
Automated Composition of
Refactorings
Implementing and evaluating a search-based Extract and
Move Method refactoring

Erlend Kristiansen
Master’s Thesis Spring 2014

Abstract

Remove all todos (including list) before delivery/printing!!!
Can be done by removing “draft” from documentclass.
Write abstract

3

4

Contents

1 Introduction 15
1.1 Motivation and structure . 15
1.2 What is refactoring? . 15

1.2.1 Defining refactoring 16
1.2.2 The etymology of ’refactoring’ 17
1.2.3 Reasons for refactoring 17
1.2.4 The magical number seven 19
1.2.5 Notable contributions to the refactoring literature . . 20
1.2.6 Tool support (for Java) 21
1.2.7 The relation to design patterns 22
1.2.8 The impact on software quality 23
1.2.9 Composite refactorings 24
1.2.10 Manual vs. automated refactorings 25
1.2.11 Correctness of refactorings 25
1.2.12 Refactoring and the importance of testing 27

1.3 The Project . 28
1.3.1 Project description . 28
1.3.2 The premises . 28
1.3.3 The primitive refactorings 30
1.3.4 The Extract and Move Method refactoring 30
1.3.5 The Coupling Between Object Classes metric 31
1.3.6 Research questions . 32
1.3.7 Methodology . 34
1.3.8 Case study . 35
1.3.9 Dogfooding . 35

1.4 Related Work . 35
1.4.1 Refactoring safety . 35
1.4.2 Search-based refactoring 36
1.4.3 The compositional paradigm of refactoring 36

2 The search-based Extract and Move Method refactoring 37
2.1 The inputs to the refactoring 37
2.2 Defining a text selection . 37
2.3 Where we look for text selections 38

2.3.1 Text selections are found in methods 38
2.3.2 The possible text selections of a method body 38

2.4 Disqualifying a selection . 41

5

2.4.1 A call to a protected or package-private method . . . 41
2.4.2 A double class instance creation 42
2.4.3 Instantiation of non-static inner class 42
2.4.4 References to enclosing instances of the enclosing class 42
2.4.5 Inconsistent return statements 43
2.4.6 Ambiguous return values 44
2.4.7 Illegal statements . 44

2.5 Disqualifying selections from the example 45
2.6 Finding a move target . 45
2.7 Unfixes . 46
2.8 Finding the example selections that have possible targets . . 47
2.9 Choosing the selection . 49
2.10 Concluding the example . 50
2.11 ?? . 51

3 Refactorings in Eclipse JDT: Design and Shortcomings 53
3.1 Design . 53

3.1.1 The Language Toolkit 53
3.2 Shortcomings . 55

3.2.1 Absence of Generics in Eclipse Source Code 55
3.2.2 Composite Refactorings Will Not Appear as Atomic

Actions . 55

4 Composite Refactorings in Eclipse 57
4.1 A Simple Ad Hoc Model . 57

4.1.1 A typical RefaktorChanger 57
4.2 The Extract and Move Method Refactoring 57

4.2.1 The Building Blocks 57
4.2.2 The ExtractAndMoveMethodChanger 58
4.2.3 The SearchBasedExtractAndMoveMethodChanger . . 61
4.2.4 The Prefix Class . 62
4.2.5 The PrefixSet Class 62
4.2.6 Hacking the Refactoring Undo History 63

5 Analyzing Source Code in Eclipse 65
5.1 The Java model . 65
5.2 The Abstract Syntax Tree . 65

5.2.1 The AST in Eclipse 67
5.3 The ASTVisitor . 69
5.4 Property collectors . 71

5.4.1 The PrefixesCollector 71
5.4.2 The UnfixesCollector 72
5.4.3 The ContainsReturnStatementCollector 72
5.4.4 The LastStatementCollector 72

5.5 Checkers . 72
5.5.1 The CallToProtectedOrPackagePrivateMethodChecker 72
5.5.2 The DoubleClassInstanceCreationChecker 73
5.5.3 The InstantiationOfNonStaticInnerClassChecker . . . 73

6

5.5.4 The EnclosingInstanceReferenceChecker 73
5.5.5 The ReturnStatementsChecker 73
5.5.6 The AmbiguousReturnValueChecker 74
5.5.7 The IllegalStatementsChecker 75

6 Technicalities 77
6.1 Source code organization . 77

6.1.1 The no.uio.ifi.refaktor project 78
6.2 Continuous integration . 80

6.2.1 Problems with AspectJ 80

7 Benchmarking 83
7.1 The benchmark setup . 83

7.1.1 The ProjectImporter 83
7.2 Statistics . 84

7.2.1 AspectJ . 84
7.2.2 The Statistics class . 84
7.2.3 Advices . 85

7.3 Optimizations . 85
7.3.1 Caching . 85
7.3.2 Candidates stored as mementos 86

7.4 Handling failures . 87

8 Case Studies 89
8.1 The tools . 89
8.2 The SonarQube quality profile 90
8.3 The input . 91
8.4 The experiment . 91
8.5 Case 1: The Eclipse JDT UI project 92

8.5.1 Statistics . 92
8.5.2 SonarQube analysis 93
8.5.3 Unit tests . 95
8.5.4 Conclusions . 96

8.6 Case 2: The no.uio.ifi.refaktor project 97
8.6.1 Statistics . 97
8.6.2 SonarQube analysis 98
8.6.3 Unit tests . 99
8.6.4 An informal experiment 99
8.6.5 Conclusions . 99

8.7 Summary . 100

9 Conclusions and Future Work 107
9.1 Conclusions . 107
9.2 Future work . 109

7

A Eclipse Bugs Submitted 111
A.1 Eclipse bug 420726: Code is broken when moving a method

that is assigning to the parameter that is also the move
destination . 111

A.2 Eclipse bug 429416: IAE when moving method from
anonymous class . 111

A.3 Eclipse bug 429954: Extracting statement with reference to
local type breaks code . 112

8

List of Figures

1.1 The Extract Superclass refactoring, with united interfaces. . . 25

5.1 The Java model of Eclipse. “{ SomeElement }*” means
“SomeElement zero or more times“. For recursive structures,
“...” is used. 67

5.2 Interrupted compilation process. (Full compilation process
borrowed from Compiler construction: principles and practice by
Kenneth C. Louden [Lou97].) . 68

5.3 The abstract syntax tree for the expression (5 + 7) * 2. . . 68
5.4 The format of the abstract syntax tree in Eclipse. 69
5.5 The Visitor Pattern. 70

9

10

List of Tables

5.1 The elements of the Java Model [Vog12]. 66

8.1 The IFI Refaktor Case Study quality profile (version 6). . . . 91
8.2 Configuration for Case 1. 92
8.3 Statistics after batch refactoring the Eclipse JDT UI project

with the Extract and Move Method refactoring. 101
8.4 Results for analyzing the Eclipse JDT UI project, before and

after the refactoring, with SonarQube and the IFI Refaktor
Case Study quality profile. (Bold numbers are better.) 102

8.5 Configuration for Case 2. 103
8.6 Statistics after batch refactoring the no.uio.ifi.refaktor

project with the Extract and Move Method refactoring. 104
8.7 Results for analyzing the no.uio.ifi.refaktor project,

before and after the refactoring, with SonarQube and the IFI
Refaktor Case Study quality profile. (Bold numbers are better.)105

11

12

List of listings

1 Moving method f from C to X. 21
2 The target and the destination for the composition of the

Extract Method and Move Method refactorings. 26
3 The result of the composed refactoring. 27
4 An example of an Extract Method refactoring. 30
5 An example of a Move Method refactoring. 31
6 An example of the Extract and Move Method refactoring. . . 31
7 An example of improving CBO. Class C has a CBO value of

4 before refactoring it, and 3 after. 33
8 Classes A and B are both public. The methods foo and bar

are public members of class A. 39
9 Example of how the text selections generator would generate

text selections based on a lists of statements. Each
highlighted rectangle represents a text selection. 40

10 When the Extract and Move Method tries to use a variable
with a local type as the move target, an intermediate step is
performed that is not allowed. Here: LocalClass is not in
the scope of fooBar in its intermediate location. 47

11 The result after refactoring the class C of listing 8 on
page 39 with the Extract and Move Method refactoring with
((16, 17), b.a, f(2)) as input. 51

12 An ASTVisitor that visits all the names in a subtree and adds
them to a collection, except those names that are children of
any QualifiedName. 71

13 An example of a pointcut named methodAnalyze, and an
advice defined to be applied after it has occurred. 85

14 Showing the basic usage of soft references. Weak references is
used the same way. (The references are part of the java.lang.ref

package.) . 86

13

14

Chapter 1

Introduction

1.1 Motivation and structure
For large software projects, complex program source code is an issue. It
impacts the cost of maintenance in a negative way. It often stalls the
implementation of new functionality and other program changes. The code
may be difficult to understand, the changes may introduce new bugs that
are hard to find and its complexity can simply keep people from doing code
changes in fear of breaking some dependent piece of code. All these problems
are related, and often lead to a vicious circle that slowly degrades the overall
quality of a project.

More specifically, and in an object-oriented context, a class may depend
on a number of other classes. Sometimes these intimate relationships are
appropriate, and sometimes they are not. Inappropriate coupling between
classes can make it difficult to know whether or not a change that is aimed
at fixing a specific problem also alters the behavior of another part of a
program.

One of the tools that are used to fight complexity and coupling
in program source code is refactoring. The intention for this master’s
thesis is therefore to create an automated composite refactoring that
reduces coupling between classes. The refactoring shall be able to operate
automatically in all phases of a refactoring, from performing analysis to
executing changes. It is also a requirement that it should be able to process
large quantities of source code in a reasonable amount of time.

The current chapter proceeds in section 1.2 by describing what
refactoring is. Then the project is presented in section 1.3, before the chapter
is concluded with a brief discussion of related work in section 1.4.

Chapter 2 shows the workings of our refactoring together with a simple
example illustrating this.
Structure. Write later. . .

1.2 What is refactoring?
This question is best answered by first defining the concept of a refactoring,
what it is to refactor, and then discuss what aspects of programming make

15

people want to refactor their code.

1.2.1 Defining refactoring

Martin Fowler, in his classic book on refactoring [Fow99], defines a
refactoring like this:

Refactoring (noun): a change made to the internal structure1 of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]

This definition assigns additional meaning to the word refactoring, beyond
the composition of the prefix re-, usually meaning something like “again”
or “anew”, and the word factoring, that can mean to isolate the factors
of something. Here a factor would be close to the mathematical definition
of something that divides a quantity, without leaving a remainder. Fowler
is mixing the motivation behind refactoring into his definition. Instead it
could be more refined, formed to only consider themechanical and behavioral
aspects of refactoring. That is to factor the program again, putting it
together in a different way than before, while preserving the behavior of
the program. An alternative definition could then be:

Definition. A refactoring is a transformation done to a program without
altering its external behavior.

From this we can conclude that a refactoring primarily changes how the
code of a program is perceived by the programmer, and not the behavior
experienced by any user of the program. Although the logical meaning is
preserved, such changes could potentially alter the program’s behavior when
it comes to performance gain or -penalties. So any logic depending on the
performance of a program could make the program behave differently after
a refactoring.

In the extreme case one could argue that software obfuscation is
refactoring. It is often used to protect proprietary software. It restrains
uninvited viewers, so they have a hard time analyzing code that they are
not supposed to know how works. This could be a problem when using a
language that is possible to decompile, such as Java.

Obfuscation could be done composing many, more or less randomly
chosen, refactorings. Then the question arises whether it can be called a
composite refactoring or not (see section 1.2.9 on page 24)? The answer
is not obvious. First, there is no way to describe the mechanics of
software obfuscation, because there are infinitely many ways to do that.
Second, obfuscation can be thought of as one operation: Either the code is
obfuscated, or it is not. Third, it makes no sense to call software obfuscation
a refactoring, since it holds different meaning to different people.

This last point is important, since one of the motivations behind defining
different refactorings, is to establish a vocabulary for software professionals to
use when reasoning about and discussing programs, similar to the motivation
behind design patterns [Gam+95].

1The structure observable by the programmer.

16

1.2.2 The etymology of ’refactoring’

It is a little difficult to pinpoint the exact origin of the word “refactoring”,
as it seems to have evolved as part of a colloquial terminology, more than a
scientific term. There is no authoritative source for a formal definition of it.

According to Martin Fowler [Fow03], there may also be more than one
origin of the word. The most well-known source, when it comes to the origin
of refactoring, is the Smalltalk1 community and their infamous Refactoring
Browser2 described in the article A Refactoring Tool for Smalltalk [RBJ97],
published in 1997. Allegedly [Fow03], the metaphor of factoring programs
was also present in the Forth1 community, and the word “refactoring” is
mentioned in a book by Leo Brodie, called Thinking Forth [Bro04], first
published in 19843. The exact word is only printed one place [Bro04, p. 232],
but the term factoring is prominent in the book, that also contains a whole
chapter dedicated to (re)factoring, and how to keep the (Forth) code clean
and maintainable.

. . . good factoring technique is perhaps the most important skill
for a Forth programmer. [Bro04, p. 172]

Brodie also express what factoring means to him:

Factoring means organizing code into useful fragments. To make
a fragment useful, you often must separate reusable parts from
non-reusable parts. The reusable parts become new definitions.
The non-reusable parts become arguments or parameters to the
definitions. [Bro04, p. 172]

Fowler claims that the usage of the word refactoring did not pass between
the Forth and Smalltalk communities, but that it emerged independently in
each of the communities.

1.2.3 Reasons for refactoring

There are many reasons why people want to refactor their programs. They
can for instance do it to remove duplication, break up long methods or to
introduce design patterns into their software systems. The shared trait for
all these are that peoples’ intentions are to make their programs better, in
some sense. But what aspects of their programs are becoming improved?

As just mentioned, people often refactor to get rid of duplication. They
are moving identical or similar code into methods, and are pushing methods
up or down in their class hierarchies. They are making template methods
for overlapping algorithms/functionality, and so on. It is all about gathering

1Programming language
2http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html
3Thinking Forth was first published in 1984 by the Forth Interest Group. Then it was

reprinted in 1994 with minor typographical corrections, before it was transcribed into an
electronic edition typeset in LATEX and published under a Creative Commons licence in
2004. The edition cited here is the 2004 edition, but the content should essentially be as
in 1984.

17

http://st-www.cs.illinois.edu/users/brant/Refactory/RefactoringBrowser.html

what belongs together and putting it all in one place. The resulting code
is then easier to maintain. When removing the implicit coupling1 between
code snippets, the location of a bug is limited to only one place, and new
functionality need only to be added to this one place, instead of a number
of places people might not even remember.

A problem you often encounter when programming, is that a program
contains a lot of long and hard-to-grasp methods. It can then help to break
the methods into smaller ones, using the Extract Method refactoring [Fow99].
Then you may discover something about a program that you were not aware
of before; revealing bugs you did not know about or could not find due to
the complex structure of your program. Making the methods smaller and
giving good names to the new ones clarifies the algorithms and enhances
the understandability of the program (see section 1.2.4 on the facing page).
This makes refactoring an excellent method for exploring unknown program
code, or code that you had forgotten that you wrote.

Most primitive refactorings are simple, and usually involves moving code
around [Ker05]. The motivation behind them may first be revealed when
they are combined into larger — higher level — refactorings, called composite
refactorings (see section 1.2.9 on page 24). Often the goal of such a series
of refactorings is a design pattern. Thus the design can evolve throughout
the lifetime of a program, as opposed to designing up-front. It is all about
being structured and taking small steps to improve a program’s design.

Many software design pattern are aimed at lowering the coupling between
different classes and different layers of logic. One of the most famous
is perhaps the Model-View-Controller [Gam+95] pattern. It is aimed at
lowering the coupling between the user interface, the business logic and the
data representation of a program. This also has the added benefit that
the business logic could much easier be the target of automated tests, thus
increasing the productivity in the software development process.

Another effect of refactoring is that with the increased separation of
concerns coming out of many refactorings, the performance can be improved.
When profiling programs, the problematic parts are narrowed down to
smaller parts of the code, which are easier to tune, and optimization can be
performed only where needed and in a more effective way [Fow99].

Last, but not least, and this should probably be the best reason to
refactor, is to refactor to facilitate a program change. If one has managed
to keep one’s code clean and tidy, and the code is not bloated with design
patterns that are not ever going to be needed, then some refactoring might
be needed to introduce a design pattern that is appropriate for the change
that is going to happen.

Refactoring program code — with a goal in mind — can give
the code itself more value. That is in the form of robustness to
bugs, understandability and maintainability. Having robust code is an
obvious advantage, but understandability and maintainability are both very

1When duplicating code, the duplicate pieces of code might not be coupled, apart from
representing the same functionality. So if this functionality is going to change, it might
need to change in more than one place, thus creating an implicit coupling between multiple
pieces of code.

18

important aspects of software development. By incorporating refactoring in
the development process, bugs are found faster, new functionality is added
more easily and code is easier to understand by the next person exposed to
it, which might as well be the person who wrote it. The consequence of this,
is that refactoring can increase the average productivity of the development
process, and thus also add to the monetary value of a business in the long
run. The perspective on productivity and money should also be able to open
the eyes of the many nearsighted managers that seldom see beyond the next
milestone.

1.2.4 The magical number seven

The article The magical number seven, plus or minus two: some limits on
our capacity for processing information [Mil56] by George A. Miller, was
published in the journal Psychological Review in 1956. It presents evidence
that support that the capacity of the number of objects a human being can
hold in its working memory is roughly seven, plus or minus two objects.
This number varies a bit depending on the nature and complexity of the
objects, but is according to Miller “. . . never changing so much as to be
unrecognizable.”

Miller’s article culminates in the section called Recoding, a term he
borrows from communication theory. The central result in this section is
that by recoding information, the capacity of the amount of information
that a human can process at a time is increased. By recoding, Miller means
to group objects together in chunks, and give each chunk a new name that
it can be remembered by.

. . . recoding is an extremely powerful weapon for increasing the
amount of information that we can deal with. [Mil56, p. 95]

By organizing objects into patterns of ever growing depth, one can
memorize and process a much larger amount of data than if it were to
be represented as its basic pieces. This grouping and renaming is analogous
to how many refactorings work, by grouping pieces of code and give them
a new name. Examples are the fundamental Extract Method and Extract
Class refactorings [Fow99].

An example from the article addresses the problem of memorizing a
sequence of binary digits. The example presented here is a slightly modified
version of the one presented in the original article [Mil56], but it preserves the
essence of it. Let us say we have the following sequence of 16 binary digits:
“1010001001110011”. Most of us will have a hard time memorizing this
sequence by only reading it once or twice. Imagine if we instead translate it
to this sequence: “A273”. If you have a background from computer science,
it will be obvious that the latter sequence is the first sequence recoded to be
represented by digits in base 16. Most people should be able to memorize
this last sequence by only looking at it once.

Another result from the Miller article is that when the amount of
information a human must interpret increases, it is crucial that the

19

translation from one code to another must be almost automatic for the
subject to be able to remember the translation, before he is presented with
new information to recode. Thus learning and understanding how to best
organize certain kinds of data is essential to efficiently handle that kind of
data in the future. This is much like when humans learn to read. First they
must learn how to recognize letters. Then they can learn distinct words, and
later read sequences of words that form whole sentences. Eventually, most of
them will be able to read whole books and briefly retell the important parts
of its content. This suggest that the use of design patterns is a good idea
when reasoning about computer programs. With extensive use of design
patterns when creating complex program structures, one does not always
have to read whole classes of code to comprehend how they function, it may
be sufficient to only see the name of a class to almost fully understand its
responsibilities.

Our language is tremendously useful for repackaging material
into a few chunks rich in information. [Mil56, p. 95]

Without further evidence, these results at least indicate that refactoring
source code into smaller units with higher cohesion and, when needed,
introducing appropriate design patterns, should aid in the cause of creating
computer programs that are easier to maintain and have code that is easier
(and better) understood.

1.2.5 Notable contributions to the refactoring literature

1992 William F. Opdyke submits his doctoral dissertation called Refac-
toring Object-Oriented Frameworks [Opd92]. This work defines a set
of refactorings, that are behavior preserving given that their precon-
ditions are met. The dissertation is focused on the automation of
refactorings.

1999 Martin Fowler et al.: Refactoring: Improving the Design of Existing
Code [Fow99]. This is maybe the most influential text on refactoring.
It bares similarities with Opdykes thesis [Opd92] in the way that it
provides a catalog of refactorings. But Fowler’s book is more about
the craft of refactoring, as he focuses on establishing a vocabulary
for refactoring, together with the mechanics of different refactorings
and when to perform them. His methodology is also founded on the
principles of test-driven development.

2005 Joshua Kerievsky: Refactoring to Patterns [Ker05]. This book is
heavily influenced by Fowler’s Refactoring [Fow99] and the “Gang of
Four” Design Patterns [Gam+95]. It is building on the refactoring
catalogue from Fowler’s book, but is trying to bridge the gap between
refactoring and design patterns by providing a series of higher-level
composite refactorings, that makes code evolve toward or away from
certain design patterns. The book is trying to build up the reader’s
intuition around why one would want to use a particular design

20

pattern, and not just how. The book is encouraging evolutionary
design (see section 1.2.7 on the following page).

1.2.6 Tool support (for Java)

This section will briefly compare the refactoring support of the three IDEs
Eclipse1, IntelliJ IDEA2 and NetBeans3. These are the most popular Java
IDEs [11].

All three IDEs provide support for the most useful refactorings, like the
different extract, move and rename refactorings. In fact, Java-targeted IDEs
are known for their good refactoring support, so this did not appear as a
big surprise.

The IDEs seem to have excellent support for the Extract Method refac-
toring, so at least they have all passed the first “refactoring rubicon” [Fow01;
VJ12].

Regarding theMove Method refactoring, the Eclipse and IntelliJ IDEs do
the job in very similar manners. In most situations they both do a satisfying
job by producing the expected outcome. But they do nothing to check that
the result does not break the semantics of the program (see section 1.2.11
on page 25). The NetBeans IDE implements this refactoring in a somewhat
unsophisticated way. For starters, the refactoring’s default destination for
the move, is the same class as the method already resides in, although it
refuses to perform the refactoring if chosen. But the worst part is, that if
moving the method f of the class C to the class X, it will break the code.
The result is shown in listing 1 on this page.

public class C {
private X x;
...
public void f() {

x.m();
x.n();

}
}

public class X {
...
public void f(C c) {

c.x.m();
c.x.n();

}
}

Listing 1: Moving method f from C to X.

NetBeans will try to create code that call the methods m and n of X by
accessing them through c.x, where c is a parameter of type C that is added
the method f when it is moved. (This is seldom the desired outcome of this
refactoring, but ironically, this “feature” keeps NetBeans from breaking the
code in the example from section 1.2.11 on page 25.) If c.x for some reason
is inaccessible to X, as in this case, the refactoring breaks the code, and it
will not compile. NetBeans presents a preview of the refactoring outcome,
but the preview does not catch it if the IDE is about break the program.

1http://www.eclipse.org/
2The IDE under comparison is the Community Edition, http://www.jetbrains.com/idea/
3https://netbeans.org/

21

http://www.eclipse.org/
http://www.jetbrains.com/idea/
https://netbeans.org/

The IDEs under investigation seem to have fairly good support for
primitive refactorings, but what about more complex ones, such as Extract
Class [Fow99]? IntelliJ handles this in a fairly good manner, although, in
the case of private methods, it leaves unused methods behind. These are
methods that delegate to a field with the type of the new class, but are
not used anywhere. Eclipse has added its own quirk to the Extract Class
refactoring, and only allows for fields to be moved to a new class, not
methods. This makes it effectively only extracting a data structure, and
calling it Extract Class is a little misleading. One would often be better off
with textual extract and paste than using the Extract Class refactoring in
Eclipse. When it comes to NetBeans, it does not even show an attempt on
providing this refactoring.

1.2.7 The relation to design patterns

Refactoring and design patterns have at least one thing in common, they
are both promoted by advocates of clean code [MC09] as fundamental tools
on the road to more maintainable and extendable source code.

Design patterns help you determine how to reorganize a design,
and they can reduce the amount of refactoring you need to do
later. [Gam+95, p. 353]

Although sometimes associated with over-engineering [Ker05; Fow99],
design patterns are in general assumed to be good for maintainability of
source code. That may be because many of them are designed to support
the open/closed principle of object-oriented programming. The principle was
first formulated by Bertrand Meyer, the creator of the Eiffel programming
language, like this: “Modules should be both open and closed.” [Mey88] It
has been popularized, with this as a common version:

Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification.1

Maintainability is often thought of as the ability to be able to introduce
new functionality without having to change too much of the old code. When
refactoring, the motivation is often to facilitate adding new functionality. It
is about factoring the old code in a way that makes the new functionality
being able to benefit from the functionality already residing in a software
system, without having to copy old code into new. Then, next time someone
shall add new functionality, it is less likely that the old code has to change.
Assuming that a design pattern is the best way to get rid of duplication
and assist in implementing new functionality, it is reasonable to conclude
that a design pattern often is the target of a series of refactorings. Having
a repertoire of design patterns can also help in knowing when and how to
refactor a program to make it reflect certain desired characteristics.

1See http://c2.com/cgi/wiki?OpenClosedPrinciple or https://en.wikipedia.org/wiki/
Open/closed_principle

22

http://c2.com/cgi/wiki?OpenClosedPrinciple
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Open/closed_principle

There is a natural relation between patterns and refactorings.
Patterns are where you want to be; refactorings are ways to get
there from somewhere else. [Fow99, p. 107]

This quote is wise in many contexts, but it is not always appropriate
to say “Patterns are where you want to be. . . ”. Sometimes, patterns are
where you want to be, but only because it will benefit your design. It is not
true that one should always try to incorporate as many design patterns as
possible into a program. It is not like they have intrinsic value. They only
add value to a system when they support its design. Otherwise, the use
of design patterns may only lead to a program that is more complex than
necessary.

The overuse of patterns tends to result from being patterns
happy. We are patterns happy when we become so enamored
of patterns that we simply must use them in our code. [Ker05,
p. 24]

This can easily happen when relying largely on up-front design. Then
it is natural, in the very beginning, to try to build in all the flexibility that
one believes will be necessary throughout the lifetime of a software system.
According to Joshua Kerievsky “That sounds reasonable — if you happen
to be psychic.” [Ker05, p. 1] He is advocating what he believes is a better
approach: To let software continually evolve. To start with a simple design
that meets today’s needs, and tackle future needs by refactoring to satisfy
them. He believes that this is a more economic approach than investing time
and money into a design that inevitably is going to change. By relying on
continuously refactoring a system, its design can be made simpler without
sacrificing flexibility. To be able to fully rely on this approach, it is of utter
importance to have a reliable suit of tests to lean on (see section 1.2.12 on
page 27). This makes the design process more natural and less characterized
by difficult decisions that has to be made before proceeding in the process,
and that is going to define a project for all of its unforeseeable future.

1.2.8 The impact on software quality

What is software quality?

The term software quality has many meanings. It all depends on the context
we put it in. If we look at it with the eyes of a software developer, it usually
means that the software is easily maintainable and testable, or in other
words, that it is well designed. This often correlates with the management
scale, where keeping the schedule and customer satisfaction is at the center.
From the customers point of view, in addition to good usability, performance
and lack of bugs is always appreciated, measurements that are also shared
by the software developer. (In addition, such things as good documentation
could be measured, but this is out of the scope of this document.)

23

The impact on performance

Refactoring certainly will make software go more slowly1, but
it also makes the software more amenable to performance
tuning. [Fow99, p. 69]

There is a common belief that refactoring compromises performance, due
to increased degree of indirection and that polymorphism is slower than
conditionals.

In a survey, Demeyer [Dem02] disproves this view in the case of
polymorphism. He did an experiment on, what he calls, “Transform Self
Type Checks” where you introduce a new polymorphic method and a new
class hierarchy to get rid of a class’ type checking of a “type attribute“.
He uses this kind of transformation to represent other ways of replacing
conditionals with polymorphism as well. The experiment is performed on
the C++ programming language and with three different compilers and
platforms. Demeyer concludes that, with compiler optimization turned on,
polymorphism beats middle to large sized if-statements and does as well
as case-statements. (In accordance with his hypothesis, due to similarities
between the way C++ handles polymorphism and case-statements.)

The interesting thing about performance is that if you analyze
most programs, you find that they waste most of their time in a
small fraction of the code. [Fow99, p. 70]

So, although an increased amount of method calls could potentially slow
down programs, one should avoid premature optimization and sacrificing
good design, leaving the performance tuning until after profiling the software
and having isolated the actual problem areas.

1.2.9 Composite refactorings

Generally, when thinking about refactoring, at the mechanical level, there
are essentially two kinds of refactorings. There are the primitive refactorings,
and the composite refactorings.

Definition. A primitive refactoring is a refactoring that cannot be
expressed in terms of other refactorings.

Examples are the Pull Up Field and Pull Up Method refactorings [Fow99],
that move members up in their class hierarchies.

Definition. A composite refactoring is a refactoring that can be expressed
in terms of two or more other refactorings.

An example of a composite refactoring is the Extract Superclass refactor-
ing [Fow99]. In its simplest form, it is composed of the previously described
primitive refactorings, in addition to the Pull Up Constructor Body refac-
toring [Fow99]. It works by creating an abstract superclass that the target

1With todays compiler optimization techniques and performance tuning of e.g. the
Java virtual machine, the penalties of object creation and method calls are debatable.

24

class(es) inherits from, then by applying Pull Up Field, Pull Up Method and
Pull Up Constructor Body on the members that are to be members of the
new superclass. If there are multiple classes in play, their interfaces may
need to be united with the help of some rename refactorings, before extract-
ing the superclass. For an overview of the Extract Superclass refactoring,
see fig. 1.1 on the current page.

Department

getTotalAnnualCost
getName
getHeadCount

Employee

getAnnualCost
getName
getId

Department

getAnnualCost
getHeadCount

Employee

getAnnualCost
getId

Party

getAnnualCost
getName

Figure 1.1: The Extract Superclass refactoring, with united interfaces.

1.2.10 Manual vs. automated refactorings

Refactoring is something every programmer does, even if she does not known
the term refactoring. Every refinement of source code that does not alter the
program’s behavior is a refactoring. For small refactorings, such as Extract
Method, executing it manually is a manageable task, but is still prone to
errors. Getting it right the first time is not easy, considering the method
signature and all the other aspects of the refactoring that has to be in place.

Consider the renaming of classes, methods and fields. For complex
programs these refactorings are almost impossible to get right. Attacking
them with textual search and replace, or even regular expressions, will fall
short on these tasks. Then it is crucial to have proper tool support that
can perform them automatically. Tools that can parse source code and thus
have semantic knowledge about which occurrences of which names belong
to what construct in the program. For even trying to perform one of these
complex task manually, one would have to be very confident on the existing
test suite (see section 1.2.12 on page 27).

1.2.11 Correctness of refactorings

For automated refactorings to be truly useful, they must show a high degree
of behavior preservation. This last sentence might seem obvious, but there
are examples of refactorings in existing tools that break programs. In an
ideal world, every automated refactoring would be “complete”, in the sense

25

that it would never break a program. In an ideal world, every program
would also be free from bugs. In modern IDEs the implemented automated
refactorings are working for most cases, which is enough for making them
useful.

I will now present an example of a corner case where a program breaks
when a refactoring is applied. The example shows an Extract Method
refactoring followed by a Move Method refactoring that breaks a program
in both the Eclipse and IntelliJ IDEs1. The target and the destination for
the composed refactoring is shown in listing 2 on this page. Note that the
method m(C c) of class X assigns to the field x of the argument c that has
type C.

Refactoring target

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.m(this);
6 // Not the same x
7 x.n();
8 }
9 }

Method destination

public class X {
public void m(C c) {

c.x = new X();
// If m is called from
// c, then c.x no longer
// equals ’this’

}
public void n() {}

}

Listing 2: The target and the destination for the composition of the Extract
Method and Move Method refactorings.

The refactoring sequence works by extracting line 6 through 8 from the
original class C into a method f with the statements from those lines as its
method body (but with the comment left out, since it will no longer hold
any meaning). The method is then moved to the class X. The result is shown
in listing 3 on the next page.

Before the refactoring, the methods m and n of class X are called on
different object instances (see line 6 and 8 of the original class C in listing 2).
After the refactoring, they are called on the same object, and the statement
on line 3 of class X (in listing 3) no longer has the desired effect in our
example. The method f of class C is now calling the method f of class X (see
line 5 of class C in listing 3), and the program now behaves different than
before.

The bug introduced in the previous example is of such a nature2 that it
is very difficult to spot if the refactored code is not covered by tests. It does
not generate compilation errors, and will thus only result in a runtime error
or corrupted data, which might be hard to detect.

1The NetBeans IDE handles this particular situation without altering the program’s
behavior, mainly because its Move Method refactoring implementation is a bit flawed in
other ways (see section 1.2.6 on page 21).

2Caused by aliasing. See https://en.wikipedia.org/wiki/Aliasing_(computing)

26

https://en.wikipedia.org/wiki/Aliasing_(computing)

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.f(this);
6 }
7 }

1 public class X {
2 public void m(C c) {
3 c.x = new X();
4 }
5 public void n() {}
6 // Extracted and
7 // moved method
8 public void f(C c) {
9 m(c);

10 n();
11 }
12 }

Listing 3: The result of the composed refactoring.

1.2.12 Refactoring and the importance of testing

If you want to refactor, the essential precondition is having solid
tests. [Fow99]

When refactoring, there are roughly three classes of errors that can be
made. The first class of errors are the ones that make the code unable to
compile. These compile-time errors are of the nicer kind. They flash up at
the moment they are made (at least when using an IDE), and are usually
easy to fix. The second class are the runtime errors. Although they take
a bit longer to surface, they usually manifest after some time in an illegal
argument exception, null pointer exception or similar during the program
execution. These kind of errors are a bit harder to handle, but at least they
will show, eventually. Then there are the behavior-changing errors. These
errors are of the worst kind. They do not show up during compilation and
they do not turn on a blinking red light during runtime either. The program
can seem to work perfectly fine with them in play, but the business logic
can be damaged in ways that will only show up over time.

For discovering runtime errors and behavior changes when refactoring, it
is essential to have good test coverage. Testing in this context means writing
automated tests. Manual testing may have its uses, but when refactoring, it
is automated unit testing that dominate. For discovering behavior changes
it is especially important to have tests that cover potential problems, since
these kind of errors does not reveal themselves.

Unit testing is not a way to prove that a program is correct, but it is a
way to make you confident that it probably works as desired. In the context
of test-driven development (commonly known as TDD), the tests are even a
way to define how the program is supposed to work. It is then, by definition,
working if the tests are passing.

If the test coverage for a code base is perfect, then it should, theoretically,
be risk-free to perform refactorings on it. This is why automated tests and
refactoring are such a great match.

27

Testing the code from correctness section

The worst thing that can happen when refactoring is to introduce changes to
the behavior of a program, as in the example on section 1.2.11 on page 25.
This example may be trivial, but the essence is clear. The only problem
with the example is that it is not clear how to create automated tests for it,
without changing it in intrusive ways.

Unit tests, as they are known from the different xUnit frameworks
around, are only suitable to test the result of isolated operations. They
can not easily (if at all) observe the history of a program.

This problem is still open.

1.3 The Project

In this section we look at the work that shall be done for this project, its
building stones and some of the methodologies used.

1.3.1 Project description

The aim of this master’s project will be to explore the relationship between
the Extract Method and the Move Method refactorings. This will be done
by composing the two into a composite refactoring. The refactoring will be
called the Extract and Move Method refactoring.

The two primitive Extract Method and Move Method refactorings must
already be implemented in a tool, so the Extract and Move Method
refactoring is going to be built on top of those.

The composition of the Extract Method and Move Method refactorings
springs naturally out of the need to move procedures closer to the data
they manipulate. This composed refactoring is not well described in the
literature, but it is implemented in at least one tool called CodeRush1, that
is an extension for MS Visual Studio2. In CodeRush it is called Extract
Method to Type3, but I choose to call it Extract and Move Method, since I
feel this better communicates which primitive refactorings it is composed of.

The project will consist of implementing the Extract and Move Method
refactoring, as well as executing it over a larger code base, as a case study.
To be able to execute the refactoring automatically, I have to make it analyze
code to determine the best selections to extract into new methods.

1.3.2 The premises

Before we can start manipulating source code and write a tool for doing
so, we need to decide on a programming language for the code we are
going to manipulate. Also, since we do not want to start from scratch by
implementing primitive refactorings ourselves, we need to choose an existing
tool that provides the needed refactorings. In addition to be able to perform

1https://help.devexpress.com/#CodeRush/CustomDocument3519
2http://www.visualstudio.com/
3https://help.devexpress.com/#CodeRush/CustomDocument6710

28

https://help.devexpress.com/#CodeRush/CustomDocument3519
http://www.visualstudio.com/
https://help.devexpress.com/#CodeRush/CustomDocument6710

changes, we need a framework for analyzing source code for the language we
select.

Choosing the target language

Choosing which programming language the code that shall be manipulated
shall be written in, is not a very difficult task. We choose to limit the possible
languages to the object-oriented programming languages, since most of the
terminology and literature regarding refactoring comes from the world of
object-oriented programming. In addition, the language must have existing
tool support for refactoring.

The Java programming language1 is the dominating language when
it comes to example code in the literature of refactoring, and is thus a
natural choice. Java is perhaps, currently the most influential programming
language in the world, with its Java Virtual Machine that runs on all of the
most popular architectures and also supports dozens of other programming
languages2, with Scala, Clojure and Groovy as the most prominent ones.
Java is currently the language that every other programming language is
compared against. It is also the primary programming language for the
author of this thesis.

Choosing the tools

When choosing a tool for manipulating Java, there are certain criteria that
have to be met. First of all, the tool should have some existing refactoring
support that this thesis can build upon. Secondly it should provide some
kind of framework for parsing and analyzing Java source code. Third,
it should itself be open source. This is both because of the need to be
able to browse the code for the existing refactorings that is contained in
the tool, and also because open source projects hold value in them selves.
Another important aspect to consider is that open source projects of a
certain size, usually has large communities of people connected to them,
that are committed to answering questions regarding the use and misuse of
the products, that to a large degree is made by the community itself.

There is a certain class of tools that meet these criteria, namely the
class of IDEs3. These are programs that is meant to support the whole
production cycle of a computer program, and the most popular IDEs that
support Java, generally have quite good refactoring support.

The main contenders for this thesis is the Eclipse IDE, with the Java
development tools (JDT), the IntelliJ IDEA Community Edition and the
NetBeans IDE (see section 1.2.6 on page 21). Eclipse and NetBeans are
both free, open source and community driven, while the IntelliJ IDEA has
an open sourced community edition that is free of charge, but also offer an
Ultimate Edition with an extended set of features, at additional cost. All
three IDEs supports adding plugins to extend their functionality and tools

1https://www.java.com/
2They compile to Java bytecode.
3Integrated Development Environment

29

https://www.java.com/

that can be used to parse and analyze Java source code. But one of the
IDEs stand out as a favorite, and that is the Eclipse IDE. This is the most
popular [11] among them and seems to be de facto standard IDE for Java
development regardless of platform.

1.3.3 The primitive refactorings

The refactorings presented here are the primitive refactorings used in this
project. They are the abstract building blocks used by the Extract and Move
Method refactoring.

The Extract Method refactoring The Extract Method refactoring is
used to extract a fragment of code from its context and into a new method.
A call to the new method is inlined where the fragment was before. It is
used to break code into logical units, with names that explain their purpose.

An example of an Extract Method refactoring is shown in listing 4 on this
page. It shows a method containing calls to the methods foo and bar of a
type X. These statements are then extracted into the new method fooBar.

Before

class C {
void method() {

X x = new X();
x.foo(); x.bar();

}
}

After

class C {
void method() {

X x = new X();
fooBar(x);

}
void fooBar(X x) {

x.foo(); x.bar();
}

}

Listing 4: An example of an Extract Method refactoring.

The Move Method refactoring The Move Method refactoring is used
to move a method from one class to another. This can be appropriate if the
method is using more features of another class than of the class which it is
currently defined.

Listing 5 on the next page shows an example of this refactoring. Here a
method fooBar is moved from the class C to the class X.

1.3.4 The Extract and Move Method refactoring

The Extract and Move Method refactoring is a composite refactoring
composed of the primitive Extract Method and Move Method refactorings.
The effect of this refactoring on source code is the same as when extracting
a method and moving it to another class. Conceptually, this is done without
an intermediate step. In practice, as we shall see later, an intermediate step
may be necessary.

30

Before

class C {
void method() {

X x = new X();
fooBar(x);

}
void fooBar(X x) {

x.foo(); x.bar();
}

}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

After

class C {
void method() {

X x = new X();
x.fooBar();

}
}

class X {
void fooBar() {

foo(); bar();
}
void foo(){/*...*/ }
void bar(){/*...*/ }

}

Listing 5: An example of a Move Method refactoring.

An example of this composite refactoring is shown in listing 6 on this
page. The example joins the examples from listing 4 and listing 5. This
means that the selection consisting of the consecutive calls to the methods
foo and bar, is extracted into a new method fooBar located in the class X.

Before

class C {
void method() {

X x = new X();
x.foo(); x.bar();

}
}

class X {
void foo(){/*...*/ }
void bar(){/*...*/ }

}

After

class C {
void method() {

X x = new X();
x.fooBar();

}
}

class X {
void fooBar() {

foo(); bar();
}
void foo(){/*...*/ }
void bar(){/*...*/ }

}

Listing 6: An example of the Extract and Move Method refactoring.

1.3.5 The Coupling Between Object Classes metric

The best known metric for measuring coupling between classes in object-
oriented software is called Coupling Between Object Classes, usually

31

abbreviated as CBO. The metric is defined in the article A Metrics Suite
for Object Oriented Design [CK94] by Chidamber and Kemerer, published
in 1994.

Definition. CBO for a class is a count of the number of other classes to
which it is coupled.

An object is coupled to another object if one of them acts on the other by
using methods or instance variables of the other object. This relation goes
both ways, so both outgoing and incoming uses are counted. Each coupling
relationship is only considered once when measuring CBO for a class.

How can the Extract and Move Method refactoring improve CBO?
Listing 7 on the next page shows how CBO changes for a class when it is
refactored with the Extract and Move Method refactoring. In the example
we consider only the CBO value of class C.

Before refactoring the class C with the Extract and Move Method
refactoring, it has a CBO value of 4. The class uses members of the classes
A and B, which accounts for 2 of the coupling relationships of class C. In
addition to this, it uses its variable x with type X and also the methods foo
and bar declared in class Y, giving it a total CBO value of 4.

The after-part of the example code in listing 7 shows the result of
extracting the lines 5 and 6 of class C into a new method fooBar, with
a subsequent move of it to class X.

With respect to the CBO metric, the refactoring action accomplishes
something important: It eliminates the uses of class Y from class C. This
means that the class C is no longer coupled to Y, only the classes A, B and
X. The CBO value of class C is therefore 3 after refactoring, while no other
class have received any increase in CBO.

The example shown here is an ideal situation. Coupling is reduced for
one class without any increase of coupling for another class. There is also
another point that is important. It is the fact that to reduce the CBO value
for a class, we need to remove all its uses of another class. This is done for
the class C in listing 7 on the facing page, where all uses of class Y is removed
by the Extract and Move Method refactoring.
Highlight code

1.3.6 Research questions

The main question that I seek an answer to in this thesis is:

Is it possible to automate the analysis and execution of the
Extract and Move Method refactoring, and do so for all of the
code of a larger project?

The secondary questions will then be:

Can we do this efficiently? Can we automate the analysis and execution
of the refactoring so it can be run in a reasonable amount of time?

32

Before

1 class C {
2 A a; B b;
3 X x;
4 void method() {
5 x.y.foo();
6 x.y.bar();
7 }
8 /* Uses of A and B.
9 No uses of other

10 classes. */
11 }
12

13 class X {
14 Y y;
15 /* No uses of C.
16 Uses of Y. */
17 }
18

19 class Y {
20 void foo(){
21 /* No uses of C. */
22 }
23 void bar(){
24 /* No uses of C. */
25 }
26 }

After

1 class C {
2 A a; B b;
3 X x;
4 void method() {
5 x.fooBar();
6 }
7 /* Uses of A and B.
8 No uses of other
9 classes. */

10 }
11

12 class X {
13 Y y;
14 /* No uses of C.
15 Uses of Y. */
16 void fooBar() {
17 y.foo();
18 y.bar();
19 }
20 }
21

22 class Y {
23 void foo(){
24 /* No uses of C. */
25 }
26 void bar(){
27 /* No uses of C. */
28 }
29 }

Listing 7: An example of improving CBO. Class C has a CBO value of 4
before refactoring it, and 3 after.

Can we perform changes safely? Can we take actions to prevent the
refactoring from breaking the code? By breaking the code we mean to either
do changes that do not compile, or make changes that alter the behavior of
the program.

Can we improve the quality of source code? Assuming that the
refactoring is safe: Is it feasible to assure that the code we refactor actually
gets better in terms of coupling?

How can the automation of the refactoring be helpful? Assuming
the refactoring does in fact improve the quality of source code and is safe
to use: What is the usefulness of the refactoring in a software development

33

setting? In what parts of the development process can the refactoring play
a role?

1.3.7 Methodology

This section will present some of the methods used during the work of this
thesis.

Evolutionary design

In the programming work for this project, it have tried to use a design
strategy called evolutionary design, also known as continuous or incremental
design [14b]. It is a software design strategy advocated by the Extreme
Programming community. The essence of the strategy is that you should let
the design of your program evolve naturally as your requirements change.
This is seen in contrast with up-front design, where design decisions are
made early in the process.

The motivation behind evolutionary design is to keep the design of
software as simple as possible. This means not introducing unneeded
functionality into a program. You should defer introducing flexibility into
your software, until it is needed to be able to add functionality in a clean
way.

Holding up design decisions, implies that the time will eventually come
when decisions have to be made. The flexibility of the design then relies
on the programmer’s abilities to perform the necessary refactoring, and her
confidence in those abilities. From my experience working on this project, I
can say that this confidence is greatly enhanced by having automated tests
to rely on (see section 1.3.7 on the current page).

The choice of going for evolutionary design developed naturally. As
Fowler points out in his article Is Design Dead?, evolutionary design much
resembles the “code and fix” development strategy [Fow04]. A strategy that
most of us have practiced in school. This was also the case when I first
started this work. I had to learn the inner workings of Eclipse and its
refactoring-related plugins. That meant a lot of fumbling around with code
I did not know, in a trial and error fashion. Eventually I started writing
tests for my code, and my design began to evolve.

Test-driven development

As mentioned before, the project started out as a classic code and fix
development process. My focus was aimed at getting something to work,
rather than doing so according to best practice. This resulted in a project
that got out of its starting blocks, but it was not accompanied by any tests.
Hence it was soon difficult to make any code changes with the confidence
that the program was still correct afterwards (assuming it was so before
changing it). I always knew that I had to introduce some tests at one point,
but this experience accelerated the process of leading me onto the path of
testing.

34

I then wrote tests for the core functionality of the plugin, and thus gained
more confidence in the correctness of my code. I could now perform quite
drastic changes without “wetting my pants“. After this, nearly all of the
semantic changes done to the business logic of the project, or the addition
of new functionality, were made in a test-driven manner. This means that
before performing any changes, I would define the desired functionality
through a set of tests. I would then run the tests to check that they were run
and that they did not pass. Then I would do any code changes necessary
to make the tests pass. The definition of how the program is supposed to
operate is then captured by the tests. However, this does not prove the
correctness of the analysis leading to the test definitions.

1.3.8 Case study

Write

1.3.9 Dogfooding

Write

1.4 Related Work

1.4.1 Refactoring safety

This section presents a couple of approaches to improving the safety
of performing refactorings. In these approaches, the problems that are
addressed are not compilation problems, but behavior-altering problems that
are not easily discovered during static analysis of source code. An example
of such a problem is presented in section 1.2.11 on page 25.

Project “Safer Refactorings”

[Sto] is a proposal for a master’s thesis. The proposer is my supervisor,
Volker Stolz from the University of Oslo.

The proposed solution for making refactorings safer, is to insert
assertions into source code when refactoring it. For the example in listing 3
on page 27, that is the result of a refactoring, it is suggested that we insert
an assert statement between lines 9 and 10. In this example, the assert
statement would be

assert c.x == this;

which would discover the aliasing problems of this example.

“Making Program Refactoring Safer”

This is the name of an article [Soa+10] about providing a way to improve
safety during refactoring. Soares et al. approaches the problem of preserving
behavior during refactoring by analyzing a transformation and then generate

35

a test suite for it, using static analysis. These tests are then run for both the
before- and after-code, and is compared to assure that they are consistent.

1.4.2 Search-based refactoring

Search-Based Refactoring: an empirical study [OC08] is a paper by Mark
O’Keeffe and Mel Ó Cinnéide published in 2008. The authors present
an empirical study of different algorithmic approaches to search-based
refactoring.

The common approach for all these algorithms is to generate a set of
changes to a program for then to use a “fitness function” to evaluate if they
improve its design or not. The fitness function consists of a weighted sum
of different object-oriented metrics.

Among other things, the authors conclude that even with small input
programs, their solution representation is memory-intensive, at least for
some algorithms. The programs they refactor on have in average 4,000
lines of code, spread over 57 classes. I.e. considerably smaller than one of
the programs that will be subject to refactoring in this project.

1.4.3 The compositional paradigm of refactoring

This paradigm builds upon the observation of Vakilian et al. [Vak+12], that
of the many automated refactorings existing in modern IDEs, the simplest
ones are dominating the usage statistics. The report mainly focuses on
Eclipse as the tool under investigation.

The paradigm is described almost as the opposite of automated
composition of refactorings (see section 1.2.9 on page 24). It works by
providing the programmer with easily accessible primitive refactorings.
These refactorings shall be accessed via keyboard shortcuts or quick-assist
menus1 and be promptly executed, opposed to in the currently dominating
wizard-based refactoring paradigm. They are meant to stimulate composing
smaller refactorings into more complex changes, rather than doing a large
upfront configuration of a wizard-based refactoring, before previewing and
executing it. The compositional paradigm of refactoring is supposed to
give control back to the programmer, by supporting him with an option of
performing small rapid changes instead of large changes with a lesser degree
of control. The report authors hope this will lead to fewer unsuccessful
refactorings. It also could lower the bar for understanding the steps of a
larger composite refactoring and thus also help in figuring out what goes
wrong if one should choose to op in on a wizard-based refactoring.

Vakilian and his associates have performed a survey of the effectiveness
of the compositional paradigm versus the wizard-based one. They claim
to have found evidence of that the compositional paradigm outperforms
the wizard-based. It does so by reducing automation, which seem
counterintuitive. Therefore they ask the question “What is an appropriate
level of automation?”, and thus questions what they feel is a rush toward
more automation in the software engineering community.

1Think quick-assist with Ctrl+1 in Eclipse

36

Chapter 2

The search-based Extract
and Move Method
refactoring

In this chapter I will delve into the workings of the search-based Extract
and Move Method refactoring. We will see the choices it must make along
the way and why it chooses a text selection as a candidate for refactoring
or not.

After defining some concepts, I will introduce an example that will be
used throughout the chapter to illustrate how the refactoring works in some
simple situations.

2.1 The inputs to the refactoring

For executing an Extract and Move Method refactoring, there are two simple
requirements. The first thing the refactoring needs is a text selection, telling
it what to extract. Its second requirement is a target for the subsequent move
operation.

The extracted method must be called instead of the selection that makes
up its body. Also, the method call has to be performed via a variable, since
the method is not static. Therefore, the move target must be a variable
in the scope of the extracted selection. The actual new location for the
extracted method will be the class representing the type of the move target
variable. But, since the method also must be called through a variable, it
makes sense to define the move target to be either a local variable or a field
in the scope of the text selection.

2.2 Defining a text selection

A text selection, in our context, is very similar to what you think of when
selecting a bit of text in your editor or other text processing tool with your
mouse or keyboard. It is an abstract construct that is meant to capture
which specific portion of text we are about to deal with.

37

To be able to clearly reason about a text selection done to a portion of
text in a computer file, that consist of pure text, we put up the following
definition.

Definition. A text selection in a text file is defined by two non-negative
integers, in addition to a reference to the file itself. The first integer is
an offset into the file, while the second reference is the length of the text
selection.

This means that the selected text consist of a number of characters
equal to the length of the selection, where the first character is found at the
specified offset.

2.3 Where we look for text selections

2.3.1 Text selections are found in methods

The text selections we are interested in are those that surrounds program
statements. Therefore, the place we look for selections that can form
candidates for an execution of the Extract and Move Method refactoring,
is within the body of a single method.

On ignoring static methods In this project we are not analyzing static
methods for candidates to the Extract and Move Method refactoring. The
reason for this is that in the cases where we want to perform the refactoring
for a selection within a static method, the first step is to extract the selection
into a new method. Hence this method also become static, since it must be
possible to call it from a static context. It would then be difficult to move
the method to another class, make it non-static and calling it through a
variable. To avoid these obstacles, we simply ignore static methods.

2.3.2 The possible text selections of a method body

The number of possible text selections that can be made from the text in
a method body, are equal to all the sub-sequences of characters within it.
For our purposes, analyzing program source code, we must define what it
means for a text selection to be valid.

Definition. A valid text selection is a text selection that contains all of one
or more consecutive program statements.

For a sequence of statements, the text selections that can be made from
it, are equal to all its sub-sequences. Listing 9 on page 40 show an example
of all the text selections that can be made from the code in listing 8 on the
facing page, lines 16-18. For convenience and the clarity of this example,
the text selections are represented as tuples with the start and end line of
all selections: {(16), (17), (18), (16, 17), (16, 18), (17, 18)}.

Each nesting level of a method body can have many such sequences of
statements. The outermost nesting level has one such sequence, and each
branch contains their own sequence of statements. Listing 8 on the current

38

Clean

1 class C {
2 A a; B b; boolean bool;
3

4 void method(int val) {
5 if (bool) {
6 a.foo();
7 a = new A();
8 a.bar();
9 }

10

11 a.foo();
12 a.bar();
13

14 switch (val) {
15 case 1:
16 b.a.foo();
17 b.a.bar();
18 break;
19 default:
20 a.foo();
21 }
22 }
23 }

With statement sequences

class C {
A a; B b; boolean bool;

void method(int val) {
if (bool) {

a.foo();
a = new A();
a.bar();

}

a.foo();
a.bar();

switch (val) {
case 1:

b.a.foo();
b.a.bar();
break;

default:
a.foo();

}
}

}

Listing 8: Classes A and B are both public. The methods foo and bar are
public members of class A.

page has a version of some code where all such sequences of statements are
highlighted for a method body.

To complete our example of possible text selections, I will now list all
possible text selections for the method in listing 8 on this page, by nesting
level. There are 23 of them in total.

Level 1 (10 selections)
{(5, 9), (11), (12), (14, 21), (5, 11), (5, 12), (5, 21), (11, 12), (11, 21),
(12, 21)}

Level 2 (13 selections)
{(6), (7), (8), (6, 7), (6, 8), (7, 8), (16), (17), (18), (16, 17), (16, 18),
(17, 18), (20)}

The complexity

The complexity of how many text selections that needs to be analyzed for a
body of in total n statements, is bounded by O(n2). A body of statements

39

16 b.a.foo();
17 b.a.bar();
18 break;

Listing 9: Example of how the text selections generator would generate
text selections based on a lists of statements. Each highlighted rectangle
represents a text selection.

is here all the statements in all nesting levels of a sequence of statements.
A method body (or a block) is a body of statements. To prove that the
complexity is bounded by O(n2), I present a couple of theorems and proves
them.

Theorem. The number of text selections that need to be analyzed for each
list of statements of length n, is exactly

n∑
i=1

i =
n(n + 1)

2

Proof. For n = 1 this is trivial: 1(1+1)
2 = 2

2 = 1. One statement equals one
selection.

For n = 2, you get one text selection for the first statement, one selection
for the second statement, and one selection for the two of them combined.
This equals three selections. 2(2+1)

2 = 6
2 = 3.

For n = 3, you get 3 selections for the two first statements, as in the case
where n = 2. In addition you get one selection for the third statement itself,
and two more statements for the combinations of it with the two previous
statements. This equals six selections. 3(3+1)

2 = 12
2 = 6.

Assume that for n = k there exists k(k+1)
2 text selections. Then we

want to add selections for another statement, following the previous k
statements. So, for n = k + 1, we get one additional selection for the
statement itself. Then we get one selection for each pair of the new selection
and the previous k statements. So the total number of selections will be
the number of already generated selections, plus k for every pair, plus one
for the statement itself: k(k+1)

2 + k + 1 = k(k+1)+2k+2
2 = k(k+1)+2(k+1)

2 =
(k+1)(k+2)

2 = (k+1)((k+1)+1)
2 =

∑k+1
i=1 i

Theorem. The number of text selections for a body of statements is
maximized if all the statements are at the same level.

Proof. Assume we have a body of, in total, k statements. Then, the sum
of the lengths of all the lists of statements in the body, is also k. Let
{l, . . . , m, (k− l− . . .−m)} be the lengths of the lists of statements in the
body, with l + . . . + m < k ⇒ ∀i ∈ {l, . . . , m} : i < k.

Then, the number of text selections that are generated for the k
statements is

40

l(l + 1)
2 + . . . +

m(m + 1)
2 +

(k− l− . . .−m)((k− l− . . .−m) + 1)
2 =

l2 + l

2 + . . . +
m2 + m

2 +
k2 − 2kl− . . .− 2km + l2 + . . . + m2 + k− l− . . .−m

2 =

2l2 − 2kl + . . . + 2m2 − 2km + k2 + k

2

It then remains to show that this inequality holds:

2l2 − 2kl + . . . + 2m2 − 2km + k2 + k

2 <
k(k + 1)

2 =
k2 + k

2

By multiplication by 2 on both sides, and by removing the equal parts, we
get

2l2 − 2kl + . . . + 2m2 − 2km < 0

Since ∀i ∈ {l, . . . , m} : i < k, we have that ∀i ∈ {l, . . . , m} : 2ki > 2i2,
so all the pairs of parts on the form 2i2 − 2ki are negative. In sum, the
inequality holds.

Therefore, the complexity for the number of selections that needs to be
analyzed for a body of n statements is O

(
n(n+1)

2

)
= O(n2).

2.4 Disqualifying a selection
Certain text selections would lead to broken code if used as input to the
Extract and Move Method refactoring. To avoid this, we have to check all
text selections for such conditions before they are further analyzed. This
section is therefore going to present some properties that make a selection
unsuitable for our refactoring.

2.4.1 A call to a protected or package-private method

If a text selection contains a call to a protected or package-private method,
it would not be safe to move it to another class. The reason for this, is that
we cannot know if the called method is being overridden by some subclass
of the enclosing class, or not.

Imagine that the protected method foo is declared in class A, and
overridden in class B. The method foo is called from within a selection
done to a method in A. We want to extract and move this selection to
another class. The method foo is not public, so theMove Method refactoring
must make it public, making the extracted method able to call it from the
extracted method’s new location. The problem is, that the now public
method foo is overridden in a subclass, where it has a protected status.

41

This makes the compiler complain that the subclass B is trying to reduce
the visibility of a method declared in its superclass A. This is not allowed
in Java, and for good reasons. It would make it possible to make a subclass
that could not be a substitute for its superclass.

The problem this check helps to avoid, is a little subtle. The problem
does not arise in the class where the change is done, but in a class derived
from it. This shows that classes acting as superclasses are especially fragile
to introducing errors in the context of automated refactoring.

2.4.2 A double class instance creation

The following is a problem caused solely by the underlying Move Method
refactoring. The problem occurs if two classes are instantiated such that
the first constructor invocation is an argument to a second, and that the
first constructor invocation takes an argument that is built up using a field.
As an example, say that name is a field of the enclosing class, and we have the
expression new A(new B(name)). If this expression is located in a selection
that is moved to another class, name will be left untouched, instead of being
prefixed with a variable of the same type as it is declared in. If name is the
destination for the move, it is not replaced by this, or removed if it is a
prefix to a member access (name.member), but it is still left by itself.

Situations like this would lead to code that will not compile. Therefore,
we have to avoid them by not allowing selections to contain such double
class instance creations that also contains references to fields.

2.4.3 Instantiation of non-static inner class

When a non-static inner class is instantiated, this must happen in the scope
of its declaring class. This is because it must have access to the members of
the declaring class. If the inner class is public, it is possible to instantiate
it through an instance of its declaring class, but this is not handled by the
underlying Move Method refactoring.

Performing a move on a method that instantiates a non-static inner
class, will break the code if the instantiation is not handled properly. For
this reason, selections that contains instantiations of non-static inner classes
are deemed unsuitable for the Extract and Move Method refactoring.

2.4.4 References to enclosing instances of the enclosing class

The title of this section may be a little hard to grasp at first. What it means
is that there is a (non-static) class C that is declared in the scope of possibly
multiple other classes. And there is a statement in the body of a method
declared in class C, that contains a reference to one or more instances of
these enclosing classes of C.

The problem with this, is that these references may not be valid if they
are moved to another class. Theoretically, some situations could easily be
solved by passing, to the moved method, a reference to the instance where
the problematic referenced member is declared. This should work in the case
where this member is publicly accessible. This is not done in the underlying

42

Move Method refactoring, so it cannot be allowed in the Extract and Move
Method refactoring either.

2.4.5 Inconsistent return statements

To verify that a text selection is consistent with respect to return statements,
we must check that if a selection contains a return statement, then every
possible execution path within the selection ends in either a return or a
throw statement. This property is important regarding the Extract Method
refactoring. If it holds, it means that a method could be extracted from
the selection, and a call to it could be substituted for the selection. If the
method has a non-void return type, then a call to it would also be a valid
return point for the calling method. If its return value is of the void type,
then the Extract Method refactoring will append an empty return statement
to the back of the method call. Therefore, the analysis does not discriminate
on either kinds of return statements, with or without a return value.

A throw statement is accepted anywhere a return statement is required.
This is because a throw statement causes an immediate exit from the current
block, together with all outer blocks in its control flow that does not catch
the thrown exception.

Return statements can be either explicit or implicit. An explicit return
statement is formed by using the return keyword, while an implicit return
statement is a statement that is not formed using return, but must be the
last statement of a method that can have any side effects. This can happen
in methods with a void return type. An example is a statement that is inside
one or more blocks. The last statement of a method could for instance be
a synchronized statement, but the last statement that is executed in the
method, and that can have any side effects, may be located inside the body
of the synchronized statement.

We can start the check for this property by looking at the last statement
of a selection to see if it is a return statement (explicit or implicit) or a
throw statement. If this is the case, then the property holds, assuming the
selected code does not contain any compilation errors. All execution paths
within the selection should end in either this, or another, return or throw
statement.
State somewhere that we assume no compilation errors?

If the last statement of the selection is not a return or throw, the
execution of it must eventually end in one for the selection to be legal.
This means that all branches of the last statement of every branch must end
in a return or throw. Given this recursive definition, there are only five types
of statements that are guaranteed to end in a return or throw if their child
branches does. All other statements would have to be considered illegal. The
first three: Block-statements, labeled statements and do-statements are all
kinds of fall-through statements that always gets their body executed. Do-
statements would not make much sense if written such that they always
ends after the first round of execution of their body, but that is not our
concern. The remaining two statements that can end in a return or throw
are if-statements and try-statements.

43

For an if-statement, the rule is that if its then-part does not contain
any return or throw statements, this is considered illegal. If the then-part
does contain a return or throw, the else-part is checked. If its else-part is
non-existent, or it does not contain any return or throw statements, the
statement is considered illegal. If an if-statement is not considered illegal,
the bodies of its two parts must be checked.

Try-statements are handled much the same way as if-statements. The
body of a try-statement must contain a return or throw. The same applies
to its catch clauses and finally body.

2.4.6 Ambiguous return values

The problem with ambiguous return values arise when a selection is chosen
to be extracted into a new method, but it needs to return more than one
value from that method.

This problem occurs in two situations. The first situation arise when
there is more than one local variable that is both assigned to within a
selection and also referenced after the selection. The other situation occur
when there is only one such assignment, but the selection also contain return
statements.

Therefore we must examine the selection for assignments to local
variables that are referenced after the text selection. Then we must verify
that not more than one such reference is done, or zero if any return
statements are found.

2.4.7 Illegal statements

An illegal statement may be a statement that is of a type that is never
allowed, or it may be a statement of a type that is only allowed if certain
conditions are true.

Any use of the super keyword is prohibited, since its meaning is altered
when moving a method to another class.

For a break statement, there are two situations to consider: A break
statement with or without a label. If the break statement has a label, it is
checked that whole of the labeled statement is inside the selection. If the
break statement does not have a label attached to it, it is checked that its
innermost enclosing loop or switch statement also is inside the selection.

The situation for a continue statement is the same as for a break
statement, except that it is not allowed inside switch statements.

Regarding assignments, two types of assignments are allowed: Assign-
ments to non-final variables and assignments to array access. All other
assignments are regarded illegal.
Expand with more illegal statements and/or conclude that I did not
have time to analyze all statement types.

44

2.5 Disqualifying selections from the example

Among the selections we found for the code in listing 8 on page 39, not many
of them must be disqualified on the basis of containing something illegal.
The only statement causing trouble is the break statement in line 18. None
of the selections on nesting level 2 can contain this break statement, since
the innermost switch statement is not inside any of these selections.

This means that the text selections (18), (16, 18) and (17, 18) can be
excluded from further consideration, and we are left with the following
selections.

Level 1 (10 selections)
{(5, 9), (11), (12), (14, 21), (5, 11), (5, 12), (5, 21), (11, 12), (11, 21),
(12, 21)}

Level 2 (10 selections)
{(6), (7), (8), (6, 7), (6, 8), (7, 8), (16), (17), (16, 17), (20)}

2.6 Finding a move target

In the analysis needed to perform the Extract and Move Method refactoring
automatically, the selection we choose is found among all the selections that
has a possible move target. Therefore, the best possible move target must
be found for all the candidate selections, so that we are able to sort out the
selection that is best suited for the refactoring.

To find the best move target for a specific text selection, we first need
to find all the possible targets. Since the target must be a local variable or
a field, we are basically looking for names within the selection; names that
represents references to variables.

The names we are looking for, we call prefixes. This is because we are
not interested in names that occur in the middle of a dot-separated sequence
of names. We are only interested in names that constitutes prefixes of other
names, possibly themselves. The reason for this, is that two lexically equal
names need not be referencing the same variable, if they themselves are not
referenced via the same prefix. Consider the two method calls a.x.foo()
and b.x.foo(). Here, the two references to x, in the middle of the qualified
names both preceding foo(), are not referencing the same variable. Even
though the variables may share the type, and the method foo thus is the
same for both, we would not know through which of the variables a or b we
should call the extracted method.

The possible move targets are then the prefixes that are not among a
subset of the prefixes that are not valid move targets (see section 2.7 on the
following page). Also, prefixes that are just simple names, and have only
one occurrence, are left out. This is because they are not going to have any
positive effect on coupling between classes, and are only going to increase
the complexity of the code.

For finding the best move target among these safe prefixes, a simple
heuristic is used. It is as simple as choosing the prefix that is most frequently

45

referenced within the selection.

2.7 Unfixes

The prefixes that are not valid as move targets are called unfixes.
An unfix can be a name that is assigned to within a selection. The reason

that this cannot be allowed, is that the result would be an assignment to the
this keyword, which is not valid in Java (see appendix A.1 on page 111).

Prefixes that originates from variable declarations within the same
selection are also considered unfixes. This is because when a method is
moved, it needs to be called through a variable. If this variable is also
declared within the method that is to be moved, this obviously cannot be
done.

Also considered as unfixes are variable references that are of types that
are not suitable for moving methods to. This can either be because it is
not physically possible to move a method to the desired class or that it will
cause compilation errors by doing so.

If the type binding for a name is not resolved it is considered and unfix.
The same applies to types that is only found in compiled code, so they have
no underlying source that is accessible to us. (E.g. the java.lang.String
class.)

Interfaces types are not suitable as targets. This is simply because
interfaces in Java cannot contain methods with bodies. (This thesis does not
deal with features of Java versions later than Java 7. Java 8 has interfaces
with default implementations of methods.)

Neither are local types allowed. This accounts for both local and
anonymous classes. Anonymous classes are effectively the same as interface
types with respect to unfixes. Local classes could in theory be used as
targets, but this is not possible due to limitations of the way the Extract
and Move Method refactoring has to be implemented. The problem is that
the refactoring is done in two steps, so the intermediate state between the
two refactorings would not be legal Java code. In the intermediate step for
the case where a local class is the move target, the extracted method would
need to take the local class as a parameter. This new method would need to
live in the scope of the declaring class of the originating method. The local
class would then not be in the scope of the extracted method, thus bringing
the source code into an illegal state. One could imagine that the method
was extracted and moved in one operation, without an intermediate state.
Then it would make sense to include variables with types of local classes in
the set of legal targets, since the local classes would then be in the scopes
of the method calls. If this makes any difference for software metrics that
measure coupling would be a different discussion.

The last class of names that are considered unfixes are names used in
null tests. These are tests that reads like this: if <name> equals null then
do something. If allowing variables used in those kinds of expressions as
targets for moving methods, we would end up with code containing boolean
expressions like this == null, which would not be meaningful, since this

46

Before

void declaresLocalClass() {
class LocalClass {
void foo() {}
void bar() {}

}

LocalClass inst =
new LocalClass();

inst.foo();
inst.bar();

}

After Extract Method

void declaresLocalClass() {
class LocalClass {

void foo() {}
void bar() {}

}

LocalClass inst =
new LocalClass();

fooBar(inst);
}

// Intermediate step
void fooBar(LocalClass inst) {

inst.foo();
inst.bar();

}

Listing 10: When the Extract and Move Method tries to use a variable with
a local type as the move target, an intermediate step is performed that is not
allowed. Here: LocalClass is not in the scope of fooBar in its intermediate
location.

would never be null.

2.8 Finding the example selections that have
possible targets

We now pick up the thread from section 2.5 on page 45 where we have a set
of text selections that needs to be analyzed to find out if some of them are
suitable targets for the Extract and Move Method refactoring.

We start by analyzing the text selections for nesting level 2, because
these results can be used to reason about the selections for nesting level 1.
First we have all the single-statement selections.

Selections (6), (8) and (20).
All these selections have a prefix that contains a possible target,
namely the variable a. The problem is that the prefixes are only one
segment long, and their frequency counts are only 1 as well. None of
these selections are therefore considered as suitable candidates for the
refactoring.

Selection (7).
This selection contains the unfix a, and no other possible targets. The
reason for a being an unfix is that it is assigned to within the selection.
Selection (7) is therefore unsuited as a refactoring candidate.

47

Selections (16) and (17).
These selections both have a possible target. The target for both
selections is the variable b. Both the prefixes have frequency 1. We
denote this with the new tuples ((16), b.a, f(1)) and ((17), b.a, f(1)).
They contain the selection, the prefix with the target and the frequency
for this prefix.

Then we have all the text selections from level 2 that are composed of
multiple statements:

Selections (6, 7), (6, 8) and (7, 8).
All these selections are disqualified for the reason that they contain
the unfix a, due to the assignment, and no other possible move targets.

Selection (16, 17).
This selection is the last selection that is not analyzed on nesting level
2. It contains only one possible move target, and that is the variable b.
It also contains only one prefix b.a, with frequency count 2. Therefore
we have a new candidate ((16, 17), b.a, f(2)).

Moving on to the text selections for nesting level 1, starting with the
single-statement selections:

Selection (5, 9).
This selection contains two variable references that must be analyzed
to see if they are possible move candidates. The first one is the variable
bool. This variable is of type boolean, that is a primary type and
therefore not possible to make any changes to. The second variable
is a. The variable a is an unfix in (5, 9), for the same reason as in
the selections (6, 7), (7, 8) and (6, 8). So selection (5, 9) contains no
possible move targets.

Selections (11) and (12).
These selections are disqualified for the same reasons as selections (6)
and (8). Their prefixes are one segment long and are referenced only
one time.

Selection (14, 21)
This is the switch statement from listing 8 on page 39. It contains the
relevant variable references val, a and b. The variable val is a primary
type, just as bool. The variable a is only found in one statement,
and in a prefix with only one segment, so it is not considered to be
a possible move target. The only variable left is b. Just as in the
selection (16, 17), b is part of the prefix b.a, that has 2 appearances.
We have found a new candidate ((14, 21), b.a, f(2)).

It remains to see if we get any new candidates by analyzing the multi-
statement text selections for nesting level 1:

48

Selections (5, 11) and (5, 12).
These selections are disqualified for the same reason as (5, 9). The
only possible move target a is an unfix.

Selection (5, 21).
This is whole of the method body in listing 8 on page 39. The variables
a, bool and val are either an unfix or primary types. The variable b is
the only possible move target, and we have, again, the prefix b.a as the
center of attention. The refactoring candidate is ((5, 21), b.a, f(2)).

Selection (11, 12).
This small selection contains the prefix a with frequency 2, and no
unfixes. The candidate is ((11, 12), a, f(2)).

Selection (11, 21)
This selection contains the selection (11, 12) in addition to the switch
statement. The selection has two possible move targets. The first one
is b, in a prefix with frequency 2. The second is a, although it is in a
simple prefix, it is referenced 3 times, and is therefore chosen as the
target for the selection. The new candidate is ((11, 21), a, f(3)).

Selection (12, 21).
This selection is similar to the previous (11, 21), only that a now has
frequency count 2. This means that the prefixes a and b.a both have
the count 2. Of the two, b.a is preferred, since it has more segments
than a. Thus the candidate for this selection is ((12, 21), b.a, f(2)).

For the method in listing 8 on page 39 we therefore have the
following 8 candidates for the Extract and Move Method refactoring:
{((16), b.a, f(1)), ((17), b.a, f(1)), ((16, 17), b.a, f(2)), ((14, 21), b.a, f(2)),
((5, 21), b.a, f(2)), ((11, 12), a, f(2)), ((11, 21), a, f(3)), ((12, 21), b.a, f(2))}.

It now only remains to specify an order for these candidates, so we can
choose the most suitable one to refactor.

2.9 Choosing the selection

When choosing a selection between the text selections that have possible
move targets, the selections need to be ordered. The criteria below are
presented in the order they are prioritized. If not one selection is favored
over the other for a concrete criterion, the selections are evaluated by the
next criterion.

1. The first criterion that is evaluated is whether a selection contains
any unfixes or not. If selection A contains no unfixes, while selection
B does, selection A is favored over selection B. This is because, if
we can, we want to avoid moving such as assignments and variable
declarations. This is done under the assumption that, if possible,
avoiding selections containing unfixes will make the code moved a little
cleaner.

49

2. The second criterion that is evaluated is whether a selection contains
multiple possible targets or not. If selection A has only one possible
target, and selection B has multiple, selection A is favored. If both
selections have multiple possible targets, they are considered equal
with respect to this criterion. The rationale for this heuristic is that
we would prefer not to introduce new couplings between classes when
performing the Extract and Move Method refactoring.

3. When evaluating this criterion, this is with the knowledge that
selection A and B both have one possible target, or multiple possible
targets. Then, if the move target candidate of selection A has a higher
reference count than the target candidate of selection B, selection A is
favored. The reason for this is that we would like to move the selection
that gets rid of the most references to another class.

4. The last criterion is that if the frequencies of the targets chosen for
both selections are equal, the selection with the target that is part of
the prefix with highest number of segments is favored. This is done to
favor indirection.

If none of the above mentioned criteria favors one selection over another,
the selections are considered to be equally good candidates for the Extract
and Move Method refactoring.

2.10 Concluding the example
For choosing one of the remaining selections, we need to order our candidates
after the criteria in the previous section. Below we have the candidates
ordered in descending order, with the “best” candidate first:

1. ((16, 17), b.a, f(2))

2. ((11, 12), a, f(2))

3. ((16), b.a, f(1))

4. ((17), b.a, f(1))

5. ((11, 21), a, f(3))

6. ((5, 21), b.a, f(2))

7. ((12, 21), b.a, f(2))

8. ((14, 21), b.a, f(2))

The candidates ordered 5-8 all have unfixes in them, therefore they are
ordered last. None of the candidates ordered 1-4 have multiple possible
targets. The only interesting discussion is now why (16, 17) was favored
over (11, 12). This is because the prefix b.a enclosing the move target of
selection (16, 17) has one more segment than the prefix a of (11, 12).

The selection is now extracted into a new method gen_123 and then
moved to class B, since that is the type of the variable b that is the target
from the chosen refactoring candidate. The name of the method has a
randomly generated suffix. In the refactoring implementation, the extracted
methods follow the pattern generated_<long>, where <long> is a pseudo-
random long value. This is shortened here to make the example readable.
The result after the refactoring is shown in listing 11 on the facing page.

50

1 class C {
2 A a; B b; boolean bool;
3

4 void method(int val) {
5 if (bool) {
6 a.foo();
7 a = new A();
8 a.bar();
9 }

10

11 a.foo();
12 a.bar();
13

14 switch (val) {
15 case 1:
16 b.gen_123(this);
17 break;
18 default:
19 a.foo();
20 }
21 }
22 }

public class B {
A a;

public void gen_123(C c) {
a.foo();
a.bar();

}
}

Listing 11: The result after refactoring the class C of listing 8 on page 39
with the Extract and Move Method refactoring with ((16, 17), b.a, f(2)) as
input.

2.11 ??
Short description of changing code and error handling?
Pointing to implementation chapter

51

52

Chapter 3

Refactorings in Eclipse JDT:
Design and Shortcomings

This chapter will deal with some of the design behind refactoring support in
Eclipse, and the JDT in specific. After which it will follow a section about
shortcomings of the refactoring API in terms of composition of refactorings.

3.1 Design

The refactoring world of Eclipse can in general be separated into two
parts: The language independent part and the part written for a specific
programming language – the language that is the target of the supported
refactorings. What about the

language specific
part?

What about the
language specific
part?3.1.1 The Language Toolkit

The Language Toolkit1, or LTK for short, is the framework that is used to
implement refactorings in Eclipse. It is language independent and provides
the abstractions of a refactoring and the change it generates, in the form of
the classes Refactoring2 and Change3.

There are also parts of the LTK that is concerned with user interaction,
but they will not be discussed here, since they are of little value to us and
our use of the framework. We are primarily interested in the parts that can
be automated.

The Refactoring Class

The abstract class Refactoring is the core of the LTK framework. Every
refactoring that is going to be supported by the LTK have to end up creating
an instance of one of its subclasses. The main responsibilities of subclasses

1The content of this section is a mixture of written material from https:
//www.eclipse.org/articles/Article-LTK/ltk.html and http://www.eclipse.org/articles/article.
php?file=Article-Unleashing-the-Power-of-Refactoring/index.html, the LTK source code and
my own memory.

2org.eclipse.ltk.core.refactoring.Refactoring
3org.eclipse.ltk.core.refactoring.Change

53

https://www.eclipse.org/articles/Article-LTK/ltk.html
https://www.eclipse.org/articles/Article-LTK/ltk.html
http://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/index.html
http://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/index.html

of Refactoring is to implement template methods for condition checking
(checkInitialConditions1 and checkFinalConditions2), in addition to
the createChange3 method that creates and returns an instance of the
Change class.

If the refactoring shall support that others participate in it when it is
executed, the refactoring has to be a processor-based refactoring4. It then
delegates to its given RefactoringProcessor5 for condition checking and
change creation. Participating in a refactoring can be useful in cases where
the changes done to programming source code affects other related resources
in the workspace. This can be names or paths in configuration files, or
maybe one would like to perform additional logging of changes done in the
workspace.

The Change Class

This class is the base class for objects that is responsible for performing the
actual workspace transformations in a refactoring. The main responsibilities
for its subclasses is to implement the perform6 and isValid7 methods. The
isValid method verifies that the change object is valid and thus can be
executed by calling its perform method. The perform method performs the
desired change and returns an undo change that can be executed to reverse
the effect of the transformation done by its originating change object.

Executing a Refactoring

The life cycle of a refactoring generally follows two steps after creation:
condition checking and change creation. By letting the refactoring object
be handled by a CheckConditionsOperation8 that in turn is handled by a
CreateChangeOperation9, it is assured that the change creation process is
managed in a proper manner.

The actual execution of a change object has to follow a detailed life
cycle. This life cycle is honored if the CreateChangeOperation is handled
by a PerformChangeOperation10. If also an undo manager11 is set for the
PerformChangeOperation, the undo change is added into the undo history.

1org.eclipse.ltk.core.refactoring.Refactoring#checkInitialConditions()
2org.eclipse.ltk.core.refactoring.Refactoring#checkFinalConditions()
3org.eclipse.ltk.core.refactoring.Refactoring#createChange()
4org.eclipse.ltk.core.refactoring.participants.ProcessorBasedRefactoring
5org.eclipse.ltk.core.refactoring.participants.RefactoringProcessor
6org.eclipse.ltk.core.refactoring.Change#perform()
7org.eclipse.ltk.core.refactoring.Change#isValid()
8org.eclipse.ltk.core.refactoring.CheckConditionsOperation
9org.eclipse.ltk.core.refactoring.CreateChangeOperation

10org.eclipse.ltk.core.refactoring.PerformChangeOperation
11org.eclipse.ltk.core.refactoring.IUndoManager

54

3.2 Shortcomings
This section is introduced naturally with a conclusion: The JDT refactoring
implementation does not facilitate composition of refactorings. This section refinerefine
will try to explain why, and also identify other shortcomings of both the
usability and the readability of the JDT refactoring source code.

I will begin at the end and work my way toward the composition part of
this section.

3.2.1 Absence of Generics in Eclipse Source Code

This section is not only concerning the JDT refactoring API, but also large
quantities of the Eclipse source code. The code shows a striking absence of
the Java language feature of generics. It is hard to read a class’ interface
when methods return objects or takes parameters of raw types such as List
or Map. This sometimes results in having to read a lot of source code to
understand what is going on, instead of relying on the available interfaces.
In addition, it results in a lot of ugly code, making the use of typecasting
more of a rule than an exception.

3.2.2 Composite Refactorings Will Not Appear as Atomic
Actions

Missing Flexibility from JDT Refactorings

The JDT refactorings are not made with composition of refactorings in mind.
When a JDT refactoring is executed, it assumes that all conditions for it to
be applied successfully can be found by reading source files that have been
persisted to disk. They can only operate on the actual source material,
and not (in-memory) copies thereof. This constitutes a major disadvantage
when trying to compose refactorings, since if an exception occurs in the
middle of a sequence of refactorings, it can leave the project in a state
where the composite refactoring was only partially executed. It makes it
hard to discard the changes done without monitoring and consulting the
undo manager, an approach that is not bullet proof.

Broken Undo History

When designing a composed refactoring that is to be performed as a sequence
of refactorings, you would like it to appear as a single change to the
workspace. This implies that you would also like to be able to undo all
the changes done by the refactoring in a single step. This is not the way it
appears when a sequence of JDT refactorings is executed. It leaves the undo
history filled up with individual undo actions corresponding to every single
JDT refactoring in the sequence. This problem is not trivial to handle in
Eclipse (see section 4.2.6 on page 63).

55

56

Chapter 4

Composite Refactorings in
Eclipse

4.1 A Simple Ad Hoc Model
As pointed out in chapter 3 on page 53, the Eclipse JDT refactoring model
is not very well suited for making composite refactorings. Therefore a
simple model using changer objects (of type RefaktorChanger) is used as
an abstraction layer on top of the existing Eclipse refactorings, instead of
extending the Refactoring1 class.

The use of an additional abstraction layer is a deliberate choice. It is
due to the problem of creating a composite Change2 that can handle text
changes that interfere with each other. Thus, a RefaktorChanger may, or
may not, take advantage of one or more existing refactorings, but it is always
intended to make a change to the workspace.

4.1.1 A typical RefaktorChanger

The typical refaktor changer class has two responsibilities, checking
preconditions and executing the requested changes. This is not too different
from the responsibilities of an LTK refactoring, with the distinction that a
refaktor changer also executes the change, while an LTK refactoring is only
responsible for creating the object that can later be used to do the job.

Checking of preconditions is typically done by an Analyzer3. If the
preconditions validate, the upcoming changes are executed by an Executor4.

4.2 The Extract and Move Method Refactoring

4.2.1 The Building Blocks

This is a composite refactoring, and hence is built up using several primitive
refactorings. These basic building blocks are, as its name implies, the Extract

1org.eclipse.ltk.core.refactoring.Refactoring
2org.eclipse.ltk.core.refactoring.Change
3no.uio.ifi.refaktor.analyze.analyzers.Analyzer
4no.uio.ifi.refaktor.change.executors.Executor

57

Method refactoring [Fow99] and the Move Method refactoring [Fow99]. In
Eclipse, the implementations of these refactorings are found in the classes
ExtractMethodRefactoring1 and MoveInstanceMethodProcessor2, where
the last class is designed to be used together with the processor-based
MoveRefactoring3.

The ExtractMethodRefactoring Class

This class is quite simple in its use. The only parameters it requires for
construction is a compilation unit4, the offset into the source code where
the extraction shall start, and the length of the source to be extracted.
Then you have to set the method name for the new method together with
its visibility and some not so interesting parameters.

The MoveInstanceMethodProcessor Class

For the Move Method, the processor requires a little more advanced input
than the class for the Extract Method. For construction it requires a method
handle5 for the method that is to be moved. Then the target for the
move have to be supplied as the variable binding from a chosen variable
declaration. In addition to this, one have to set some parameters regarding
setters/getters, as well as delegation.

To make a working refactoring from the processor, one have to create a
MoveRefactoring with it.

4.2.2 The ExtractAndMoveMethodChanger

The ExtractAndMoveMethodChanger6 class is a subclass of the class
RefaktorChanger7. It is responsible for analyzing and finding the best
target for, and also executing, a composition of the Extract Method and
Move Method refactorings. This particular changer is the one of my changers
that is closest to being a true LTK refactoring. It can be reworked to be
one if the problems with overlapping changes are resolved. The changer
requires a text selection and the name of the new method, or else a
method name will be generated. The selection has to be of the type
CompilationUnitTextSelection8. This class is a custom extension to
TextSelection9, that in addition to the basic offset, length and similar
methods, also carry an instance of the underlying compilation unit handle
for the selection.

1org.eclipse.jdt.internal.corext.refactoring.code.ExtractMethodRefactoring
2org.eclipse.jdt.internal.corext.refactoring.structure.MoveInstanceMethodProcessor
3org.eclipse.ltk.core.refactoring.participants.MoveRefactoring
4org.eclipse.jdt.core.ICompilationUnit
5org.eclipse.jdt.core.IMethod
6no.uio.ifi.refaktor.changers.ExtractAndMoveMethodChanger
7no.uio.ifi.refaktor.changers.RefaktorChanger
8no.uio.ifi.refaktor.utils.CompilationUnitTextSelection
9org.eclipse.jface.text.TextSelection

58

The ExtractAndMoveMethodAnalyzer

The analysis and precondition checking is done by the ExtractAnd-
MoveMethodAnalyzer1. First is check whether the selection is a valid
selection or not, with respect to statement boundaries and that it actually
contains any selections. Then it checks the legality of both extracting the
selection and also moving it to another class. This checking of is performed
by a range of checkers (see section 5.5 on page 72). If the selection is
approved as legal, it is analyzed to find the presumably best target to move
the extracted method to.

For finding the best suitable target the analyzer is using a
PrefixesCollector2 that collects all the possible candidate targets for the
refactoring. All the non-candidates is found by an UnfixesCollector3 that
collects all the targets that will give some kind of error if used. (For details
about the property collectors, see section 5.4 on page 71.) All prefixes (and
unfixes) are represented by a Prefix4, and they are collected into sets of
prefixes. The safe prefixes is found by subtracting from the set of candidate
prefixes the prefixes that is enclosing any of the unfixes. A prefix is enclosing
an unfix if the unfix is in the set of its sub-prefixes. As an example, “a.b”
is enclosing “a”, as is “a”. The safe prefixes is unified in a PrefixSet. If a
prefix has only one occurrence, and is a simple expression, it is considered
unsuitable as a move target. This occurs in statements such as “a.foo()”.
For such statements it bares no meaning to extract and move them. It only
generates an extra method and the calling of it.

The most suitable target for the refactoring is found by finding the prefix
with the most occurrences. If two prefixes have the same occurrence count,
but they differ in the number of segments, the one with most segments is
chosen.

The ExtractAndMoveMethodExecutor

If the analysis finds a possible target for the composite refactoring, it
is executed by an ExtractAndMoveMethodExecutor5. It is composed of
the two executors known as ExtractMethodRefactoringExecutor6 and
MoveMethodRefactoringExecutor7. The ExtractAndMoveMethodExecutor
is responsible for gluing the two together by feeding the MoveMethod-
RefactoringExecutor with the resources needed after executing the extract
method refactoring.

1no.uio.ifi.refaktor.analyze.analyzers.ExtractAndMoveMethodAnalyzer
2no.uio.ifi.refaktor.analyze.collectors.PrefixesCollector
3no.uio.ifi.refaktor.analyze.collectors.UnfixesCollector
4no.uio.ifi.refaktor.extractors.Prefix
5no.uio.ifi.refaktor.change.executors.ExtractAndMoveMethodExecutor
6no.uio.ifi.refaktor.change.executors.ExtractMethodRefactoringExecutor
7no.uio.ifi.refaktor.change.executors.MoveMethodRefactoringExecutor

59

The ExtractMethodRefactoringExecutor

This executor is responsible for creating and executing an instance of the
ExtractMethodRefactoring class. It is also responsible for collecting some
post execution resources that can be used to find the method handle for the
extracted method, as well as information about its parameters, including
the variable they originated from.

The MoveMethodRefactoringExecutor

This executor is responsible for creating and executing an instance
of the MoveRefactoring. The move refactoring is a processor-
based refactoring, and for the Move Method refactoring it is the
MoveInstanceMethodProcessor that is used.

The handle for the method to be moved is found on the basis of the
information gathered after the execution of the Extract Method refactoring.
The only information the ExtractMethodRefactoring is sharing after its
execution, regarding find the method handle, is the textual representation
of the new method signature. Therefore it must be parsed, the strings for
types of the parameters must be found and translated to a form that can
be used to look up the method handle from its type handle. They have to
be on the unresolved form.The name for the type is found from the originalElaborate?Elaborate?
selection, since an extracted method must end up in the same type as the
originating method.

When analyzing a selection prior to performing the Extract Method
refactoring, a target is chosen. It has to be a variable binding, so it is
either a field or a local variable/parameter. If the target is a field, it can be
used with the MoveInstanceMethodProcessor as it is, since the extracted
method still is in its scope. But if the target is local to the originating
method, the target that is to be used for the processor must be among its
parameters. Thus the target must be found among the extracted method’s
parameters. This is done by finding the parameter information object that
corresponds to the parameter that was declared on basis of the original
target’s variable when the method was extracted. (The extracted method
must take one such parameter for each local variable that is declared outside
the selection that is extracted.) To match the original target with the correct
parameter information object, the key for the information object is compared
to the key from the original target’s binding. The source code must then be
parsed to find the method declaration for the extracted method. The new
target must be found by searching through the parameters of the declaration
and choose the one that has the same type as the old binding from the
parameter information object, as well as the same name that is provided by
the parameter information object.

60

4.2.3 The SearchBasedExtractAndMoveMethodChanger

The SearchBasedExtractAndMoveMethodChanger1 is a changer whose
purpose is to automatically analyze a method, and execute the Extract and
Move Method refactoring on it if it is a suitable candidate for the refactoring.

First, the SearchBasedExtractAndMoveMethodAnalyzer2 is used to
analyze the method. If the method is found to be a candidate, the result
from the analysis is fed to the ExtractAndMoveMethodExecutor, whose job
is to execute the refactoring (see section 4.2.2 on page 59).

The SearchBasedExtractAndMoveMethodAnalyzer

This analyzer is responsible for analyzing all the possible text selections of
a method and then choose the best result out of the analysis results that is,
by the analyzer, considered to be the potential candidates for the Extract
and Move Method refactoring.

Before the analyzer is able to work with the text selections of a method,
it needs to generate them. To do this, it parses the method to obtain a
MethodDeclaration for it (see section 5.2.1 on page 67). Then there is a
statement lists creator that creates statements lists of the different groups
of statements in the body of the method declaration. A text selections
generator generates text selections of all the statement lists for the analyzer
to work with.

The statement lists creator is responsible for generating lists of
statements for all the possible nesting levels of statements in the method.
The statement lists creator is implemented as an AST visitor (see section 5.3
on page 69). It generates lists of statements by visiting all the blocks in the
method declaration and stores their statements in a collection of statement
lists. In addition, it visits all of the other statements that can have a
statement as a child, such as the different control structures and the labeled
statement.

The switch statement is the only kind of statement that is not straight
forward to obtain the child statements from. It stores all of its children in
a flat list. Its switch case statements are included in this list. This means
that there are potential statement lists between all of these case statements.
The list of statements from a switch statement is therefore traversed, and
the statements between the case statements are grouped as separate lists.

The highlighted part of listing 8 on page 39 shows an example of how
the statement lists creator would separate a method body into lists of
statements.

The text selections generator generates text selections for each list
of statements from the statement lists creator. The generator generates a
text selection for every sub-sequence of statements in a list. For a sequence

1no.uio.ifi.refaktor.change.changers.SearchBasedExtractAndMoveMethodChanger
2no.uio.ifi.refaktor.analyze.analyzers.SearchBasedExtractAndMoveMethodAnalyzer

61

of statements, the first statement and the last statement span out a text
selection.

In practice, the text selections are calculated by only one traversal of
the statement list. There is a set of generated text selections. For each
statement, there is created a temporary set of selections, in addition to a text
selection based on the offset and length of the statement. This text selection
is added to the temporary set. Then the new selection is added with every
selection from the set of generated text selections. These new selections
are added to the temporary set. Then the temporary set of selections is
added to the set of generated text selections. The result of adding two text
selections is a new text selection spanned out by the two addends.

Finding the candidate for the refactoring is done by analyzing all
the generated text selection with the ExtractAndMoveMethodAnalyzer
(see section 4.2.2 on page 59). If the analyzer generates a useful
result, an ExtractAndMoveMethodCandidate is created from it, that is
kept in a list of potential candidates. If no candidates are found, the
NoTargetFoundException is thrown.

Since only one of the candidates can be chosen, the analyzer must sort
out which candidate to choose. The sorting is done by the static sort
method of Collections. The comparison in this sorting is done by an
ExtractAndMoveMethodCandidateComparator.
Write about the ExtractAndMoveMethodCandidateComparator/Fa-
vorNoUnfixesCandidateComparator

4.2.4 The Prefix Class

This class exists mainly for holding data about a prefix, such as the
expression that the prefix represents and the occurrence count of the prefix
within a selection. In addition to this, it has some functionality such as
calculating its sub-prefixes and intersecting it with another prefix. The
definition of the intersection between two prefixes is a prefix representing
the longest common expression between the two.

4.2.5 The PrefixSet Class

A prefix set holds elements of type Prefix. It is implemented with the help
of a HashMap1 and contains some typical set operations, but it does not
implement the Set2 interface, since the prefix set does not need all of the
functionality a Set requires to be implemented. In addition It needs some
other functionality not found in the Set interface. So due to the relatively
limited use of prefix sets, and that it almost always needs to be referenced as
such, and not a Set<Prefix>, it remains as an ad hoc solution to a concrete
problem.

1java.util.HashMap
2java.util.Set

62

There are two ways adding prefixes to a PrefixSet. The first is through
its add method. This works like one would expect from a set. It adds the
prefix to the set if it does not already contain the prefix. The other way is
to register the prefix with the set. When registering a prefix, if the set does
not contain the prefix, it is just added. If the set contains the prefix, its
count gets incremented. This is how the occurrence count is handled.

The prefix set also computes the set of prefixes that is not enclosing any
prefixes of another set. This is kind of a set difference operation only for
enclosing prefixes.

4.2.6 Hacking the Refactoring Undo History

Where to put this section?

As an attempt to make multiple subsequent changes to the workspace
appear as a single action (i.e. make the undo changes appear as such), I
tried to alter the undo changes1 in the history of the refactorings.

My first impulse was to remove the, in this case, last two undo changes
from the undo manager2 for the Eclipse refactorings, and then add them to a
composite change3 that could be added back to the manager. The interface
of the undo manager does not offer a way to remove/pop the last added
undo change, so a possible solution could be to decorate [Gam+95] the undo
manager, to intercept and collect the undo changes before delegating to the
addUndo method4 of the manager. Instead of giving it the intended undo
change, a null change could be given to prevent it from making any changes
if run. Then one could let the collected undo changes form a composite
change to be added to the manager.

There is a technical challenge with this approach, and it relates to the
undo manager, and the concrete implementation UndoManager25. This
implementation is designed in a way that it is not possible to just add
an undo change, you have to do it in the context of an active operation6.
One could imagine that it might be possible to trick the undo manager into
believing that you are doing a real change, by executing a refactoring that
is returning a kind of null change that is returning our composite change of
undo refactorings when it is performed. But this is not the way to go.

Apart from the technical problems with this solution, there is a
functional problem: If it all had worked out as planned, this would leave
the undo history in a dirty state, with multiple empty undo operations
corresponding to each of the sequentially executed refactoring operations,
followed by a composite undo change corresponding to an empty change of
the workspace for rounding of our composite refactoring. The solution to this
particular problem could be to intercept the registration of the intermediate
changes in the undo manager, and only register the last empty change.

1org.eclipse.ltk.core.refactoring.Change
2org.eclipse.ltk.core.refactoring.IUndoManager
3org.eclipse.ltk.core.refactoring.CompositeChange
4org.eclipse.ltk.core.refactoring.IUndoManager#addUndo()
5org.eclipse.ltk.internal.core.refactoring.UndoManager2
6org.eclipse.core.commands.operations.TriggeredOperations

63

Unfortunately, not everything works as desired with this solution. The
grouping of the undo changes into the composite change does not make the
undo operation appear as an atomic operation. The undo operation is still
split up into separate undo actions, corresponding to the change done by
its originating refactoring. And in addition, the undo actions has to be
performed separate in all the editors involved. This makes it no solution at
all, but a step toward something worse.

There might be a solution to this problem, but it remains to be found.
The design of the refactoring undo management is partly to be blamed for
this, as it it is to complex to be easily manipulated.

64

Chapter 5

Analyzing Source Code in
Eclipse

5.1 The Java model

The Java model of Eclipse is its internal representation of a Java project.
It is light-weight, and has only limited possibilities for manipulating source
code. It is typically used as a basis for the Package Explorer in Eclipse.

The elements of the Java model is only handles to the underlying
elements. This means that the underlying element of a handle does not
need to actually exist. Hence the user of a handle must always check that
it exist by calling the exists method of the handle.

The handles with descriptions is listed in table 5.1 on the following page,
while the hierarchy of the Java Model is shown in fig. 5.1 on page 67.

5.2 The Abstract Syntax Tree

Eclipse is following the common paradigm of using an abstract syntax tree
for source code analysis and manipulation.

When parsing program source code into something that can be used as a
foundation for analysis, the start of the process follows the same steps as in
a compiler. This is all natural, because the way a compiler analyzes code is
no different from how source manipulation programs would do it, except for
some properties of code that is analyzed in the parser, and that they may
be differing in what kinds of properties they analyze. Thus the process of
translation source code into a structure that is suitable for analyzing, can be
seen as a kind of interrupted compilation process (see fig. 5.2 on page 68).

The process starts with a scanner, or lexer. The job of the scanner is
to read the source code and divide it into tokens for the parser. Therefore,
it is also sometimes called a tokenizer. A token is a logical unit, defined in
the language specification, consisting of one or more consecutive characters.
In the Java language the tokens can for instance be the this keyword, a
curly bracket { or a nameToken. It is recognized by the scanner on the basis
of something equivalent of a regular expression. This part of the process is
often implemented with the use of a finite automata. In fact, it is common

65

Table 5.1: The elements of the Java Model [Vog12].

Project
Element

Java Model element Description

Java project IJavaProject The Java project which
contains all other objects.

Source folder /
binary folder /
external library

IPackageFragmentRoot Hold source or binary files,
can be a folder or a library
(zip / jar file).

Each package IPackageFragment Each package is below the
IPackageFragmentRoot,
sub-packages are not leaves
of the package, they are
listed directed under
IPackageFragmentRoot.

Java Source file ICompilationUnit The Source file is always
below the package node.

Types / Fields /
Methods

IType / IField /
IMethod

Types, fields and methods.

to specify the tokens in regular expressions, that in turn is translated into
a finite automata lexer. This process can be automated.

The program component used to translate a stream of tokens into
something meaningful, is called a parser. A parser is fed tokens from the
scanner and performs an analysis of the structure of a program. It verifies
that the syntax is correct according to the grammar rules of a language,
that is usually specified in a context-free grammar, and often in a variant of
the Backus–Naur Form1. The result coming from the parser is in the form
of an Abstract Syntax Tree, AST for short. It is called abstract, because
the structure does not contain all of the tokens produced by the scanner.
It only contain logical constructs, and because it forms a tree, all kinds of
parentheses and brackets are implicit in the structure. It is this AST that
is used when performing the semantic analysis of the code.

As an example we can think of the expression (5 + 7) * 2. The root
of this tree would in Eclipse be an InfixExpression with the operator
TIMES, and a left operand that is also an InfixExpression with the operator
PLUS. The left operand InfixExpression, has in turn a left operand of type
NumberLiteral with the value “5” and a right operand NumberLiteral with
the value “7”. The root will have a right operand of type NumberLiteral
and value “2”. The AST for this expression is illustrated in fig. 5.3 on
page 68.

Contrary to the Java Model, an abstract syntax tree is a heavy-weight
1https://en.wikipedia.org/wiki/Backus-Naur_Form

66

https://en.wikipedia.org/wiki/Backus-Naur_Form

IJavaProject

IPackageFragmentRoot

IPackageFragment

ICompilationUnit

IType

{ IType }*

...

{ IField }*

IMethod

{ IType }*

...

{ IMethod }*

{ IType }*

{ ICompilationUnit }*

{ IPackageFragment }*

{ IPackageFragmentRoot }*

Figure 5.1: The Java model of Eclipse. “{ SomeElement }*” means
“SomeElement zero or more times“. For recursive structures, “...” is used.

representation of source code. It contains information about properties like
type bindings for variables and variable bindings for names.

5.2.1 The AST in Eclipse

In Eclipse, every node in the AST is a child of the abstract superclass
ASTNode1. Every ASTNode, among a lot of other things, provides information
about its position and length in the source code, as well as a reference to its
parent and to the root of the tree.

The root of the AST is always of type CompilationUnit. It
is not the same as an instance of an ICompilationUnit, which is
the compilation unit handle of the Java model. The children of a
CompilationUnit is an optional PackageDeclaration, zero or more nodes
of type ImportDecaration and all its top-level type declarations that has
node types AbstractTypeDeclaration.

An AbstractTypeDeclaration can be one of the types AnnotationType-
Declaration, EnumDeclaration or TypeDeclaration. The children of
an AbstractTypeDeclaration must be a subtype of a BodyDeclaration.

1org.eclipse.jdt.core.dom.ASTNode

67

source code Scanner Parser

Semantic
Analyzer

Source Code
Optimizer

Code
Generator

Target Code
Optimizer

tokens

syntax tree

annotated
tree

intermediate code

target code target code

Figure 5.2: Interrupted compilation process. (Full compilation process borrowed
from Compiler construction: principles and practice by Kenneth C. Louden [Lou97].)

InfixExpression

NumberLiteral

“2”

Operator

TIMES

InfixExpression

NumberLiteral

“7”

Operator

PLUS

NumberLiteral

“5”

Figure 5.3: The abstract syntax tree for the expression (5 + 7) * 2.

These subtypes are: AnnotationTypeMemberDeclaration, EnumConstant-
Declaration, FieldDeclaration, Initializer and MethodDeclaration.

Of the body declarations, the MethodDeclaration is the most interesting
one. Its children include lists of modifiers, type parameters, parameters and
exceptions. It has a return type node and a body node. The body, if present,
is of type Block. A Block is itself a Statement, and its children is a list of
Statement nodes.

There are too many types of the abstract type Statement to list up, but
there exists a subtype of Statement for every statement type of Java, as one
would expect. This also applies to the abstract type Expression. However,
the expression Name is a little special, since it is both used as an operand in
compound expressions, as well as for names in type declarations and such.

There is an overview of some of the structure of an Eclipse AST in fig. 5.4
on the facing page.
Add more to the AST format tree? fig. 5.4 on the next page

68

CompilationUnit

{ AbstractTypeDeclaration }+

SimpleName{ BodyDeclaration }*

{ ImportDeclaration }*

Name

[PackageDeclaration]

{ Annotation }*Name

MethodDeclaration

{ IExtendedModifier }*
(Of type Modifier or Annotation)

{ TypeParameter }*

{ SingleVariableDeclaration }*
(Parameters)

{ Name }*
(Exceptions)

Type
(Return type)

[Block]
(Body)

{ Statement }*

{ Statement }*

...

{ Expression }*

Figure 5.4: The format of the abstract syntax tree in Eclipse.

5.3 The ASTVisitor

So far, the only thing that has been addressed is how the data that is going
to be the basis for our analysis is structured. Another aspect of it is how
we are going to traverse the AST to gather the information we need, so we
can conclude about the properties we are analysing. It is of course possible
to start at the top of the tree, and manually search through its nodes for
the ones we are looking for, but that is a bit inconvenient. To be able
to efficiently utilize such an approach, we would need to make our own
framework for traversing the tree and visiting only the types of nodes we
are after. Luckily, this functionality is already provided in Eclipse, by its
ASTVisitor1.

The Eclipse AST, together with its ASTVisitor, follows the Visitor
pattern [Gam+95]. The intent of this design pattern is to facilitate extending

1org.eclipse.jdt.core.dom.ASTVisitor

69

the functionality of classes without touching the classes themselves.
Let us say that there is a class hierarchy of elements. These elements

all have a method accept(Visitor visitor). In its simplest form, the
accept method just calls the visit method of the visitor with itself
as an argument, like this: visitor.visit(this). For the visitors to
be able to extend the functionality of all the classes in the elements
hierarchy, each Visitor must have one visit method for each concrete
class in the hierarchy. Say the hierarchy consists of the concrete classes
ConcreteElementA and ConcreteElementB. Then each visitor must have
the (possibly empty) methods visit(ConcreteElementA element) and
visit(ConcreteElementB element). This scenario is depicted in fig. 5.5
on this page.

Element
+accept(visitor: Visitor)

ConcreteElementA
+accept(visitor: Visitor)

ConcreteElementB
+accept(visitor: Visitor)

visitor.visit(this) visitor.visit(this)

Visitor
+visit(ConcreteElementA)
+visit(ConcreteElementB)

ConcreteVisitor1
+visit(ConcreteElementA)
+visit(ConcreteElementB)

ConcreteVisitor2
+visit(ConcreteElementA)
+visit(ConcreteElementB)

Figure 5.5: The Visitor Pattern.

The use of the visitor pattern can be appropriate when the hierarchy
of elements is mostly stable, but the family of operations over its elements
is constantly growing. This is clearly the case for the Eclipse AST, since
the hierarchy of type ASTNode is very stable, but the functionality of its
elements is extended every time someone needs to operate on the AST.
Another aspect of the Eclipse implementation is that it is a public API, and
the visitor pattern is an easy way to provide access to the nodes in the tree.

The version of the visitor pattern implemented for the AST nodes in
Eclipse also provides an elegant way to traverse the tree. It does so by
following the convention that every node in the tree first let the visitor visit
itself, before it also makes all its children accept the visitor. The children are
only visited if the visit method of their parent returns true. This pattern

70

then makes for a prefix traversal of the AST. If postfix traversal is desired,
the visitors also has endVisit methods for each node type, that is called
after the visit method for a node. In addition to these visit methods,
there are also the methods preVisit(ASTNode), postVisit(ASTNode) and
preVisit2(ASTNode). The preVisit method is called before the type-
specific visit method. The postVisit method is called after the type-
specific endVisit. The type specific visit is only called if preVisit2
returns true. Overriding the preVisit2 is also altering the behavior of
preVisit, since the default implementation is responsible for calling it.

An example of a trivial ASTVisitor is shown in listing 12 on the current
page.

public class CollectNamesVisitor extends ASTVisitor {
Collection<Name> names = new LinkedList<Name>();

@Override
public boolean visit(QualifiedName node) {

names.add(node);
return false;

}

@Override
public boolean visit(SimpleName node) {

names.add(node);
return true;

}
}

Listing 12: An ASTVisitor that visits all the names in a subtree and
adds them to a collection, except those names that are children of any
QualifiedName.

5.4 Property collectors

The prefixes and unfixes are found by property collectors1. A property
collector is of the ASTVisitor type, and thus visits nodes of type ASTNode
of the abstract syntax tree (see section 5.3 on page 69).

5.4.1 The PrefixesCollector

The PrefixesCollector2 finds prefixes that makes up the basis for
calculating move targets for the Extract and Move Method refactoring. It
visits expression statements3 and creates prefixes from its expressions in the

1no.uio.ifi.refaktor.extractors.collectors.PropertyCollector
2no.uio.ifi.refaktor.extractors.collectors.PrefixesCollector
3org.eclipse.jdt.core.dom.ExpressionStatement

71

case of method invocations. The prefixes found is registered with a prefix
set, together with all its sub-prefixes.

5.4.2 The UnfixesCollector

The UnfixesCollector1 finds unfixes within a selection.
Give more technical detail?

5.4.3 The ContainsReturnStatementCollector
Remove section?
The ContainsReturnStatementCollector2 is a very simple property

collector. It only visits the return statements within a selection, and can
report whether it encountered a return statement or not.

5.4.4 The LastStatementCollector

The LastStatementCollector3 collects the last statement of a selection.
It does so by only visiting the top level statements of the selection, and
compares the textual end offset of each encountered statement with the end
offset of the previous statement found.

5.5 Checkers

The checkers are a range of classes that checks that text selections complies
with certain criteria. All checkers operates under the assumption that
the code they check is free from compilation errors. If a Checker4

fails, it throws a CheckerException. The checkers are managed by the
LegalStatementsChecker, which does not, in fact, implement the Checker
interface. It does, however, run all the checkers registered with it, and
reports that all statements are considered legal if no CheckerException is
thrown. Many of the checkers either extends the PropertyCollector or
utilizes one or more property collectors to verify some criteria. The checkers
registered with the LegalStatementsChecker are described next. They are
run in the order presented below.

5.5.1 The CallToProtectedOrPackagePrivateMethodChecker

This checker is used to check that at selection does not contain a call to a
method that is protected or package-private. Such a method either has the
access modifier protected or it has no access modifier.

The workings of the CallToProtectedOrPackagePrivateMethod-
Checker is very simple. It looks for calls to methods that are ei-

1no.uio.ifi.refaktor.extractors.collectors.UnfixesCollector
2no.uio.ifi.refaktor.analyze.collectors.ContainsReturnStatementCollector
3no.uio.ifi.refaktor.analyze.collectors.LastStatementCollector
4no.uio.ifi.refaktor.analyze.analyzers.Checker

72

ther protected or package-private within the selection, and throws an
IllegalExpressionFoundException if one is found.

5.5.2 The DoubleClassInstanceCreationChecker

The DoubleClassInstanceCreationChecker checks that there are no
double class instance creations where the inner constructor call take and
argument that is built up using field references.

The checker visits all nodes of type ClassInstanceCreation within a
selection. For all of these nodes, if its parent also is a class instance creation,
it accepts a visitor that throws a IllegalExpressionFoundException if it
encounters a name that is a field reference.

5.5.3 The InstantiationOfNonStaticInnerClassChecker

The InstantiationOfNonStaticInnerClassChecker checks that selec-
tions does not contain instantiations of non-static inner classes. The
MoveInstanceMethodProcessor in Eclipse does not handle such instanti-
ations gracefully when moving a method. This problem is also related to
bug. . .
File Eclipse bug report

5.5.4 The EnclosingInstanceReferenceChecker

The purpose of this checker is to verify that the names in a text selection
are not referencing any enclosing instances. In theory, the underlying
problem could be solved in some situations, but our dependency on the
MoveInstanceMethodProcessor prevents this.

The EnclosingInstanceReferenceChecker1 is a modified version of the
EnclosingInstanceReferenceFinder2 from the MoveInstanceMethodProcessor.
Wherever the EnclosingInstanceReferenceFinder would create a fatal er-
ror status, the checker will throw a CheckerException.

The checker works by first finding all of the enclosing types of a selection.
Thereafter, it visits all the simple names of the selection to check that they
are not references to variables or methods declared in any of the enclosing
types. In addition, the checker visits this-expressions to verify that no such
expressions are qualified with any name.

5.5.5 The ReturnStatementsChecker

The checker for return statements is meant to verify that a text selection is
consistent regarding return statements.

If the selection is free from return statements, then the checker validates.
So this is the first thing the checker investigates.

1no.uio.ifi.refaktor.analyze.analyzers.EnclosingInstanceReferenceChecker
2org.eclipse.jdt.internal.corext.refactoring.structure.MoveInstanceMethod-

Processor.EnclosingInstanceReferenceFinder

73

If the checker proceeds any further, it is because the selection contains
one or more return statements. The next test is therefore to check if
the last statement of the selection ends in either a return or a throw
statement. The responsibility for checking that the last statement of
the selection eventually ends in a return or throw statement, is put on
the LastStatementOfSelectionEndsInReturnOrThrowChecker. For every
node visited, if the node is a statement, it does a test to see if the statement
is a return, a throw or if it is an implicit return statement. If this is the
case, no further checking is done. This checking is done in the preVisit2
method (see section 5.3 on page 69). If the node is not of a type that is being
handled by its type-specific visit method, the checker performs a simple test.
If the node being visited is not the last statement of its parent that is also
enclosed by the selection, an IllegalStatementFoundException is thrown.
This ensures that all statements are taken care of, one way or the other. It
also ensures that the checker is conservative in the way it checks for legality
of the selection.

To examine if a statement is an implicit return statement, the checker
first finds the last statement declared in its enclosing method. If this
statement is the same as the one under investigation, it is considered an
implicit return statement. If the statements are not the same, the checker
does a search to see if the statement examined is also the last statement
of the method that can be reached. This includes the last statement of
a block statement, a labeled statement, a synchronized statement or a try
statement, that in turn is the last statement enclosed by one of the statement
types listed. This search goes through all the parents of a statement until
a statement is found that is not one of the mentioned acceptable parent
statements. If the search ends in a method declaration, then the statement
is considered to be the last reachable statement of the method, and thus it
is an implicit return statement.

There are two kinds of statements that are handled explicitly: If-
statements and try-statements. Block, labeled and do-statements are
handled by fall-through to the other two.

If-statements are handled explicitly by overriding their type-specific visit
method. If the then-part does not contain any return or throw statements an
IllegalStatementFoundException is thrown. If it does contain a return
or throw, its else-part is checked. If the else-part is non-existent, or it does
not contain any return or throw statements an exception is thrown. If no
exception is thrown while visiting the if-statement, its children are visited.

A try-statement is checked very similar to an if-statement. Its body must
contain a return or throw. The same applies to its catch clauses and finally
body. Failure to validate produces an IllegalStatementFoundException.

If the checker does not complain at any point, the selection is considered
valid with respect to return statements.

5.5.6 The AmbiguousReturnValueChecker

This checker verifies that there are no ambiguous return values in a selection.
First, the checker needs to collect some data. Those data are the binding

74

keys for all simple names that are assigned to within the selection, including
variable declarations, but excluding fields. The checker also collects whether
there exists a return statement in the selection or not. No further checks of
return statements are needed, since, at this point, the selection is already
checked for illegal return statements (see section 5.5.5 on page 73).

After the binding keys of the assignees are collected, the checker searches
the part of the enclosing method that is after the selection for references
whose binding keys are among the collected keys. If more than one unique
referral is found, or only one referral is found, but the selection also contains
a return statement, we have a situation with an ambiguous return value, and
an exception is thrown.

5.5.7 The IllegalStatementsChecker

This checker is designed to check for illegal statements.
Notice that labels in break and continue statements needs some special

treatment. Since a label does not have any binding information, we have to
search upwards in the AST to find the LabeledStatement that corresponds
to the label from the break or continue statement, and check that it is
contained in the selection. If the break or continue statement does not have
a label attached to it, it is checked that its innermost enclosing loop or
switch statement (break statements only) also is contained in the selection.
Follow the development in the semantics section. . .

75

76

Chapter 6

Technicalities

6.1 Source code organization

All the parts of this master’s project is under version control with Git1.
The software written is organized as some Eclipse plugins. Writing a

plugin is the natural way to utilize the API of Eclipse. This also makes it
possible to provide a user interface to manually run operations on selections
in program source code or whole projects/packages.

When writing a plugin in Eclipse, one has access to resources such as
the current workspace, the open editor and the current selection.

The thesis work is contained in the following Eclipse projects:

no.uio.ifi.refaktor
This is the main Eclipse plugin project, and contains all of the business
logic for the plugin.

no.uio.ifi.refaktor.tests
This project contains the tests for the main plugin.

no.uio.ifi.refaktor.examples
Contains example code used in testing. It also contains code for
managing this example code, such as creating an Eclipse project from
it before a test run.

no.uio.ifi.refaktor.benchmark
This project contains code for running search based versions of the
composite refactoring over selected Eclipse projects.

no.uio.ifi.refaktor.releng
Contains the rmap, queries and target definitions needed by by
Buckminster on the Jenkins continuous integration server.

1http://git-scm.com/

77

http://git-scm.com/

6.1.1 The no.uio.ifi.refaktor project

no.uio.ifi.refaktor.analyze

This package, and its sub-packages, contains code that is used for analyzing
Java source code. The most important sub-packages are presented below.

no.uio.ifi.refaktor.analyze.analyzers
This package contains source code analyzers. These are usually
responsible for analyzing text selections or running specialized
analyzers for different kinds of entities. Their structure are often
hierarchical. This means that you have an analyzer for text selections,
that in turn is utilized by an analyzer that analyzes all the selections
of a method. Then there are analyzers for analyzing all the methods
of a type, all the types of a compilation unit, all the compilation units
of a package, and, at last, all of the packages in a project.

no.uio.ifi.refaktor.analyze.checkers
A package containing checkers. The checkers are classes used to
validate that a selection can be further analyzed and chosen as a
candidate for a refactoring. Invalidating properties can be such as
usage of inner classes or the need for multiple return values.

no.uio.ifi.refaktor.analyze.collectors
This package contains the property collectors. Collectors are used
to gather properties from a text selection. This is mostly properties
regarding referenced names and their occurrences. It is these
properties that makes up the basis for finding the best candidates
for a refactoring.

no.uio.ifi.refaktor.change

This package, and its sub-packages, contains functionality for manipulate
source code.

no.uio.ifi.refaktor.change.changers
This package contains source code changers. They are used to glue
together the analysis of source code and the actual execution of the
changes.

no.uio.ifi.refaktor.change.executors
The executors that are responsible for making concrete changes are
found in this package. They are mostly used to create and execute
one or more Eclipse refactorings.

no.uio.ifi.refaktor.change.processors
Contains a refactoring processor for theMove Method refactoring. The
code is stolen and modified to fix a bug. The related bug is described
in appendix A.2 on page 111.

78

no.uio.ifi.refaktor.handlers

This package contains handlers for the commands defined in the plugin
manifest.

no.uio.ifi.refaktor.prefix

This package contains the Prefix type that is the data representation of
the prefixes found by the PrefixesCollector. It also contains the prefix
set for storing and working with prefixes.

no.uio.ifi.refaktor.statistics

The package contains statistics functionality. Its heart is the statistics aspect
that is responsible for gathering statistics during the execution of the Extract
and Move Method refactoring.

no.uio.ifi.refaktor.statistics.reports
This package contains a simple framework for generating reports from
the statistics data generated by the aspect. Currently, the only
available report type is a simple text report.

no.uio.ifi.refaktor.textselection

This package contains the two custom text selections that are used
extensively throughout the project. One of them is just a subclass of the
other, to support the use of the memento pattern to optimize the memory
usage during benchmarking.

no.uio.ifi.refaktor.debugging

The package contains a debug utility class. I addition to this, the package
no.uio.ifi.refaktor.utils.aspects contains a couple of aspects used
for debugging purposes.

no.uio.ifi.refaktor.utils

Utility package that contains all the functionality that has to do with parsing
of source code. It also has utility classes for looking up handles to methods
and types et cetera.

no.uio.ifi.refaktor.utils.caching
This package contains the caching manager for compilation units,
along with classes for different caching strategies.

no.uio.ifi.refaktor.utils.nullobjects
Contains classes for creating different null objects. Most of the classes
is used to represent null objects of different handle types. These null
objects are returned from various utility classes instead of returning a
null value when other values are not available.

79

6.2 Continuous integration

The continuous integration server Jenkins1 has been set up for the project2.
It is used as a way to run tests and perform code coverage analysis.

To be able to build the Eclipse plugins and run tests for them with
Jenkins, the component assembly project Buckminster3 is used, through its
plugin for Jenkins. Buckminster provides for a way to specify the resources
needed for building a project and where and how to find them. Buckminster
also handles the setup of a target environment to run the tests in. All this
is needed because the code to build depends on an Eclipse installation with
various plugins.

6.2.1 Problems with AspectJ

The Buckminster build worked fine until introducing AspectJ into the
project. When building projects using AspectJ, there are some additional
steps that needs to be performed. First of all, the aspects themselves must
be compiled. Then the aspects needs to be woven with the classes they
affect. This demands a process that does multiple passes over the source
code.

When using AspectJ with Eclipse, the specialized compilation and the
weaving can be handled by the AspectJ Development Tools4. This works
all fine, but it complicates things when trying to build a project depending
on Eclipse plugins outside of Eclipse. There is supposed to be a way to
specify a compiler adapter for javac, together with the file extensions for
the file types it shall operate. The AspectJ compiler adapter is called
Ajc11CompilerAdapter5, and it works with files that has the extensions
*.java and *.aj. I tried to setup this in the build properties file for the
project containing the aspects, but to no avail. The project containing the
aspects does not seem to be built at all, and the projects that depends on
it complains that they cannot find certain classes.

I then managed to write an Ant6 build file that utilizes the AspectJ
compiler adapter, for the no.uio.ifi.refaktor plugin. The problem was
then that it could no longer take advantage of the environment set up by
Buckminster. The solution to this particular problem was of a “hacky”
nature. It involves exporting the plugin dependencies for the project to an
Ant build file, and copy the exported path into the existing build script.
But then the Ant script needs to know where the local Eclipse installation
is located. This is no problem when building on a local machine, but to
utilize the setup done by Buckminster is a problem still unsolved. To
get the classpath for the build setup correctly, and here comes the most
“hacky” part of the solution, the Ant script has a target for copying the

1http://jenkins-ci.org/
2A work mostly done by the supervisor.
3http://www.eclipse.org/buckminster/
4https://www.eclipse.org/ajdt/
5org.aspectj.tools.ant.taskdefs.Ajc11CompilerAdapter
6https://ant.apache.org/

80

http://jenkins-ci.org/
http://www.eclipse.org/buckminster/
https://www.eclipse.org/ajdt/
https://ant.apache.org/

classpath elements into a directory relative to the project directory and
checking it into Git. When no ECLIPSE_HOME property is set while running
Ant, the script uses the copied plugins instead of the ones provided by the
Eclipse installation when building the project. This obviously creates some
problems with maintaining the list of dependencies in the Ant file, as well as
remembering to copy the plugins every time the list of dependencies change.

The Ant script described above is run by Jenkins before the Buckminster
setup and build. When setup like this, the Buckminster build succeeds for
the projects not using AspectJ, and the tests are run as normal. This is all
good, but it feels a little scary, since the reason for Buckminster not working
with AspectJ is still unknown.

The problems with building with AspectJ on the Jenkins server lasted
for a while, before they were solved. This is reflected in the “Test Result
Trend” and “Code Coverage Trend” reported by Jenkins.

81

82

Chapter 7

Benchmarking

This part of the master’s project is located in the Eclipse project
no.uio.ifi.refaktor.benchmark. The purpose of it is to run the equiv-
alent of the SearchBasedExtractAndMoveMethodChanger (see section 4.2.3
on page 61) over a larger software project, both to test its robustness but
also its effect on different software metrics.

7.1 The benchmark setup

The benchmark itself is set up as a JUnit test case. This is a convenient
setup, and utilizes the JUnit Plugin Test Launcher. This provides us with
a fully functional Eclipse workbench. Most importantly, this gives us access
to the Java Model of Eclipse (see section 5.1 on page 65).

7.1.1 The ProjectImporter

The Java project that is going to be used as the data for the benchmark,
must be imported into the JUnit workspace. This is done by the
ProjectImporter1. The importer require the absolute path to the project
description file. It is named .project and is located at the root of the
project directory.

The project description is loaded to find the name of the project to be
imported. The project that shall be the destination for the import is created
in the workspace, on the base of the name from the description. Then
an import operation is created, based on both the source and destination
information. The import operation is run to perform the import.

I have found no simple API call to accomplish what the importer does,
which tells me that it may not be too many people performing this particular
action. The solution to the problem was found on Stack Overflow2. It
contains enough dirty details to be considered inconvenient to use, if not
wrapping it in a class like my ProjectImporter. One would probably have
to delve into the source code for the import wizard to find out how the
import operation works, if no one had already done it.

1no.uio.ifi.refaktor.benchmark.ProjectImporter
2https://stackoverflow.com/questions/12401297

83

https://stackoverflow.com/questions/12401297

7.2 Statistics

Statistics for the analysis and changes is captured by the StatisticsAspect1.
This an aspect written in AspectJ.

7.2.1 AspectJ

AspectJ2 is an extension to the Java language, and facilitates combining
aspect-oriented programming with the object-oriented programming in Java.

Aspect-oriented programming is a programming paradigm that is meant
to isolate so-called cross-cutting concerns into their own modules. These
cross-cutting concerns are functionalities that spans over multiple classes,
but may not belong naturally in any of them. It can be functionality that
does not concern the business logic of an application, and thus may be a
burden when entangled with parts of the source code it does not really
belong. Examples include logging, debugging, optimization and security.

Aspects are interacting with other modules by defining advices. The
concept of an advice is known from both aspect-oriented and functional
programming [14a]. It is a function that modifies another function when the
latter is run. An advice in AspectJ is somewhat similar to a method in Java.
It is meant to alter the behavior of other methods, and contains a body that
is executed when it is applied.

An advice can be applied at a defined pointcut. A pointcut picks out
one or more join points. A join point is a well-defined point in the execution
of a program. It can occur when calling a method defined for a particular
class, when calling all methods with the same name, accessing/assigning to
a particular field of a given class and so on. An advice can be declared to
run both before, after returning from a pointcut, when there is thrown an
exception in the pointcut or after the pointcut either returns or throws an
exception. In addition to picking out join points, a pointcut can also bind
variables from its context, so they can be accessed in the body of an advice.
An example of a pointcut and an advice is found in listing 13 on the facing
page.

7.2.2 The Statistics class

The statistics aspect stores statistical information in an object of type
Statistics. As of now, the aspect needs to be initialized at the point
in time where it is desired that it starts its data gathering. At any point
in time the statistics aspect can be queried for a snapshot of the current
statistics.

The Statistics class also include functionality for generating a report
of its gathered statistics. The report can be given either as a string or it can
be written to a file.

1no.uio.ifi.refaktor.aspects.StatisticsAspect
2http://eclipse.org/aspectj/

84

http://eclipse.org/aspectj/

pointcut methodAnalyze(
SearchBasedExtractAndMoveMethodAnalyzer analyzer) :

call(* SearchBasedExtractAndMoveMethodAnalyzer.analyze())
&& target(analyzer);

after(SearchBasedExtractAndMoveMethodAnalyzer analyzer) :
methodAnalyze(analyzer) {

statistics.methodCount++;
debugPrintMethodAnalysisProgress(analyzer.method);

}

Listing 13: An example of a pointcut named methodAnalyze, and an advice
defined to be applied after it has occurred.

7.2.3 Advices

The statistics aspect contains advices for gathering statistical data from
different parts of the benchmarking process. It captures statistics from both
the analysis part and the execution part of the composite Extract and Move
Method refactoring.

For the analysis part, there are advices to count the number of text
selections analyzed and the number of methods, types, compilation units
and packages analyzed. There are also advices that counts for how many of
the methods there is found a selection that is a candidate for the refactoring,
and for how many methods there is not.

There exists advices for counting both the successful and unsuccessful
executions of all the refactorings. Both for the Extract Method and Move
Method refactorings in isolation, as well as for the combination of them.

7.3 Optimizations

When looking for optimizations to make for the benchmarking process, I
used the VisualVM1 profiler for the Java Virtual Machine to both profile
the application and also to make memory dumps of its heap.

7.3.1 Caching

When profiling the benchmark process before making any optimizations, it
early became apparent that the parsing of source code was a place to direct
attention towards. This discovery was done when only analyzing source
code, before trying to do any manipulation of it. Caching of the parsed
ASTs seemed like the best way to save some time, as expected. With only a
simple cache of the most recently used AST, the analysis time was speeded
up by a factor of around 20. This number depends a little upon which type
of system the analysis is run.

1http://visualvm.java.net/

85

http://visualvm.java.net/

The caching is managed by a cache manager, that now, by default,
utilizes the not so well known feature of Java called a soft reference. Soft
references are best explained in the context of weak references. A weak
reference is a reference to an object instance that is only guaranteed to
persist as long as there is a strong reference or a soft reference referring
the same object. If no such reference is found, its referred object is garbage
collected. A strong reference is basically the same as a regular Java reference.
A soft reference has the same guarantees as a week reference when it comes
to its relation to strong references, but it is not necessarily garbage collected
whenever there exists no strong references to it. A soft reference may reside
in memory as long as the JVM has enough free memory in the heap. A
soft reference will therefore usually perform better than a weak reference
when used for simple caching and similar tasks. The way to use a soft/weak
reference is to as it for its referent. The return value then has to be tested to
check that it is not null. For the basic usage of soft references, see listing 14
on the current page. For a more thorough explanation of weak references in
general, see [Nic06].

// Strong reference
Object strongRef = new Object();

// Soft reference
SoftReference<Object> softRef =

new SoftReference<Object>(new Object());

// Using the soft reference
Object obj = softRef.get();
if (obj != null) {

// Use object here
}

Listing 14: Showing the basic usage of soft references. Weak references is
used the same way. (The references are part of the java.lang.ref package.)

The cache based on soft references has no limit for how many ASTs it
caches. It is generally not advisable to keep references to ASTs for prolonged
periods of time, since they are expensive structures to hold on to. For regular
plugin development, Eclipse recommends not creating more than one AST at
a time to limit memory consumption. Since the benchmarking has nothing
to do with user experience, and throughput is everything, these advices are
intentionally ignored. This means that during the benchmarking process,
the target Eclipse application may very well work close to its memory limit
for the heap space for long periods during the benchmark.

7.3.2 Candidates stored as mementos

When performing large scale analysis of source code for finding candidates
to the Extract and Move Method refactoring, memory is an issue. One

86

of the inputs to the refactoring is a variable binding. This variable binding
indirectly retains a whole AST. Since ASTs are large structures, this quickly
leads to an OutOfMemoryError if trying to analyze a large project without
optimizing how we store the candidates data. This means that the JVM
cannot allocate more memory for out benchmark, and it exists disgracefully.

A possible solution could be to just allow the JVM to allocate even more
memory, but this is not a dependable solution. The allocated memory could
easily supersede the physical memory of a machine, and that would make
the benchmark go really slow.

Thus, the candidates data must be stored in another format. Therefore,
we use the memento pattern to store the variable binding information. This
is done in a way that makes it possible to retrieve the variable binding at a
later point. The data that is stored to achieve this, is the key to the original
variable binding. In addition to the key, we know which method and text
selection the variable is referenced in, so that we can find it by parsing the
source code and search for it when it is needed.

7.4 Handling failures

write

87

88

Chapter 8

Case Studies

In this chapter I am going to present a few case studies. This is done to give
an impression of how the search-based Extract and Move Method refactoring
performs when giving it a larger project to take on. I will try to answer where
it lacks, in terms of completeness, as well as showing its effect on refactored
source code.

The first and primary case, is refactoring source code from the Eclipse
JDT UI project. The project is chosen because it is a real project, still
in development, with a large code base that is written by many different
people through several years. The code is installed in thousands of Eclipse
applications worldwide, and must be seen as a good representative for
professionally written Java source code. It is also the home for most of
the JDT refactoring code.

For the second case, the Extract and Move Method refactoring is fed
the no.uio.ifi.refaktor project. This is done as a variation of the
“dogfooding” methodology, where you use your own tools to do your job,
also referred to as “eating your own dog food” [Har06].

8.1 The tools

For conducting these experiments, three tools are used. Two of the “tools”
both uses Eclipse as their platform. The first is our own tool, written to
be able to run the Extract and Move Method refactoring as a batch process,
analyzing and refactoring many methods after each other. The second is
JUnit, that is used for running the projects own unit tests on the target
code both before and after it is refactored. The last tool that is used
is a code quality management tool, called SonarQube. It can be used to
perform different tasks for assuring code quality, but we are only going to
take advantage of one of its main features, namely Quality profiles.

A quality profile is used to define a set of coding rules that a project is
supposed to comply with. Failure to following these rules will be recorded
as so-called “issues”, marked as having one of several degrees of severities,
ranging from “info” to “blocker”, where the latter one is the most severe.
The measurements done for these case studies are therefore not presented
as fine-grained software metrics results, but rather as the number of issues

89

for each defined rule.
In addition to the coding rules defined through quality profiles,

SonarQube calculates the complexity of source code. The metric that is used
is cyclomatic complexity, developed by Thomas J. McCabe in 1976 [McC76].
In this metric, functions have an initial complexity of 1, and whenever
the control flow of a function splits, the complexity increases by one1.
SonarQube discriminates between functions and accessors. Accessors are
methods that are recognized as setters or getters. Accessors are not counted
in the complexity analysis.

8.2 The SonarQube quality profile

The quality profile that is used with SonarQube in these case studies has
got the name IFI Refaktor Case Study (version 6). The rules defined in the
profile are chosen because they are the available rules found in SonarQube
that measures complexity and coupling. Now follows a description of the
rules in the quality profile. The values that are set for these rules are listed
in table 8.1 on the facing page.

Avoid too complex class is a rule that measures cyclomatic complexity
for every statement in the body of a class, except for setters and getter.
The threshold value set is its default value of 200.

Classes should not be coupled to too many other classes is a rule
that measures how many other classes a class depends upon. It does
not count the dependencies of nested classes. It is meant to promote
the Single Responsibility Principle. The metric for the rule resembles
the CBO metric that is described in section 1.3.5 on page 31, but is
only considering outgoing dependencies. The max value for the rule
is chosen on the background of an empirical study by Raed Shatnawi,
that concludes that the number 9 is the most useful threshold for the
CBO metric [Sha10]. This study is also performed on Eclipse source
code, so this threshold value should be particularly well suited for the
Eclipse JDT UI case in this chapter.

Control flow statements . . . should not be nested too deeply is a
rule that is meant to counter “Spaghetti code”. It measures the nesting
level of if, for, while, switch and try statements. The nesting levels
start at 1. The max value set is its default value of 3.

Methods should not be too complex is a rule that measures cyclo-
matic complexity the same way as the “Avoid too complex class” rule.
The max value used is 10, which “seems like a reasonable, but not
magical, upper limit“ [McC76].

Methods should not have too many lines is a rule that simply mea-
sures the number of lines in methods. The threshold value of 20 is

1http://docs.codehaus.org/display/SONAR/Metric+definitions

90

http://docs.codehaus.org/display/SONAR/Metric+definitions

used for this metric. This is based on my own subjective opinions, as
the default value of 100 seems a bit too loose.

NPath Complexity is a rule that measures the number of possible
execution paths through a function. The value used is the default
value of 200, that seems like a recognized threshold for this metric.

Too many methods is a rule that measures the number of methods in a
class. The threshold value used is the default value of 10.

Table 8.1: The IFI Refaktor Case Study quality profile (version 6).

Rule Max value

Avoid too complex class 200
Classes should not be coupled to too many
other classes (Single Responsibility Principle)

9

Control flow statements . . . should not be
nested too deeply

3

Methods should not be too complex 10
Methods should not have too many lines 20
NPath Complexity 200
Too many methods 10

8.3 The input
A precondition for the source code that is going to be the target for a series
of Extract and Move Method refactorings, is that it is organized as an Eclipse
project. It is also assumed that the code is free from compilation errors.

8.4 The experiment
For a given project, the first job that is done, is to refactor its source code.
The refactoring batch job produces three things: The refactored project,
statistics gathered during the execution of the series of refactorings, and
an error log describing any errors happening during this execution. See
chapter 7 on page 83 for more information about how the refactorings are
performed.

After the refactoring process is done, the before- and after-code is
analyzed with SonarQube. The analysis results are then stored in a database
and displayed through a SonarQube server with a web interface.
How long are these results going to be publicly available?

The before- and after-code is also tested with their own unit tests. This
is done to discover any changes in the semantic behavior of the refactored
code, within the limits of these tests.

91

8.5 Case 1: The Eclipse JDT UI project

This case is the ultimate test for our Extract and Move Method refactoring.
The target source code is massive. With its over 300,000 lines of code and
over 25,000 methods, it is formidable task to perform automated changes on
it. There should be plenty of situations where things can go wrong, and, as
we shall see later, they do.

I will start by presenting some statistics from the refactoring execution,
before I pick apart the SonarQube analysis and conclude by commenting
on the results from the unit tests. The configuration for the experiment is
specified in table 8.2 on the current page.

Table 8.2: Configuration for Case 1.

Benchmark data

Launch configuration CaseStudy.launch
Project no.uio.ifi.refaktor.benchmark
Repository gitolite@git.uio.no:ifi-stolz-refaktor
Commit 43c16c04520746edd75f8dc2a1935781d3d9de6c

Input data

Project org.eclipse.jdt.ui
Repository git://git.eclipse.org/gitroot/jdt/eclipse.jdt.ui.git
Commit f218388fea6d4ec1da7ce22432726c244888bb6b
Branch R3_8_maintenance
Tests suites org.eclipse.jdt.ui.tests.AutomatedSuite,

org.eclipse.jdt.ui.tests.refactoring.all.-
AllAllRefactoringTests

8.5.1 Statistics

The statistics gathered during the refactoring execution is presented in
table 8.3 on page 101.

Execution time

I consider the total execution time of approximately 1.5 hours as being
acceptable. It clearly makes the batch process unsuitable for doing any on-
demand analysis or changes, but it is good enough for running periodic jobs,
like over-night analysis.

As the statistics show, 75% of the total time goes into making the
actual code changes. The time consumers are here the primitive Extract
Method and Move Method refactorings. Included in the change time is
the parsing and precondition checking done by the refactorings, as well as

92

textual changes done to files on disk. All this parsing and disk access is
time-consuming, and constitute a large part of the change time.

In comparison, the pure analysis time, used to find suitable candidates,
only make up for 15% of the total time consumed. This includes analyzing
almost 600,000 text selections, while the number of attempted executions
of the Extract and Move Method refactoring are only about 2,500. So
the number of executed primitive refactorings are approximately 5,000.
Assuming the time used on miscellaneous tasks are used mostly for parsing
source code for the analysis, we can say that the time used for analyzing
code is at most 25% of the total time. This means that for every primitive
refactoring executed, we can analyze around 360 text selections. So, with an
average of about 21 text selections per method, it is reasonable to say that
we can analyze over 15 methods in the time it takes to perform a primitive
refactoring.

Refactoring candidates

Out of the 27,667 methods that were analyzed, 2,552 methods contained
selections that were considered candidates for the Extract and Move Method
refactoring. This is roughly 9% off the methods in the project. These 9%
of the methods had on average 14.4 text selections that were considered
possible refactoring candidates.

Executed refactorings

2,469 out of 2,552 attempts on executing the Extract and Move Method
refactoring were successful, giving a success rate of 96.7%. The failure rate
of 3.3% stem from situations where the analysis finds a candidate selection,
but the change execution fails. This failure could be an exception that
was thrown, and the refactoring aborts. It could also be the precondition
checking for one of the primitive refactorings that gives us an error status,
meaning that if the refactoring proceeds, the code will contain compilation
errors afterwards, forcing the composite refactoring to abort. This means
that if the Extract Method refactoring fails, no attempt is done for the Move
Method refactoring. Redundant

information? Put
in benchmark
chapter?

Redundant
information? Put
in benchmark
chapter?

Out of the 2,552 Extract Method refactorings that were attempted
executed, 69 of them failed. This give a failure rate of 2.7% for the primitive
refactoring. In comparison, the Move Method refactoring had a failure rate
of 0.6 % of the 2,483 attempts on the refactoring.

8.5.2 SonarQube analysis

Results from the SonarQube analysis are shown in table 8.4 on page 102.

Diversity in the number of entities analyzed

The analysis performed by SonarQube is reporting fewer methods than
found by the pre-refactoring analysis. SonarQube discriminates between
functions (methods) and accessors, so the 1,296 accessors play a part in this

93

calculation. SonarQube also has the same definition as our plugin when it
comes to how a class is defined. Therefore is seems like SonarQube misses
277 classes that our plugin handles. This can explain why the SonarQube
report differs from our numbers by approximately 2,500 methods,

Complexity

On all complexity rules that works on the method level, the number of issues
decreases with between 3.1% and 6.5% from before to after the refactoring.
The average complexity of a method decreases from 3.6 to 3.3, which is an
improvement of about 8.3%. So, on the method level, the refactoring must
be said to have a slightly positive impact.

The improvement in complexity on the method level is somewhat traded
for complexity on the class level. The complexity per class metric is worsen
by 3% from before to after. The issues for the “Too many methods” rule
also increases by 14.5%. These numbers indicate that the refactoring makes
quite a lot of the classes a little more complex overall. This is the expected
outcome, since the Extract and Move Method refactoring introduces almost
2,500 new methods into the project.

The only number that can save the refactoring’s impact on complexity
on the class level, is the “Avoid too complex class” rule. It improves with
2.5%, thus indicating that the complexity is moderately better distributed
between the classes after the refactoring than before.

Coupling

One of the hopes when starting this project, was to be able to make a
refactoring that could lower the coupling between classes. Better complexity
at the method level is a not very unexpected byproduct of dividing methods
into smaller parts. Lowering the coupling on the other hand, is a far greater
task. This is also reflected in the results for the only coupling rule defined in
the SonarQube quality profile, namely the “Classes should not be coupled
to too many other classes (Single Responsibility Principle)” rule.

The number of issues for the coupling rule is 1,098 before the refactoring,
and 1,199 afterwards. This is an increase in issues of 9.2%, and a blow for this
project. These numbers can be interpreted two ways. The first possibility
is that our assumptions are wrong, and that increasing indirection does not
decrease coupling between classes. The other possibility is that our analysis
and choices of candidate text selections are not good enough. I vote for the
second possibility. (Voting against the public opinion may also be a little
bold.)

What probably happens is, that many of the times the Extract and Move
Method refactoring is performed, the Move Method refactoring “drags” with
it references to classes that are unknown to the method destination. If
it happens to be so lucky that it removes a dependency from one class,
it might as well introduce three new dependencies to another class. In
those situations that a class does not know about the originating class of a
moved method, the Move Method refactoring most certainly will introduce

94

a dependency. This is because there is a bug1 in the refactoring, making it
pass an instance of the originating class as a reference to the moved method,
regardless of whether the reference is used in the method body or not.

There is also the possibility that the heuristics used to find candidate
text selections are not good enough, they most certainly are not. I wish I
had more time to fine-tune them, and to complete the analysis part of the
project, but this is simply not the case. This becomes even clearer when
analyzing the unit test results for the after-code.

Totals

On the bright side, the total number of issues is lower after the refactoring
than it was before. Before the refactoring, the total number of issues is
8,270, and after it is 8,155. An improvement of only 1.4%.

Then SonarQube tells me that the total complexity has increased by
2.9%, and that the (more questionable) “technical debt” has increased
from 1,003.4 to 1,032.7 days, also a deterioration of 2.9%. Although these
numbers are similar, no correlation has been found between them.

8.5.3 Unit tests

The tests that have been run for the Eclipse JDT UI project, are the tests
in the test suites specified as the main test suites on the JDT UI wiki page
on how to contribute to the project2.

Before the refactoring

Running the tests for the before-code of Eclipse JDT UI yielded 4 errors
and 3 failures for the AutomatedSuite test suite (2,007 test cases), and 2
errors and 3 failures for the AllAllRefactoringTests test suite (3,816 test
cases).

After the refactoring

The test results for the after-code of the Eclipse JDT UI project is another
story. The reason for this is that during the setup for the unit tests, Eclipse
now reports that the project contains 322 fatal errors, and a lot of errors
that probably follows from these. This is another blow for this master’s
project.

It has now been shown that the Extract and Move Method refactoring,
in its current state, produces code that does not compile. Had these errors
originated from only one bug, it would not have been much of a problem, but
this is not the case. By only looking at some random compilation problems
in the refactored code, I came up with at least four different bugs that write bug reports?write bug reports?
caused those problems. I then stopped looking for more, since some of the
bugs would take more time to fix than I could justify using on them at this
point.

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=228635
2https://wiki.eclipse.org/JDT_UI/How_to_Contribute#Unit_Testing

95

https://bugs.eclipse.org/bugs/show_bug.cgi?id=228635
https://wiki.eclipse.org/JDT_UI/How_to_Contribute#Unit_Testing

The only thing that can be said in my defence, is that all the compilation
errors could have been avoided if the types of situations that causes
them were properly handled by the primitive refactorings, that again are
supported by the Eclipse JDT UI project. All of the four randomly found
bugs that I mentioned before, are also weaknesses of the Move Method
refactoring. If the primitive refactorings had detected the up-coming errors
in their precondition checking phase, the refactorings would have been
aborted, since this is how the Extract and Move Method refactoring handles
such situations.

Of course, taking all possible situations into account is an immense task.
This is one of the reasons for the failure. A complete analysis is too big of
a task for this master’s project to handle. Looking at it now, this comes
as no surprise, since the task is obviously also too big for the creators of
the primitive Move Method refactoring. This shows that the underlying
primitive refactorings are not complete enough to be fully relied upon for
avoiding compilation errors.

Considering all these problems, it is difficult to know how to interpret
the unit test results from after refactoring the Eclipse JDT UI. The
AutomatedSuite reported 565 errors and 5 failures. Three of the failures
were the same as reported before the refactoring took place, so two of them
are new. For these two cases it is not immediately apparent what makes
them behave differently. The program is so complex that to analyze it to
find this out, we might need more powerful methods than just manually
analyzing its source code. This is somewhat characteristic for imperative
programming: The programs are often hard to analyze and understand.

For the AllAllRefactoringTests test suite, the three failures are gone,
but the two errors have grown to 2,257 errors. I will not try to analyze those
errors.

What I can say, is that it is likely that the Extract and Move Method
refactoring has introduced some unintended behavioral changes. Let us
say that the refactoring introduces at least two behavior-altering changes
for every 2,500 executions. More than that is difficult to say about the
behavior-preserving properties of the Extract and Move Method refactoring,
at this point.

8.5.4 Conclusions

After automatically analyzing and executing the Extract and Move Method
refactoring for all the methods in the Eclipse JDT UI project, the results
does not look that promising. For this case, the refactoring seems almost
unusable as it is now. The error rate and measurements done tells us this.

The refactoring makes the code a little less complex at the method
level. But this is merely a side effect of extracting methods, and holds little
scientific value. When it comes to the overall complexity, it is increased,
although it is slightly better spread among the classes.

The analysis done before the Extract and Move Method refactoring, is
currently not complete enough to make the refactoring useful. It introduces
too many errors in the code, and the code may change it’s behavior. It also

96

remains to prove that large scale refactoring with it can decrease coupling
between classes. A better analysis may prove this, but in its present state,
the opposite is the fact. The coupling measurements done by SonarQube
shows this.

On the bright side, the performance of the refactoring process is not that
bad. It shows that it is possible to make a tool the way we do, if we can
make the tool do anything useful. As long as the analysis phase is not going
to involve anything that uses to much disk access, a lot of analysis can be
done in a reasonable amount of time.

The time used on performing the actual changes excludes a trial and
error approach with the tools used in this master’s project. In a trial and
error approach, you could for instance be using the primitive refactorings
used in this project to refactor code, and only then make decisions based on
the effect, possibly shown by traditional software metrics. The problem with
the approach taken in this project, compared to a trial and error approach,
is that using heuristics beforehand is much more complicated. But on the
other hand, a trial and error approach would still need to face the challenges
of producing code that does compile without errors. If using refactorings
that could produce in-memory changes, a trial and error approach could be
made more efficient.

8.6 Case 2: The no.uio.ifi.refaktor project
In this case we will see a form of the “dogfooding” methodology used, when
refactoring our own no.uio.ifi.refaktor project with the Extract and
Move Method refactoring.

In this case I will try to point out some differences from case 1, and how
they impact the execution of the benchmark. The refaktor project is 39
times smaller than the Eclipse JDT UI project, measured in lines of code.
This will make things a bit more transparent. It will therefore be interesting
to see if this case can shed light on any aspect of our project that were lost
in the larger case 1.

The configuration for the experiment is specified in table 8.5 on page 103.

8.6.1 Statistics

The statistics gathered during the refactoring execution is presented in
table 8.6 on page 104.

Differences

There are some differences between the two projects that make them a little
difficult to compare by performance.

Different complexity. Although the JDT UI project is 39 times greater
than the refaktor project in terms of lines of code, it is only about 26 times
its size measured in numbers of methods. This means that the methods in
the refaktor project are smaller in average than in the JDT project. This

97

is also reflected in the SonarQube report, where the complexity per method
for the JDT project is 3.6, while the refaktor project has a complexity per
method of 2.1.

Number of selections per method. The analysis for the JDT project
processed 21 text selections per method in average. This number for the
refaktor project is only 8 selections per method analyzed. This is a direct
consequence of smaller methods.

Different candidates to methods ratio. The differences in how the
projects are factored are also reflected in the ratios for how many methods
that are chosen as candidates compared to the total number of methods
analyzed. For the JDT project, 9% of the methods were considered to be
candidates, while for the refaktor project, only 5% of the methods were
chosen.

The average number of possible candidate selection. For the
methods that are chosen as candidates, the average number of possible
candidate selections for these methods differ quite much. For the JDT
project, the number of possible candidate selections for these methods was
14.44 selections per method, while the candidate methods in the refaktor
project had only 3.91 candidate selections to choose from, in average.

Execution time

The differences in complexity, and the different candidate methods to total
number of methods ratios, is shown in the distributions of the execution
times. For the JDT project, 75% of the total time was used on the actual
changes, while for the refaktor project, this number was only 63%.

For the JDT project, the benchmark used on average 0.21 seconds per
method in the project, while for the refaktor project it used only 0.07 seconds
per method. So the process used 3 times as much time per method for the
JDT project than for the refaktor project.

While the JDT project is 39 times larger than the refaktor project
measured in lines of code, the benchmark used about 79 times as long time
on it than for the refaktor project. Relatively, this is about twice as long.

Since the details of these execution times are not that relevant to this
master’s project, only their magnitude, I will leave them here.

Executed refactorings

For the composite Extract and Move Method refactoring performed in case
2, 53 successful attempts out of 58 gives a success rate of 91.4%. This is 5.3
percentage points worse than for case 1.

8.6.2 SonarQube analysis

Results from the SonarQube analysis is shown in table 8.7 on page 105.

98

Not much is to be said about these results. The trends in complexity
and coupling are the same. We end up a little worse after the refactoring
process than before.

8.6.3 Unit tests

The tests used for this case are the same that has been developed throughout
the master’s project.

The code that was refactored for this case suffered from some of the
problems discovered in case 1. This means that the after-code for case 2
also contained compilation errors, but they were not as many. The code
contained only 6 errors that made the code not compile.

All of the errors made, originated from the same bug. It is a bug that
happens in situation where a class instance creation is moved from between
packages, and the class for the instance is package-private. The Move
Method refactoring does not detect that there will be a visibility problem,
and neither does it promote the package-private class to be public.

Since the errors were easy to fix manually, I corrected them and ran
the unit tests as planned. Before the refactoring, all tests passed. All tests
also passed after the refactoring, with the six error corrections. Since the
corrections done is not of a kind that could make the behavior of the program
change, it is likely that the refactorings done to the no.uio.ifi.refaktor
project did not change its behavior. This is also supported by the informal
experiment presented next.

8.6.4 An informal experiment

To complete the task of “eating my own dog food”, I conducted an informal
experiment where I used the refactored version of the no.uio.ifi.refaktor
project, with the corrections, to again refaktor “itself”.

The experiment produced code containing the same six errors as after
the previous experiment. I also compared the after-code from the two
experiments with a diff-tool. The only differences found were different
method names. This is expected, since the method names are randomly
generated by the Extract and Move Method refactoring.

The outcome of this simple experiment makes me more confident that
the Extract and Move Method refactoring made only behavior-preserving
changes to the no.uio.ifi.refaktor project, apart from the compilation
errors.

8.6.5 Conclusions

The differences in complexity between the Eclipse JDT UI project and the
no.uio.ifi.refaktor project, clearly influenced the differences in their
execution times. This is mostly because fewer of the methods were chosen
to be refactored for the refaktor project than for the JDT project. What
this makes difficult, is to know if there are any severe performance penalties
associated with refactoring on a large project compared to a small one.

99

The trends in the SonarQube analysis are the same for this case as for
the previous one. This gives more confidence in the these results.

By refactoring our own code and using it again to refactor our code,
we showed that it is possible to write an automated composite refactoring
that works for many cases. That it probably did not alter the behavior of
a smaller project shows us nothing more than that though, and might just
be a coincidence.

8.7 Summary

Write? Or wrap up in final conclusions?

100

Table 8.3: Statistics after batch refactoring the Eclipse JDT UI project with
the Extract and Move Method refactoring.

Time used

Total time 98m38s
Analysis time 14m41s (15%)
Change time 74m20s (75%)
Miscellaneous tasks 9m37s (10%)

Numbers of each type of entity analyzed

Packages 110
Compilation units 2,097
Types 3,152
Methods 27,667
Text selections 591,500

Numbers for Extract and Move Method refactoring candidates

Methods chosen as candidates 2,552
Methods NOT chosen as candidates 25,115
Candidate selections (multiple per method) 36,843

Extract and Move Method refactorings executed

Fully executed 2,469
Not fully executed 83
Total attempts 2,552

Primitive refactorings executed
Extract Method refactorings

Performed 2,483
Not performed 69
Total attempts 2,552

Move Method refactorings

Performed 2469
Not performed 14
Total attempts 2,483

101

Table 8.4: Results for analyzing the Eclipse JDT UI project, before and after
the refactoring, with SonarQube and the IFI Refaktor Case Study quality
profile. (Bold numbers are better.)

Number of issues for each rule Before After

Avoid too complex class 81 79
Classes should not be coupled to too many
other classes (Single Responsibility Principle)

1,098 1,199

Control flow statements . . . should not be
nested too deeply

1,375 1,285

Methods should not be too complex 1,518 1,452
Methods should not have too many lines 3,396 3,291
NPath Complexity 348 329
Too many methods 454 520

Total number of issues 8,270 8,155

Complexity

Per function 3.6 3.3
Per class 29.5 30.4
Per file 44.0 45.3

Total complexity 84,765 87,257

Numbers of each type of entity analyzed

Files 1,926 1,926
Classes 2,875 2,875
Functions 23,744 26,332
Accessors 1,296 1,019
Statements 162,768 165,145
Lines of code 320,941 329,112

Technical debt (in days) 1,003.4 1,032.7

102

Table 8.5: Configuration for Case 2.

Benchmark data

Launch configuration CaseStudyDogfooding.launch
Project no.uio.ifi.refaktor.benchmark
Repository gitolite@git.uio.no:ifi-stolz-refaktor
Commit 43c16c04520746edd75f8dc2a1935781d3d9de6c

Input data

Project no.uio.ifi.refaktor
Repository gitolite@git.uio.no:ifi-stolz-refaktor
Commit 43c16c04520746edd75f8dc2a1935781d3d9de6c
Branch master
Test configuration no.uio.ifi.refaktor.tests/ExtractTest.launch

103

Table 8.6: Statistics after batch refactoring the no.uio.ifi.refaktor
project with the Extract and Move Method refactoring.

Time used

Total time 1m15s
Analysis time 0m18s (24%)
Change time 0m47s (63%)
Miscellaneous tasks 0m10s (14%)

Numbers of each type of entity analyzed

Packages 33
Compilation units 154
Types 168
Methods 1,070
Text selections 8,609

Numbers for Extract and Move Method refactoring candidates

Methods chosen as candidates 58
Methods NOT chosen as candidates 1,012
Candidate selections (multiple per method) 227

Extract and Move Method refactorings executed

Fully executed 53
Not fully executed 5
Total attempts 58

Primitive refactorings executed
Extract Method refactorings

Performed 56
Not performed 2
Total attempts 58

Move Method refactorings

Performed 53
Not performed 3
Total attempts 56

104

Table 8.7: Results for analyzing the no.uio.ifi.refaktor project, before
and after the refactoring, with SonarQube and the IFI Refaktor Case Study
quality profile. (Bold numbers are better.)

Number of issues for each rule Before After

Avoid too complex class 1 1
Classes should not be coupled to too many
other classes (Single Responsibility Principle)

29 34

Control flow statements . . . should not be
nested too deeply

24 21

Methods should not be too complex 17 15
Methods should not have too many lines 41 40
NPath Complexity 3 3
Too many methods 13 15

Total number of issues 128 129

Complexity

Per function 2.1 2.1
Per class 12.5 12.9
Per file 13.8 14.2

Total complexity 2,089 2,148

Numbers of each type of entity analyzed

Files 151 151
Classes 167 167
Functions 987 1,045
Accessors 35 30
Statements 3,355 3,416
Lines of code 8,238 8,460

Technical debt (in days) 19.0 20.7

105

106

Chapter 9

Conclusions and Future
Work

This chapter will conclude this master’s thesis. It will try to give justified
answers to the research questions posed (see section 1.3.6 on page 32) and
present some future work that could be done to take this project to the next
level.

9.1 Conclusions

One of the motivations for this thesis was to create a fully automated
composite refactoring that could be used to make program source code better
in terms of coupling between classes. Earlier, in section 1.3.5, it was shown
that a composition of the Extract Method and the Move Method refactorings
reduces the coupling between two classes in an ideal situation. The Eclipse
IDE implements both these refactorings, as well as providing a framework
for analyzing source code, so it was considered a suitable tool to build upon
for our project.

The search-based Extract and Move Method refactoring was created
by utilizing the analysis and refactoring support of Eclipse, and a small
framework was built for executing large scale refactoring with it. The
refactoring was set up to analyze and execute changes on the Eclipse JDT
UI project. Statistics was gathered during this process and the resulting
code was analyzed through SonarQube. The project’s own unit tests were
also performed to find out if our refactoring introduces any behavior-altering
changes in the code it refactor.

Answering the main research question The first and greatest
challenge was to find out if the Extract and Move Method refactoring could
be automated, in all tasks ranging from analysis to executing changes. It
is now confirmed that this can be done, since it has been implemented as
a part of the work done for this project. It has also been shown that the
refactoring can be used to refactor large code bases, through the case study
done on the Eclipse JDT UI project.

107

If we ask if using the existing Eclipse refactorings for this task is easy,
this is another question. The refactorings provided by the JDT UI project
are clearly not meant to be combined in any way. The preconditions for one
refactoring are not always easily retrievable after the execution of another.
Also, the refactorings are all assuming that the code they shall refactor is
textualized. This means that the source code must be parsed between the
executions of each refactoring. Another problem with this dependency on
textual changes is that you cannot make a composition of two refactorings
appear as one change if their changes overlap. This will make the undo-
history of the refactoring show two changes instead of one, and is not nice
for usability it the refactoring would be used as an on-demand refactoring
in an IDE.

Apart from the problems with implementing the actual refactoring, the
analysis framework is quite nicely solved in Eclipse. The AST generated
when parsing source code supports using visitors to traverse it, and this
works without problems.

Is the refactoring efficient enough? By being able to process over
300,000 pure lines of code in about 1.5 hours on a mid-level laptop computer,
the search-based Extract and Move Method refactoring must be said to
perform reasonably well.

What about breaking the source code? The case studies showed that
our safety measures that rely on the precondition checking of the existing
primitive refactorings are not good enough in practice. If we were going
to assure that code we change compiles, we would need to consider all
possible situations where the refactoring could fail and search for them in
our analysis. It is an open question if this is even feasible. Our analysis
is incomplete, and so is the analysis for the Extract Method and the Move
Method refactorings.

Our refactoring does not take any precautions to preserve behavior. A
few running and failing unit test for the JDT UI project after the refactoringcheck out test

report
check out test
report indicate that our refactoring probably causes some changes to the way a

program behaves.

Is the quality of the code improved? For coupling, there is no evidence
that the refactoring improves the quality of source code. Shall we believe
the SonarQube analysis from the case studies, our refactoring makes classes
more coupled after the refactoring than before, in the general case. This is
probably because our analysis and heuristics for finding the best candidates
for the refactoring are not adequate.

Is the refactoring useful? In its present state, the refactoring cannot be
said to be very useful. It generates too many compilation errors for it to fall
into that category. On the other hand, if the problems with the search-based
Extract and Move Method refactoring were to be solved it could be useful in
some situations.

108

If the refactoring was perfected, it could of course be used as a regular on-
demand automated refactoring on a per method base (or per class, package
or project).

As it is now, the refactoring is not very well suited to be set to perform
unattended refactoring. But if we could find a way to filter out the changes
that create compilation errors, we could use the refactoring to look for
improvement points in a software project. This process could for instance
be scheduled to run at regular times, possibly after a nightly build or the
like. Then the results could be made available, and an administrator could
be set to review them and choose whether or not they should be performed.

9.2 Future work
Find out if a complete analysis is feasible
Complete the analysis

Make refactorings safer (behavior)

Improve heuristics/introduce metrics

109

110

Appendix A

Eclipse Bugs Submitted

A.1 Eclipse bug 420726: Code is broken when
moving a method that is assigning to the
parameter that is also the move destination

This bug was found when analyzing what kinds of names that were to be
considered as unfixes (see section 5.4.2 on page 72).

The bug The bug emerges when trying to move a method from one class
to another, and when the target for the move (must be a variable, local
or field) is both a parameter variable and also is assigned to within the
method body. Eclipse allows this to happen, although it is the sure path to
a compilation error. This is because we would then have an assignment to
a this expression, which is not allowed in Java. The submitted bug report
can be found on https://bugs.eclipse.org/bugs/show_bug.cgi?id=420726.

The solution The solution to this problem is to add all simple names that
are assigned to in a method body to the set of unfixes.

A.2 Eclipse bug 429416: IAE when moving
method from anonymous class

I discovered this bug during a batch change on the org.eclipse.jdt.ui
project.

The bug This bug surfaces when trying to use the Move Method
refactoring to move a method from an anonymous class to another class.
This happens both for my simulation as well as in Eclipse, through
the user interface. It only occurs when Eclipse analyzes the program
and finds it necessary to pass an instance of the originating class as
a parameter to the moved method. I.e. it want to pass a this
expression. The execution ends in an IllegalArgumentException1 in

1java.lang.IllegalArgumentException

111

https://bugs.eclipse.org/bugs/show_bug.cgi?id=420726

SimpleName1 and its setIdentifier(String) method. The simple name
is attempted created in the method createInlinedMethodInvocation2 so
the MoveInstanceMethodProcessor was early a clear suspect.

The createInlinedMethodInvocation is the method that creates a
method invocation where the previous invocation to the method that was
moved was located. From its code it can be read that when a this expression
is going to be passed in to the invocation, it shall be qualified with the
name of the original method’s declaring class, if the declaring class is either
an anonymous class or a member class. The problem with this, is that an
anonymous class does not have a name, hence the term anonymous class!
Therefore, when its name, an empty string, is passed into newSimpleName3

it all ends in an IllegalArgumentException. The submitted bug report
can be found on https://bugs.eclipse.org/bugs/show_bug.cgi?id=429416.

How I solved the problem Since the MoveInstanceMethodProcessor
is instantiated in the MoveMethodRefactoringExecutor4, and only need
to be a MoveProcessor5, I was able to copy the code for the original
move processor and modify it so that it works better for me. It is now
called ModifiedMoveInstanceMethodProcessor6. The only modification
done (in addition to some imports and suppression of warnings), is in the
createInlinedMethodInvocation. When the declaring class of the method
to move is anonymous, the this expression in the parameter list is not
qualified with the declaring class’ (empty) name.

A.3 Eclipse bug 429954: Extracting statement
with reference to local type breaks code

The bug was discovered when doing some changes to the way unfixes is
computed.

The bug The problem is that Eclipse is allowing selections that references
variables of local types to be extracted. When this happens the code is
broken, since the extracted method must take a parameter of a local type
that is not in the methods scope. The problem is illustrated in listing 10
on page 47, but there in another setting. The submitted bug report can be
found on https://bugs.eclipse.org/bugs/show_bug.cgi?id=429954.

Actions taken There are no actions directly springing out of this bug,
since the Extract Method refactoring cannot be meant to be this way. This
is handled on the analysis stage of our Extract and Move Method refactoring.

1org.eclipse.jdt.core.dom.SimpleName
2org.eclipse.jdt.internal.corext.refactoring.structure.

MoveInstanceMethodProcessor#createInlinedMethodInvocation()
3org.eclipse.jdt.core.dom.AST#newSimpleName()
4no.uio.ifi.refaktor.change.executors.MoveMethodRefactoringExecutor
5org.eclipse.ltk.core.refactoring.participants.MoveProcessor
6no.uio.ifi.refaktor.change.processors.ModifiedMoveInstanceMethodProcessor

112

https://bugs.eclipse.org/bugs/show_bug.cgi?id=429416
https://bugs.eclipse.org/bugs/show_bug.cgi?id=429954

So names representing variables of local types is considered unfixes (see
section 5.4.2 on page 72).
write more when fixing this in legal statements checker

113

114

Glossary

design pattern A design pattern is a named abstraction, that is meant
to solve a general design problem. It describes the key aspects
of a common problem and identifies its participators and how they
collaborate. 16

enclosing class An enclosing class is the class that surrounds any specific
piece of code that is written in the inner scope of this class. 41

Extract Class The Extract Class refactoring works by creating a class, for
then to move members from another class to that class and access
them from the old class via a reference to the new class. 22

memento pattern The memento pattern is a software design pattern that
is used to capture an object’s internal state so that it can be restored
to this state later [Gam+95]. 87

profiler A profiler is a program for analyzing performance within an
application. It is used to analyze memory consumption, processing
time and frequency of procedure calls and such. 85

profiling is to run a computer program through a profiler/with a profiler
attached. 24, 85

software obfuscation makes source code harder to read and analyze,
while preserving its semantics. 16

xUnit framework An xUnit framework is a framework for writing unit
tests for a computer program. It follows the patterns known from the
JUnit framework for Java [Fow]. 28

115

116

References

[11] JAVA EE Productivity Report 2011. Survey. 2011. url: http:
//zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_
Productivity_Report_2011_finalv2.pdf.

[14a] Advice (programming). In: Wikipedia, the free encyclopedia.
Page Version ID: 462233199. Mar. 14, 2014. url: https://en.
wikipedia.org/w/index.php?title=Advice_(programming)&oldid=
462233199 (visited on 03/21/2014).

[14b] Continuous design. In: Wikipedia, the free encyclopedia. Page
Version ID: 544105069. Apr. 8, 2014. url: https://en.wikipedia.
org/w/index.php?title=Continuous_design&oldid=544105069
(visited on 04/09/2014).

[Bro04] Leo Brodie. Thinking Forth. 3rd ed. 2004. url: http://thinking-
forth.sourceforge.net/.

[CK94] S.R. Chidamber and C.F. Kemerer. “A Metrics Suite for
Object Oriented Design.” In: IEEE Transactions on Software
Engineering 20.6 (June 1994), pp. 476–493.

[Dem02] Serge Demeyer. “Maintainability Versus Performance: What’s
the Effect of Introducing Polymorphism?” In: ICSE’2003
(2002).

[Fow] Martin Fowler. Xunit. url: http://www.martinfowler.com/bliki/
Xunit.html (visited on 03/27/2014).

[Fow01] Martin Fowler. Crossing Refactoring’s Rubicon. 2001. url: http:
//martinfowler.com/articles/refactoringRubicon.html (visited on
02/09/2014).

[Fow03] Martin Fowler. EtymologyOfRefactoring. Sept. 10, 2003. url:
http : / /martinfowler . com / bliki / EtymologyOfRefactoring . html
(visited on 03/20/2014).

[Fow04] Martin Fowler. Is Design Dead? 2004. url: http://martinfowler.
com/articles/designDead.html (visited on 04/09/2014).

[Fow99] Martin Fowler. Refactoring: improving the design of existing
code. Reading, MA: Addison-Wesley, 1999.

[Gam+95] Erich Gamma et al. Design patterns: elements of reusable
object-oriented software. Reading, MA: Addison-Wesley, 1995.

117

http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
https://en.wikipedia.org/w/index.php?title=Advice_(programming)&oldid=462233199
https://en.wikipedia.org/w/index.php?title=Advice_(programming)&oldid=462233199
https://en.wikipedia.org/w/index.php?title=Advice_(programming)&oldid=462233199
https://en.wikipedia.org/w/index.php?title=Continuous_design&oldid=544105069
https://en.wikipedia.org/w/index.php?title=Continuous_design&oldid=544105069
http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://www.martinfowler.com/bliki/Xunit.html
http://www.martinfowler.com/bliki/Xunit.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/articles/refactoringRubicon.html
http://martinfowler.com/bliki/EtymologyOfRefactoring.html
http://martinfowler.com/articles/designDead.html
http://martinfowler.com/articles/designDead.html

[Har06] W. Harrison. “Eating Your Own Dog Food.” In: IEEE Software
23.3 (May 2006), pp. 5–7.

[Ker05] Joshua Kerievsky. Refactoring to patterns. Boston: Addison-
Wesley, 2005.

[Lou97] Kenneth C Louden. Compiler construction: principles and
practice. Boston: PWS Pub. Co., 1997.

[MC09] Robert C Martin and James O Coplien. Clean code: a handbook
of agile software craftsmanship. Upper Saddle River, NJ [etc.]:
Prentice Hall, 2009.

[McC76] T.J. McCabe. “A Complexity Measure.” In: IEEE Transactions
on Software Engineering SE-2.4 (Dec. 1976), pp. 308–320.

[Mey88] Bertrand Meyer.Object-oriented software construction. Prentice-
Hall, 1988.

[Mil56] George A. Miller. “The magical number seven, plus or minus
two: some limits on our capacity for processing information.”
In: Psychological Review 63.2 (1956), pp. 81–97.

[Nic06] Ethan Nicholas. Understanding Weak References. Java.net.
May 4, 2006. url: https ://weblogs . java .net/blog/2006/05/
04/understanding-weak-references (visited on 03/20/2014).

[OC08] Mark O’Keeffe and Mel Ó Cinnéide. “Search-based Refactoring:
An Empirical Study.” In: J. Softw. Maint. Evol. 20.5 (Sept.
2008), 345–364. url: http://dx.doi.org/10.1002/smr.v20:5.

[Opd92] William F. Opdyke. “Refactoring Object-oriented Frameworks.”
UMI Order No. GAX93-05645. Champaign, IL, USA: Univer-
sity of Illinois at Urbana-Champaign, 1992.

[RBJ97] Don Roberts, John Brant, and Ralph Johnson. “A Refactoring
Tool for Smalltalk.” In: Theor. Pract. Object Syst. 3.4 (Oct.
1997), 253–263.

[Sha10] R. Shatnawi. “A Quantitative Investigation of the Acceptable
Risk Levels of Object-Oriented Metrics in Open-Source Sys-
tems.” In: IEEE Transactions on Software Engineering 36.2
(Mar. 2010), pp. 216–225.

[Soa+10] G. Soares et al. “Making Program Refactoring Safer.” In: IEEE
Software 27.4 (Aug. 2010), pp. 52 –57.

[Sto] Volker Stolz. Project "Safer Refactorings". url: http://heim.ifi.
uio.no/stolz/Volker_Stolz_-_UiO/Project_Safer_Refactorings.
html (visited on 04/26/2014).

[Vak+12] Mohsen Vakilian et al. A Compositional Paradigm of Au-
tomating Refactorings. May 2012. url: https : / / www .
ideals . illinois . edu / bitstream / handle / 2142 / 30851 /
VakilianETAL2012Compositional.pdf?sequence=4.

118

http://dx.doi.org/10.1109/MS.2006.72
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1037/h0043158
https://weblogs.java.net/blog/2006/05/04/understanding-weak-references
https://weblogs.java.net/blog/2006/05/04/understanding-weak-references
http://dx.doi.org/10.1002/smr.v20:5
http://dx.doi.org/10.1002/smr.v20:5
http://dx.doi.org/10.1002/smr.v20:5
http://dx.doi.org/10.1109/TSE.2010.9
http://dx.doi.org/10.1109/TSE.2010.9
http://dx.doi.org/10.1109/TSE.2010.9
http://dx.doi.org/10.1109/MS.2010.63
http://heim.ifi.uio.no/stolz/Volker_Stolz_-_UiO/Project_Safer_Refactorings.html
http://heim.ifi.uio.no/stolz/Volker_Stolz_-_UiO/Project_Safer_Refactorings.html
http://heim.ifi.uio.no/stolz/Volker_Stolz_-_UiO/Project_Safer_Refactorings.html
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4
https://www.ideals.illinois.edu/bitstream/handle/2142/30851/VakilianETAL2012Compositional.pdf?sequence=4

[VJ12] Mohsen Vakilian and Ralph Johnson. Composite Refactorings:
The Next Refactoring Rubicons. University of Illinois at
Urbana-Champaign, 2012. url: https://www.ideals.illinois.edu/
bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2.

[Vog12] Lars Vogel. Eclipse JDT - Abstract Syntax Tree (AST) and
the Java Model - Tutorial. vogella. Aug. 8, 2012. url: http :
//www.vogella.com/tutorials/EclipseJDT/article.html (visited on
04/20/2014).

119

https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/35678/2012-WRT.pdf?sequence=2
http://www.vogella.com/tutorials/EclipseJDT/article.html
http://www.vogella.com/tutorials/EclipseJDT/article.html

120

Todo list

Remove all todos (including list) before delivery/printing!!!
Can be done by removing “draft” from documentclass. . 3

Write abstract . 3
Structure. Write later. 15
Highlight code . 32
Write . 35
Write . 35
State somewhere that we assume no compilation errors? 43
Expand with more illegal statements and/or conclude that I did not

have time to analyze all statement types. 44
Short description of changing code and error handling? 51
Pointing to implementation chapter 51
What about the language specific part? 53
refine . 55
Elaborate? . 60
Write about the ExtractAndMoveMethodCandidateComparator/Fa-

vorNoUnfixesCandidateComparator 62
Where to put this section? . 63
Add more to the AST format tree? fig. 5.4 on page 69 68
Give more technical detail? . 72
Remove section? . 72
File Eclipse bug report . 73
Follow the development in the semantics section. 75
write . 87
How long are these results going to be publicly available? 91
Redundant information? Put in benchmark chapter? 93
write bug reports? . 95
Write? Or wrap up in final conclusions? 100
check out test report . 108
Find out if a complete analysis is feasible 109
Complete the analysis . 109
Make refactorings safer (behavior) . 109
Improve heuristics/introduce metrics 109
write more when fixing this in legal statements checker 113

121

	Introduction
	Motivation and structure
	What is refactoring?
	Defining refactoring
	The etymology of 'refactoring'
	Reasons for refactoring
	The magical number seven
	Notable contributions to the refactoring literature
	Tool support (for Java)
	The relation to design patterns
	The impact on software quality
	Composite refactorings
	Manual vs. automated refactorings
	Correctness of refactorings
	Refactoring and the importance of testing

	The Project
	Project description
	The premises
	The primitive refactorings
	The Extract and Move Method refactoring
	The Coupling Between Object Classes metric
	Research questions
	Methodology
	Case study
	Dogfooding

	Related Work
	Refactoring safety
	Search-based refactoring
	The compositional paradigm of refactoring

	The search-based Extract and Move Method refactoring
	The inputs to the refactoring
	Defining a text selection
	Where we look for text selections
	Text selections are found in methods
	The possible text selections of a method body

	Disqualifying a selection
	A call to a protected or package-private method
	A double class instance creation
	Instantiation of non-static inner class
	References to enclosing instances of the enclosing class
	Inconsistent return statements
	Ambiguous return values
	Illegal statements

	Disqualifying selections from the example
	Finding a move target
	Unfixes
	Finding the example selections that have possible targets
	Choosing the selection
	Concluding the example
	??

	Refactorings in Eclipse JDT: Design and Shortcomings
	Design
	The Language Toolkit

	Shortcomings
	Absence of Generics in Eclipse Source Code
	Composite Refactorings Will Not Appear as Atomic Actions

	Composite Refactorings in Eclipse
	A Simple Ad Hoc Model
	A typical RefaktorChanger

	The Extract and Move Method Refactoring
	The Building Blocks
	The ExtractAndMoveMethodChanger
	The SearchBasedExtractAndMoveMethodChanger
	The Prefix Class
	The PrefixSet Class
	Hacking the Refactoring Undo History

	Analyzing Source Code in Eclipse
	The Java model
	The Abstract Syntax Tree
	The AST in Eclipse

	The ASTVisitor
	Property collectors
	The PrefixesCollector
	The UnfixesCollector
	The ContainsReturnStatementCollector
	The LastStatementCollector

	Checkers
	The CallToProtectedOrPackagePrivateMethodChecker
	The DoubleClassInstanceCreationChecker
	The InstantiationOfNonStaticInnerClassChecker
	The EnclosingInstanceReferenceChecker
	The ReturnStatementsChecker
	The AmbiguousReturnValueChecker
	The IllegalStatementsChecker

	Technicalities
	Source code organization
	The no.uio.ifi.refaktor project

	Continuous integration
	Problems with AspectJ

	Benchmarking
	The benchmark setup
	The ProjectImporter

	Statistics
	AspectJ
	The Statistics class
	Advices

	Optimizations
	Caching
	Candidates stored as mementos

	Handling failures

	Case Studies
	The tools
	The SonarQube quality profile
	The input
	The experiment
	Case 1: The Eclipse JDT UI project
	Statistics
	SonarQube analysis
	Unit tests
	Conclusions

	Case 2: The no.uio.ifi.refaktor project
	Statistics
	SonarQube analysis
	Unit tests
	An informal experiment
	Conclusions

	Summary

	Conclusions and Future Work
	Conclusions
	Future work

	Eclipse Bugs Submitted
	Eclipse bug 420726: Code is broken when moving a method that is assigning to the parameter that is also the move destination
	Eclipse bug 429416: IAE when moving method from anonymous class
	Eclipse bug 429954: Extracting statement with reference to local type breaks code

