
Refactoring
An essay

Erlend Kristiansen
Master’s Thesis Autumn 2013

Abstract

Empty document.

i

ii

Contents

1 Introduction 1
1.1 What is Refactoring? . 1

1.1.1 Defining refactoring 1
1.1.2 Motivation . 2

1.2 Classification of refactorings 3
1.2.1 Structural refactorings 3
1.2.2 Functional refactorings 7

1.3 The impact on software quality 7
1.3.1 What is meant by quality? 7
1.3.2 The impact on performance 8

1.4 Correctness of refactorings . 8
1.5 Composite refactorings . 8
1.6 Software metrics . 8

2 Refactorings in Eclipse JDT: Design, Shortcomings and Wishful
Thinking 9
2.1 Design . 9

2.1.1 The Language Toolkit 9
2.2 Shortcomings . 10

2.2.1 Absence of Generics in Eclipse Source Code 11
2.2.2 Composite Refactorings Will Not Appear as Atomic

Actions . 11
2.3 Wishful Thinking . 11

3 Composite Refactorings in Eclipse 13
3.1 A Simple Ad Hoc Model . 13
3.2 The Extract and Move Method Refactoring 13

3.2.1 The Building Blocks 13
3.2.2 The ExtractAndMoveMethodChanger Class 14
3.2.3 The ExtractAndMoveMethodPrefixesExtractor Class 14
3.2.4 The Prefix Class . 15
3.2.5 The PrefixSet Class . 15
3.2.6 Hacking the Refactoring Undo History 15

iii

iv

List of Figures

v

vi

List of Tables

vii

viii

Preface

ix

x

Chapter 1

Introduction

1.1 What is Refactoring?

This question is best answered dividing the answer into two parts. First
defining the concept of a refactoring, then discuss what the discipline of
refactoring is all about. And to make it clear already from the beginning:
The discussions in this report must be seen in the context of object oriented
programming languages. It may be obvious, but much of the material will
not make much sense otherwise, although some of the techniques may be
applicable to sequential languages, then possibly in other forms. sequential?sequential?

1.1.1 Defining refactoring

Martin Fowler, in his masterpiece on refactoring [2], defines a refactoring
like this:

Refactoring (noun): a change made to the internal structure of what does he
mean by internal?
what does he
mean by internal?software to make it easier to understand and cheaper to modify

without changing its observable behavior. [2]

This definition gives additional meaning to the word refactoring, beyond
its original meaning. Fowler is mixing the motivation behind refactoring original?original?
into his definition. Instead it could be made clean, only considering the
mechanical and behavioral aspects of refactoring. That is to factor the
program again, putting it together in a different way than before, while
preserving the behavior of the program. An alternative definition could
then be:

Definition. A refactoring is a transformation done to a program without altering
its external behavior.

So a refactoring primarily changes how the code of a program is
perceived by the programmer, and not the behavior experienced by any
user of the program. Although the logical meaning is preserved, such
changes could potentially alter the program’s behavior when it comes
to performance gain or penalties. So any logic depending on the
performance of a program could make the program behave differently after
a refactoring.

1

In the extreme case one could argue that such a thing as software
obfuscation is to refactor. If we where to define it as a refactoring, it could
be defined as a composite refactoring (see 1.5), consisting of, for instance,
a series of rename refactorings. (But it could of course be much more
complex, and the mechanics of it would not exactly be carved in stone.)
To perform some serious obfuscation one would also take advantage of
techniques not found among established refactorings, such as removing
whitespace. This might not even generate a different syntax tree for
languages not sensitive to whitespace, placing it in the gray area of what
transformations is to be considered refactorings.

Finally, to refactor is (quoting Martin Fowler)

. . . to restructure software by applying a series of refactorings
without changing its observable behavior. [2]

1.1.2 Motivation

To get a grasp of what refactoring is all about, we can answer this question:
Why do people refactor? Possible answers could include: “To remove
duplication” or “to break up long methods”. Practitioners of the art of
Design Patterns [3] could say that they do it to introduce a long-needed
pattern to their program’s design. So it’s safe to say that peoples’ intentions
are to make their programs better in some sense. But what aspects of the
programs are becoming improved?

As already mentioned, people often refactor to get rid of duplication.
Moving identical or similar code into methods, and maybe pushing those
up or down in their hierarchies. Making template methods for overlapping
algorithms and so on. It’s all about gathering what belongs togetherbetter?:

functionality
better?:
functionality and putting it all in one place. And the result? The code is easier to

maintain. When removing the implicit coupling between the code snippets,
the location of a bug is limited to only one place, and new functionality
need only to be added this one place, instead of a number of places people
might not even remember.

The same people find out that their program contains a lot of long and
hard-to-grasp methods. Then what do they do? They begin dividing their
methods into smaller ones, using the Extract Method refactoring [2]. Then
they may discover something about their program that they weren’t aware
of before; revealing bugs they didn’t know about or couldn’t find due to
the complex structure of their program. Making the methods smaller andProof?Proof?
giving good names to the new ones clarifies the algorithms and enhances
the understandability of the program. This makes simple refactoring an
excellent method for exploring unknown program code, or code that you
had forgotten that you wrote!

The word simple came up in the last section. In fact, most basic
refactorings are simple. The true power of them are revealed first when
they are combined into larger — higher level — refactorings, called
composite refactorings (see 1.5). Often the goal of such a series of refactorings
is a design pattern. Thus the design can be evolved throughout the lifetime

2

of a program, opposed to designing up-front. It’s all about being structured
and taking small steps to improve the design.

Many refactorings are aimed at lowering the coupling between different
classes and different layers of logic. Say for instance that the coupling
between the user interface and the business logic of a program is lowered.
Then the business logic of the program could much easier be the target of
automated tests, increasing the productivity in the software development
process. It would also be much easier to distribute the different parts of the
program if they were decoupled.

Another effect of refactoring is that with the increased separation of
concerns coming out of many refactorings, the performance is improved.
When profiling programs, the problem parts are narrowed down to smaller
parts of the code, which are easier to tune, and optimization can be
performed only where needed and in a more effective way.

Refactoring program code — with a goal in mind — can give the
code itself more value. That is in the form of robustness to bugs,
understandability and maintainability. With the first as an obvious
advantage, but with the following two being also very important in
software development. By incorporating refactoring in the development
process, bugs are found faster, new functionality is added more easily
and code is easier to understand by the next person exposed to it, which
might as well be the person who wrote it. So, refactoring can also add
to the monetary value of a business, by increased productivity of the
development process in the long run. Where this last point also should
open the eyes of some nearsighted managers who seldom see beyond the
next milestone.

1.2 Classification of refactorings

1.2.1 Structural refactorings

Basic refactorings

Extract Method
When: You have a code fragment that can be grouped together.
How: Turn the fragment into a method whose name explains the purpose
of the method.

Inline Method
When: A method’s body is just as clear as its name.
How: Put the method’s body into the body of its callers and remove the
method.

Inline Temp
When: You have a temp that is assigned to once with a simple expression,
and the temp is getting in the way of other refactorings.
How: Replace all references to that temp with the expression

Move Method

3

When: A method is, or will be, using or used by more features of another
class than the class on which it is defined.
How: Create a new method with a similar body in the class it uses most. Ei-
ther turn the old method into a simple delegation, or remove it altogether.

Move Field
When: A field is, or will be, used by another class more than the class on
which it is defined
How: Create a new field in the target class, and change all its users.

Replace Magic Number with Symbolic Constant
When: You have a literal number with a particular meaning.
How: Create a constant, name it after the meaning, and replace the number
with it.

Encapsulate Field
When: There is a public field.
How: Make it private and provide accessors.

Replace Type Code with Class
When: A class has a numeric type code that does not affect its behavior.
How: Replace the number with a new class.

Replace Type Code with Subclasses
When: You have an immutable type code that affects the behavior of a class.
How: Replace the type code with subclasses.

Replace Type Code with State/Strategy
When: You have a type code that affects the behavior of a class, but you
cannot use subclassing.
How: Replace the type code with a state object.

Consolidate Duplicate Conditional Fragments
When: The same fragment of code is in all branches of a conditional expres-
sion.
How: Move it outside of the expression.

Remove Control Flag
When: You have a variable that is acting as a control flag fro a series of
boolean expressions.
How: Use a break or return instead.

Replace Nested Conditional with Guard Clauses
When: A method has conditional behavior that does not make clear the nor-
mal path of execution.
How: Use guard clauses for all special cases.

Introduce Null Object
When: You have repeated checks for a null value.
How: Replace the null value with a null object.

Introduce Assertion

4

When: A section of code assumes something about the state of the program.
How: Make the assumption explicit with an assertion.

Rename Method
When: The name of a method does not reveal its purpose.
How: Change the name of the method

Add Parameter
When: A method needs more information from its caller.
How: Add a parameter for an object that can pass on this information.

Remove Parameter
When: A parameter is no longer used by the method body.
How: Remove it.

Preserve Whole Object
When: You are getting several values from an object and passing these val-
ues as parameters in a method call.
How: Send the whole object instead.

Remove Setting Method
When: A field should be set at creation time and never altered.
How: Remove any setting method for that field.

Hide Method
When: A method is not used by any other class.
How: Make the method private.

Replace Constructor with Factory Method
When: You want to do more than simple construction when you create an
object
How: Replace the constructor with a factory method.

Pull Up Field
When: Two subclasses have the same field.
How: Move the field to the superclass.

Pull Up Method
When: You have methods with identical results on subclasses.
How: Move them to the superclass.

Push Down Method
When: Behavior on a superclass is relevant only for some of its subclasses.
How: Move it to those subclasses.

Push Down Field
When: A field is used only by some subclasses.
How: Move the field to those subclasses

Extract Interface
When: Several clients use the same subset of a class’s interface, or two
classes have part of their interfaces in common.
How: Extract the subset into an interface.

5

Replace Inheritance with Delegation
When: A subclass uses only part of a superclasses interface or does not want
to inherit data.
How: Create a field for the superclass, adjust methods to delegate to the
superclass, and remove the subclassing.

Replace Delegation with Inheritance
When: You’re using delegation and are often writing many simple delega-
tions for the entire interface
How: Make the delegating class a subclass of the delegate.

Composite refactorings

Extract Class
When: You have one class doing work that should be done by two
How: Create a new class and move the relevant fields and methods from
the old class into the new class.

Inline Class
When: A class isn’t doing very much.
How: Move all its features into another class and delete it.

Hide Delegate
When: A client is calling a delegate class of an object.
How: Create Methods on the server to hide the delegate.

Remove Middle Man
When: A class is doing to much simple delegation.
How: Get the client to call the delegate directly.

Replace Data Value with Object
When: You have a data item that needs additional data or behavior.
How: Turn the data item into an object.

Change Value to Reference
When: You have a class with many equal instances that you want to replace
with a single object.
How: Turn the object into a reference object.

Encapsulate Collection
When: A method returns a collection
How: Make it return a read-only view and provide add/remove methods.

Replace Subclass with Fields
When: You have subclasses that vary only in methods that return constant
data.
How: Change the methods to superclass fields and eliminate the subclasses.

Decompose Conditional
When: You have a complicated conditional (if-then-else) statement.
How: Extract methods from the condition, then part, an else part.

6

Consolidate Conditional Expression
When: You have a sequence of conditional tests with the same result.
How: Combine them into a single conditional expression and extract it.

Replace Conditional with Polymorphism
When: You have a conditional that chooses different behavior depending
on the type of an object.
How: Move each leg of the conditional to an overriding method in a sub-
class. Make the original method abstract.

Replace Parameter with Method
When: An object invokes a method, then passes the result as a parameter
for a method. The receiver can also invoke this method.
How: Remove the parameter and let the receiver invoke the method.

Introduce Parameter Object
When: You have a group of parameters that naturally go together.
How: Replace them with an object.

Extract Subclass
When: A class has features that are used only in some instances.
How: Create a subclass for that subset of features.

Extract Superclass
When: You have two classes with similar features.
How: Create a superclass and move the common features to the superclass.

Collapse Hierarchy
When: A superclass and subclass are not very different.
How: Merge them together.

Form Template Method
When: You have two methods in subclasses that perform similar steps in
the same order, yet the steps are different.
How: Get the steps into methods with the same signature, so that the origi-
nal methods become the same. Then you can pull them up.

1.2.2 Functional refactorings

Substitute Algorithm
When: You want to replace an algorithm with one that is clearer.
How: Replace the body of the method with the new algorithm.

1.3 The impact on software quality

1.3.1 What is meant by quality?

The term software quality has many meanings. It all depends on the context
we put it in. If we look at it with the eyes of a software developer, it usually
mean that the software is easily maintainable and testable, or in other

7

words, that it is well designed. This often correlates with the management
scale, where keeping the schedule and customer satisfaction is at the center.
From the customers point of view, in addition to good usability, performance
and lack of bugs is always appreciated, measurements that are also shared by
the software developer. (In addition, such things as good documentation
could be measured, but this is out of the scope of this document.)

1.3.2 The impact on performance

Refactoring certainly will make software go more slowly, but
it also makes the software more amenable to performance
tuning. [2]

There is a common belief that refactoring compromises performance, due
to increased degree of indirection and that polymorphism is slower than
conditionals.

In a survey, Demeyer [1] disproves this view in the case of polymor-
phism. He is doing an experiment on, what he calls, “Transform Self Type
Checks” where you introduce a new polymorphic method and a new class
hierarchy to get rid of a class’ type checking of a “type attribute“. He uses
this kind of transformation to represent other ways of replacing condition-
als with polymorphism as well. The experiment is performed on the C++
programming language and with three different compilers and platforms.
Demeyer concludes that, with compiler optimization turned on, polymor-But is the result

better?
But is the result
better? phism beats middle to large sized if-statements and does as well as case-

statements. (In accordance with his hypothesis, due to similarities between
the way C++ handles polymorphism and case-statements.)

The interesting thing about performance is that if you analyze
most programs, you find that they waste most of their time in a
small fraction of the code. [2]

So, although an increased amount of method calls could potentially slow
down programs, one should avoid premature optimization and sacrificing
good design, leaving the performance tuning until after profiling the
software and having isolated the actual problem areas.

1.4 Correctness of refactorings

1.5 Composite refactorings

1.6 Software metrics

8

Chapter 2

Refactorings in Eclipse JDT:
Design, Shortcomings and
Wishful Thinking

This chapter will deal with some of the design behind refactoring support
in Eclipse, and the JDT in specific. After which it will follow a section about
shortcomings of the refactoring API in terms of composition of refactorings.
The chapter will be concluded with a section telling some of the ways the
implementation of refactorings in the JDT could have worked to facilitate
composition of refactorings.

2.1 Design

The refactoring world of Eclipse can in general be separated into two parts:
The language independent part and the the part written for a specific
programming language – the language that is the target of the supported
refactorings. What about the

language specific
part?

What about the
language specific
part?2.1.1 The Language Toolkit

The Language Toolkit, or LTK for short, is the framework that is used to
implement refactorings in Eclipse. It is language independent and provides
the abstractions of a refactoring and the change it generates, in the form of
the classes Refactoring1 and Change2. (There is also parts of the LTK that is
concerned with user interaction, but they will not be discussed here, since
they are of little value to us and our use of the framework.)

The Refactoring Class

The abstract class Refactoring is the core of the LTK framework. Every
refactoring that is going to be supported by the LTK have to end up creating

1org.eclipse.ltk.core.refactoring.Refactoring
2org.eclipse.ltk.core.refactoring.Change

9

an instance of one of its subclasses. The main responsibilities of subclasses
of Refactoring is to implement template methods for condition checking
(checkInitialConditions1 and checkFinalConditions2), in addition to
the createChange3 method that creates and returns an instance of the
Change class.

If the refactoring shall support that others participate in it when it is
executed, the refactoring has to be a processor-based refactoring4. It then
delegates to its given RefactoringProcessor5 for condition checking and
change creation.

The Change Class

This class is the base class for objects that is responsible for performing the
actual workspace transformations in a refactoring. The main responsibili-
ties for its subclasses is to implement the perform6 and isValid7 methods.
The isValid method verifies that the change object is valid and thus can be
executed by calling its perform method. The perform method performs the
desired change and returns an undo change that can be executed to reverse
the effect of the transformation done by its originating change object.

Executing a Refactoring

The life cycle of a refactoring generally follows two steps after creation:
condition checking and change creation. By letting the refactoring object
be handled by a CheckConditionsOperation8 that in turn is handled by a
CreateChangeOperation9, it is assured that the change creation process is
managed in a proper manner.

The actual execution of a change object has to follow a detailed life
cycle. This life cycle is honored if the CreateChangeOperation is handled
by a PerformChangeOperation10. If also an undo manager11 is set for the
PerformChangeOperation, the undo change is added into the undo history.

2.2 Shortcomings

This section is introduced naturally with a conclusion: The JDT refactoring
implementation does not facilitate composition of refactorings. This sectionrefinerefine
will try to explain why, and also identify other shortcomings of both the
usability and the readability of the JDT refactoring source code.

1org.eclipse.ltk.core.refactoring.Refactoring#checkInitialConditions()
2org.eclipse.ltk.core.refactoring.Refactoring#checkFinalConditions()
3org.eclipse.ltk.core.refactoring.Refactoring#createChange()
4org.eclipse.ltk.core.refactoring.participants.ProcessorBasedRefactoring
5org.eclipse.ltk.core.refactoring.participants.RefactoringProcessor
6org.eclipse.ltk.core.refactoring.Change#perform()
7org.eclipse.ltk.core.refactoring.Change#isValid()
8org.eclipse.ltk.core.refactoring.CheckConditionsOperation
9org.eclipse.ltk.core.refactoring.CreateChangeOperation

10org.eclipse.ltk.core.refactoring.PerformChangeOperation
11org.eclipse.ltk.core.refactoring.IUndoManager

10

I will begin at the end and work my way toward the composition part
of this section.

2.2.1 Absence of Generics in Eclipse Source Code

This section is not only concerning the JDT refactoring API, but also large
quantities of the Eclipse source code. The code shows a striking absence
of the Java language feature of generics. It is hard to read a class’ interface
when methods return objects or takes parameters of raw types such as List
or Map. This sometimes results in having to read a lot of source code to
understand what is going on, instead of relying on the available interfaces.
In addition, it results in a lot of ugly code, making the use of typecasting
more of a rule than an exception.

2.2.2 Composite Refactorings Will Not Appear as Atomic Actions

Missing Flexibility from JDT Refactorings

The JDT refactorings are not made with composition of refactorings in
mind. When a JDT refactoring is executed, it assumes that all conditions
for it to be applied successfully can be found by reading source files that
has been persisted to disk. They can only operate on the actual source
material, and not (in-memory) copies thereof. This constitutes a major
disadvantage when trying to compose refactorings, since if an exception
occur in the middle of a sequence of refactorings, it can leave the project in
a state where the composite refactoring was executed only partly. It makes
it hard to discard the changes done without monitoring and consulting the
undo manager, an approach that is not bullet proof.

Broken Undo History

When designing a composed refactoring that is to be performed as a
sequence of refactorings, you would like it to appear as a single change
to the workspace. This implies that you would also like to be able to undo
all the changes done by the refactoring in a single step. This is not the
way it appears when a sequence of JDT refactorings is executed. It leaves
the undo history filled up with individual undo actions corresponding to
every single JDT refactoring in the sequence. This problem is not trivial to
handle in Eclipse. (See section 3.2.6.)

2.3 Wishful Thinking

11

12

Chapter 3

Composite Refactorings in
Eclipse

3.1 A Simple Ad Hoc Model

As pointed out in chapter 2, the Eclipse JDT refactoring model is not very
well suited for making composite refactorings. Therefore a simple model
using changer objects (of type RefaktorChanger) is used as an abstraction
layer on top of the existing Eclipse refactorings.

3.2 The Extract and Move Method Refactoring

3.2.1 The Building Blocks

This is a composite refactoring, and hence is built up using several
primitive refactorings. These basic building blocks are, as its name implies,
the Extract Method Refactoring [2] and the Move Method Refactoring
[2]. In Eclipse, the implementations of these refactorings are found in the
classes ExtractMethodRefactoring1 and MoveInstanceMethodProcessor2,
where the last class is designed to be used together with the processor-
based MoveRefactoring3.

The ExtractMethodRefactoring Class

This class is quite simple in its use. The only parameters it requires for
construction is a compilation unit4, the offset into the source code where
the extraction shall start, and the length of the source to be extracted. Then
you have to set the method name for the new method together with which
access modifier that shall be used and some not so interesting parameters.

1org.eclipse.jdt.internal.corext.refactoring.code.ExtractMethodRefactoring
2org.eclipse.jdt.internal.corext.refactoring.structure.MoveInstanceMethodProcessor
3org.eclipse.ltk.core.refactoring.participants.MoveRefactoring
4org.eclipse.jdt.core.ICompilationUnit

13

The MoveInstanceMethodProcessor Class

For the Move Method the processor requires a little more advanced input
than the class for the Extract Method. For construction it requires a method
handle1 from the Java Model for the method that is to be moved. Then
the target for the move have to be supplied as the variable binding from
a chosen variable declaration. In addition to this, one have to set some
parameters regarding setters/getters and delegation.

To make a whole refactoring from the processor, one have to construct
a MoveRefactoring from it.

3.2.2 The ExtractAndMoveMethodChanger Class

The ExtractAndMoveMethodChanger2 class, that is a subclass of the
class RefaktorChanger3, is the class responsible for composing the
ExtractMethodRefactoring and the MoveRefactoring. Its constructor
takes a project handle4, the method name for the new method and a
SmartTextSelection5.

A SmartTextSelection is basically a text selection6 object that enforces
the providing of the underlying document during creation. I.e. its
getDocument7 method will never return null.

Before extracting the new method, the possible targets for the move op-
eration is found with the help of an ExtractAndMoveMethodPrefixesExtractor8.
The possible targets is those that the extractor returns from its getSafePrefixes9

method. The changer then choose the most suitable target by finding the
most frequent occurring prefix among the safe ones.

After finding a suitable target, the ExtractAndMoveMethodChanger first
creates an ExtractMethodRefactoring and performs it as explained in
section 2.1.1 about the execution of refactorings. Then it creates and
performs the MoveRefactoring in the same way, based on the changes done
by the Extract Method refactoring.

3.2.3 The ExtractAndMoveMethodPrefixesExtractor Class

This extractor extracts properties needed for building the Extract and Move
Method refactoring. It searches through the given selection to find safe
targets for the move part of the refactoring. It finds both the candidates,
in the form of prefixes, and the non-candidates, called unfixes. All prefixes
(and unfixes) are represented by a Prefix10, and they are collected into

1org.eclipse.jdt.core.IMethod
2no.uio.ifi.refaktor.changers.ExtractAndMoveMethodChanger
3no.uio.ifi.refaktor.changers.RefaktorChanger
4org.eclipse.core.resources.IProject
5no.uio.ifi.refaktor.utils.SmartTextSelection
6org.eclipse.jface.text.ITextSelection
7no.uio.ifi.refaktor.utils.SmartTextSelection#getDocument()
8no.uio.ifi.refaktor.extractors.ExtractAndMoveMethodPrefixesExtractor
9no.uio.ifi.refaktor.extractors.ExtractAndMoveMethodPrefixesExtractor#getSafePrefixes()

10no.uio.ifi.refaktor.extractors.Prefix

14

prefix sets.1. . Write about how
prefixes and
unfixes are chosen.
And how the safe
ones are computed

Write about how
prefixes and
unfixes are chosen.
And how the safe
ones are computed

3.2.4 The Prefix Class

3.2.5 The PrefixSet Class

3.2.6 Hacking the Refactoring Undo History

Where to put this
section?
Where to put this
section?As an attempt to make multiple subsequent changes to the workspace

appear as a single action (i.e. make the undo changes appear as such), I
tried to alter the undo changes2 in the history of the refactorings.

My first impulse was to remove the, in this case, last two undo changes
from the undo manager3 for the Eclipse refactorings, and then add them
to a composite change4 that could be added back to the manager. The
interface of the undo manager does not offer a way to remove/pop the
last added undo change, so a possible solution could be to decorate [3] the
undo manager, to intercept and collect the undo changes before delegating
to the addUndo method5 of the manager. Instead of giving it the intended
undo change, a null change could be given to prevent it from making any
changes if run. Then one could let the collected undo changes form a
composite change to be added to the manager.

There is a technical challenge with this approach, and it relates to the
undo manager, and the concrete implementation UndoManager26. This
implementation is designed in a way that it is not possible to just add
an undo change, you have to do it in the context of an active operation7.
One could imagine that it might be possible to trick the undo manager into
believing that you are doing a real change, by executing a refactoring that
is returning a kind of null change that is returning our composite change
of undo refactorings when it is performed.

Apart from the technical problems with this solution, there is a
functional problem: If it all had worked out as planned, this would leave
the undo history in a dirty state, with multiple empty undo operations
corresponding to each of the sequentially executed refactoring operations,
followed by a composite undo change corresponding to an empty change
of the workspace for rounding of our composite refactoring. The solution
to this particular problem could be to intercept the registration of the
intermediate changes in the undo manager, and only register the last empty
change.

Unfortunately, not everything works as desired with this solution. The
grouping of the undo changes into the composite change does not make
the undo operation appear as an atomic operation. The undo operation is

1no.uio.ifi.refaktor.extractors.PrefixSet
2org.eclipse.ltk.core.refactoring.Change
3org.eclipse.ltk.core.refactoring.IUndoManager
4org.eclipse.ltk.core.refactoring.CompositeChange
5org.eclipse.ltk.core.refactoring.IUndoManager#addUndo()
6org.eclipse.ltk.internal.core.refactoring.UndoManager2
7org.eclipse.core.commands.operations.TriggeredOperations

15

still split up into separate undo actions, corresponding to the change done
by its originating refactoring. And in addition, the undo actions has to be
performed separate in all the editors involved. This makes it no solution at
all, but a step toward something worse.

There might be a solution to this problem, but it remains to be found.
The design of the refactoring undo management is partly to be blamed for
this, as it it is to complex to be easily manipulated.

16

Bibliography

[1] Serge Demeyer. “Maintainability Versus Performance: What’s the
Effect of Introducing Polymorphism?” In: ICSE’2003 (2002).

[2] Martin Fowler. Refactoring : improving the design of existing code.
Reading, MA: Addison-Wesley, 1999. ISBN: 0201485672.

[3] Erich Gamma et al. Design patterns : elements of reusable object-oriented
software. Reading, MA: Addison-Wesley, 1995. ISBN: 0201633612.

17

18

Todo list

sequential? . 1
what does he mean by internal? . 1
original? . 1
better?: functionality . 2
Proof? . 2
But is the result better? . 8
What about the language specific part? 9
refine . 10
Write about how prefixes and unfixes are chosen. And how the safe

ones are computed . 15
Where to put this section? . 15

19

