace Data Value with Object
When: You have a data item that needs additional data or behaviour.
How: Turn the data item into an object.

Change Value to Reference

When: You have a class with many equal instances that you want to replace
with a single object.

How: Turn the object into a reference object.

Encapsulate Collection
When: A method returns a collection
How: Make it return a read-only vew and provide add/remove methods.

Replace Subclass with Fields

When: You have subclasses that vary only in methods that return constant
data.

How: Change the methods to superclass fields and eliminate the subclasses.

Decompose Conditional
When: You have a complicated conditional (if-then-else) statement.
How: Extract methods from the condition, then part, an else part.

10

Consolidate Conditional Expression
When: You have a sequence of conditional tests with the same result.
How: Combine them into a single conditional expression and extract it.

Replace Conditional with Polymorphism

When: You have a conditional that chooses different behaviour depending
on the type of an object.

How: Move each leg of the conditional to an overriding method in a sub-
class. Make the original method abstract.

Replace Parameter with Method

When: An object invokes a method, then passes the result as a parameter
for a method. The receiver can also invoke this method.

How: Remove the parameter and let the receiver invoke the method.

Introduce Parameter Object
When: You have a group of parameters that naturally go together.
How: Replace them with an object.

Extract Subclass
When: A class has features that are used only in some instances.
How: Create a subclass for that subset of features.

Extract Superclass
When: You have two classes with similar features.
How: Create a superclass and move the common features to the superclass.

Collapse Hierarchy
When: A superclass and subclass are not very different.
How: Merge them together.

Form Template Method

When: You have two methods in subclasses that perform similar steps in
the same order, yet the steps are different.

How: Get the steps into methods with the same signature, so that the origi-
nal methods become the same. Then you can pull them up.

1.2.2 Functional refactorings

Substitute Algorithm
When: You want to replace an algorithm with one that is clearer.
How: Replace the body of the method with the new algorithm.

1.3 The impact on software quality

1.3.1 What is meant by quality?

The term software quality has many meanings. It all depends on the context
we put it in. If we look at it with the eyes of a software developer, it usually
mean that the software is easily maintainable and testable, or in other

11

But is the result
better?

words, that it is well designed. This often correlates with the management
scale, where keeping the schedule and customer satisfaction is at the center.
From the customers point of view, in addition to good usability, performance
and lack of bugs is always appreciated, measurements that are also shared by
the software developer. (In addition, such things as good documentation
could be measured, but this is out of the scope of this document.)

1.3.2 The impact on performance

Refactoring certainly will make software go more slowly, but
it also makes the software more amenable to performance
tuning. [2]

There is a common belief that refactoring compromises performance, due
to increased degree of indirection and that polymorphism is slower than
conditionals.

In a survey, Demeyer [1] disproves this view in the case of polymor-
phism. He is doing an experiment on, what he calls, “Transform Self Type
Checks” where you introduce a new polymorphic method and a new class
hierarchy to get rid of a class’ type checking of a “type attribute”. He uses
this kind of transformation to represent other ways of replacing condition-
als with polymorphism as well. The experiment is performed on the C++
programming language and with three different compilers and platforms.
Demeyer concludes that, with compiler optimization turned on, polymor-
phism beats middle to large sized if-statements and does as well as case-
statements. (In accordance with his hypothesis, due to similarities between
the way C++ handles polymorphism and case-statements.)

The interesting thing about performance is that if you analyze
most programs, you find that they waste most of their time in a
small fraction of the code. [2]

So, although an increased amount of method calls could potentially slow
down programs, one should avoid premature optimization and sacrificing
good design, leaving the performance tuning until after profiling the
software and having isolated the actual problem areas.

1.4 Correctness of refactorings
1.5 Composite refactorings

1.6 Software metrics

12

Bibliography

[1]

(2]

3]

Serge Demeyer. “Maintainability Versus Performance: What’s the
Effect of Introducing Polymorphism?” In: ICSE’2003 (2002).

Martin Fowler. Refactoring : improving the design of existing code.
Reading, MA: Addison-Wesley, 1999. 1SBN: 0201485672.

Erich Gamma et al. Design patterns : elements of reusable object-oriented
software. Reading, MA: Addison-Wesley, 1995. 1SBN: 0201633612.

13

